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Heat conduction is the process of heat transfer from a high-temperature region to a low-
temperature region through a body (gas, liquid, or solid) that is not in macroscopic 
relative motion. It is the macroscopic manifestation of particle activities at the molecular 
scale in the body.  For single-phase systems, it is well-known that heat conduction obeys 
the Fourier law of heat conduction. Multiphase systems involve another scale, the 
microscale where different phases interplay with each other. By using the two-phase 
systems as an example, we show that this additional microscale activity shifts the Fourier 
heat conduction in the each phase into the dual-phase-lagging heat conduction in two-
phase systems at the macroscale. This finding is significant because all results regarding 
dual-phase-lagging heat conduction can thus be applied to study the heat conduction in 
two-phase systems and the other way around. This finding also raises the question of 
reliability for existing thermal conductivity data that were obtained based on the 
hypothesized Fourier heat conduction at the macroscale. 

 

Consider heat conduction in two-phase-systems denoted by −β  and −σ phases, 
respectively. By the first law of thermodynamics and the Fourier law of heat conduction, 
we have a microscale model for heat conduction in two-phase-systems (Fig. 1) 
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 Tβ = Tσ ,   at the β − σ interface Aβσ                                      (3) 

 nβσ ⋅ kβ = nβσ ⋅ kσ ∇ Tσ ,  at the β − σ interface Aβσ                          (4) 

Here T is the temperature. ρ, c and k are the density, specific heat and thermal 
conductivity, respectively.  Subscripts β and σ refer to the β- and σ-phases, respectively.  
Aβσ represents the area of the β − σ interface; nβσ is the outward-directed surface normal 
from the β-phase toward the σ-phase, and nβσ = −nσβ (Fig. 1).   
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Applying the volume averaging and multiscale theorems to scale-up the microscale 
model yields a macroscale model: 
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where the index i can take β or σ; i
iT is the i-phase intrinsic average temperature; γβ and 

γσ are the β-phase and σ-phase effective thermal capacities, respectively; kβ and kσ are the 
effective thermal conductivities of the β- and σ-phases, respectively; kβσ = kσβ is the cross 
effective thermal conductivity of the two phases; h and aυ are the film heat transfer 
coefficient and the interfacial area per unit volume, respectively; and 
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This is the dual-phase-lagging heat-conduction equation with qτ  and Tτ as the phase lags 
of the heat flux and the temperature gradient, respectively.  is the volumetric heat 
source. k, 

),( tF r
cρ  and α are the effective thermal conductivity, capacity and diffusivity of 

two, respectively. Therefore, the interaction between the two phases shifts the Fourier 
heat conduction in each phase into the dual-phase-lagging heat conduction. 

By Eq. (6), we can readily obtain that, in two-phase-system heat conduction 
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It can be large, equal or smaller than 1 depending on the sign of .  
Therefore, by the condition for the existence of thermal waves that requires

βσσββσσβ γγ−γ+γ kkk 222

1<qT ττ , 
we may have thermal waves in two-phase-system heat conduction when 
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.                           (8) 0222 <−+ βσσββσσβ γγγγ kkk

Note also that for heat conduction in two-phase-systems there is a time-dependent source 
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σββσ  in the dual-phase-lagging heat conduction [Eqs. (5) and (6)]. 

Therefore, the resonance can also occur. These thermal waves and possibly resonance are 
believed to be the driving force for the conductivity enhancement.  

Thermal waves have been observed in casting sand experiments by two independent 
groups. Substantial increases in thermal conductivity have also been confirmed 
experimentally for the porous-media fluids and nanofluids. However, the reported data of 
effective thermal conductivity are all in between those of two phases so that the -
enhancement appears only at . On the other hand, our theory shows that the -
enhancement can occur for all cases with 

βk

βσ kk > βk
2σβσ kk −>  [Eq. (6)]. Therefore, it is possible 

to have some thermal-wave fluids that can support very strong thermal waves and 
resonance such that their conductivities are higher than those of two phases. We present 
the first experimental evidence of substantial increases in fluid thermal conductivity (up 
to 139%) by adding some fluid even with lower conductivity (Figs. 2 and 3).  

 

 

 
 

 

Figure 1: Two phase systems 
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Figure 2: Oil/water emulsion under microscope [oil volume fraction=10%; 
temperature=23℃; oil droplet mean diameter of 383.9nm with a coefficient of variation 

(CV) of 4.02%]. 
 

 
 
 

 

 
Figure 3: Variation of wkk with oil volume fraction and emulsion temperature ( : 

emulsion thermal conductivity; : water thermal conductivity).  
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