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Estimation of the camera pose from image point correspondences

through the essential matrix and convex optimization

Graziano Chesi

Abstract— Estimating the camera pose in stereo vision sys-
tems is an important issue in computer vision and robotics. One
popular way to handle this problem consists of determining the
essential matrix which minimizes the algebraic error obtained
from image point correspondences. Unfortunately, this search
amounts to solving a nonconvex optimization, and the existing
methods either rely on some approximations in order to get
rid of the non-convexity or provide a solution that may be
affected by the presence of local minima. This paper proposes
a new approach to address this search without presenting such
problems. In particular, we show that the sought essential

matrix can be obtained by solving a convex optimization built
through a suitable reformulation of the considered minimization
via appropriate techniques for representing polynomials. Nu-
merical results show the proposed approach compares favorably
with some standard methods in both cases of synthetic data and
real data.

Index Terms— Point correspondences, Essential matrix, Cam-
era pose, Convex optimization.

I. INTRODUCTION

Numerous tasks in computer vision and robotics necessi-

tate to estimate the camera pose in stereo vision systems, i.e.

the relative motion existing between two cameras observing

a common set of object features. For instance, the camera

pose is needed in visual servoing to determine the robot

control law, as in position-based visual servoing (see e.g.

[1], [2]) where the camera pose is required to define the

feedback error, image-based visual servoing (see e.g. [3],

[4]) where the camera pose is used to estimate the depth of

the points employed in the definition of the image jacobian,

hybrid methods such as 2 1/2 D visual servoing (see e.g. [5],

[6]) where the camera pose is required to define some parts

of the feedback error, and path-planning techniques (see e.g.

[7], [8]) where the camera pose is needed to calculate the

camera trajectory in the 3D space. See also [9] and references

therein for further uses of the camera pose.

Typically the camera pose is computed from the avail-

able estimates of some point correspondences between two

camera views and the camera intrinsic parameters. A simple

technique for performing this computation consists of esti-

mating the essential matrix through the eight point algorithm

and then estimating the camera pose from the found essential

matrix [10], [11]. This technique estimates the essential

matrix through the minimization of an algebraic error, and

amounts to solving linear least-squares problems which can

be solved via SVD. An analogous technique exploits the

homography matrix relative to a virtual plane attached to

G. Chesi is with the Department of Electrical and Electronic En-
gineering, University of Hong Kong. Contact information: please see
http://www.eee.hku.hk/˜chesi

the object, which is estimated through the minimization of

an algebraic error, and then decomposed in order to recover

the camera pose [6]. More accurate techniques such as [12]–

[15] involve the minimization of algebraic/geometric errors

directly parameterized by the camera pose, for instance by

minimizing these errors over the essential matrices manifold.

However, these techniques either rely on some approxima-

tions in order to get rid of nonlinear terms, or provide a

solution that may be affected by the presence of local minima

since the optimization is nonconvex.

In this paper we propose a new approach to estimate

the camera pose, in particular we propose a new way

to solve the minimization of the algebraic error over the

essential matrices manifold. The proposed approach exploits

the square matricial representation (SMR) introduced in [16]

to solve some control problems. By using the SMR we find

the sought camera pose by solving a convex optimization

formulated as minimization of a linear cost subject to a linear

matrix inequality (LMI) constraint. Numerical investigations

are carried out with both synthetic and real data, in the

former case the ideal data are corrupted by introducing both

image noise and calibration errors. The results show that the

proposed approach compares favorably with linear methods

as well as searches over the essential matrices manifold via

gradient algorithm.

The paper is organized as follows. Section II introduces

some preliminaries and the problem formulation. Section III

describes the proposed idea based on a reformulation of the

problem via the SMR and its solution through LMI opti-

mizations. Section IV reports the numerical results. Lastly,

Section V concludes the paper with some final discussions.

II. PROBLEM FORMULATION

The notation exploited in this paper is as follows:

- SO(3): set of all rotation matrices of size 3 × 3;

- ei: null vector of size 3× 1 with the ith component set

to 1;

- 0m×n: null matrix of size m × n;

- In: identity matrix of size n × n;

- tr(X): trace of a square matrix X;

- XT : transpose of a matrix X;

- ‖x‖: euclidean norm of vector x;

- [x]
×

: skew-symmetric matrix of a vector x of size 3×1,

i.e.

[x]
×

=





0 −x3 x2

x3 0 −x1

−x2 x1 0



 (1)

where x1, x2, x3 are the components of x;
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- s.t.: subject to.

Let us consider a stereo vision system, i.e. a pair of

cameras observing a common object, and let F abs be an

absolute frame in the 3D space. We denote with F = (O, c)
the frame of one of the two cameras of the stereo vision

system expressed with respect to the absolute frame F abs,

where O ∈ SO(3) is a rotation matrix which defines the

orientation, and c ∈ R
3 is a vector which defines the

translation. Similarly we denote with F ∗ = (O∗, c∗) the

frame of the other camera of the stereo vision system.

Let q1, . . . ,qN ∈ R
3 be a set of 3D points expressed

with respect to the absolute frame F abs. The ith 3D point

qi projects onto the camera frame F at the point pi =
(pi,1, pi,2, 1)T ∈ R

3 expressed in homogeneous coordinates

and given by

dipi = AOT (qi − c) (2)

where di is the depth of the point with respect to F , and A ∈
R

3×3 is the upper-triangular matrix containing the camera

intrinsic parameters:

A =





fx s ux

0 fy uy

0 0 1



 , (3)

being fx, fy ∈ R the scaling parameters, ux, uy ∈ R the

coordinates of the principal point, and s ∈ R the skew

parameter. Similarly, the ith 3D point qi projects onto the

camera frame F ∗ at the point p∗

i = (p∗i,1, p
∗

i,2, 1)T ∈ R
3

expressed in homogeneous coordinates and given by

d∗i p
∗

i = A∗O∗T (qi − c∗) (4)

where d∗i is the depth of the point with respect to F ∗, and

A∗ ∈ R
3×3 is the upper-triangular matrix containing the

intrinsic parameters of F ∗ analogously to (3).

In this paper we address the problem of estimating the

camera pose of the considered stereo vision system, i.e. the

pair

(Rtrue, ttrue) ∈ SO(3) × R
3 (5)

where Rtrue is the rotation matrix which expresses the

relative orientation between F and F ∗, and ttrue is the

unit-norm vector which expresses the normalized translation

between F and F ∗ (in the sequel we will assume that we con-

sider camera pose with non-zero translational components,

for which ttrue can always be defined). In particular, we

consider that the camera pose (5) is expressed with respect

to the camera frame F , and hence Rtrue is given by the

relationship

Rtrue = OT O∗ (6)

while ttrue is given by

ttrue =
OT (c∗ − c)

‖OT (c∗ − c) ‖
. (7)

Therefore, the problem consists on estimating Rtrue and

ttrue by exploiting only the following data:

1) the image projections of the 3D points q1, . . . ,qN onto

F and F ∗, i.e. the image points p1,p
∗

1, . . . ,pN ,p∗

N ;

2) the camera intrinsic parameters in A and A∗.

In the sequel we will consider, for ease of notation, that

p1,p
∗

1, . . . ,pN ,p∗

N , A and A∗ represent the available esti-

mate of their respective quantities, which are corrupted by

image noise and calibration error respectively.

Let us observe that we are interested in estimating the nor-

malized translation rather than the translation itself because,

by exploiting only the image projections p1,p
∗

1, . . . ,pN ,p∗

N

the translation can be estimated only up to a scale factor,

which stands for the unknown distance between the origins

of the camera frames F and F ∗.

It is assumed that the 3D points qi are non-coplanar, and

that the camera pose is not purely rotational (because in this

case the essential matrix is identically zero, and hence cannot

be used to estimate the camera pose).

III. PROPOSED APPROACH

A. Essential matrix and algebraic error

A possible way to estimate the camera pose in stereo

vision systems consists of minimizing the algebraic error

provided by the essential matrix. Specifically, let

E = [t]
×

R (8)

be the essential matrix of the considered stereo vision system.

Then, the algebraic error is defined as (see for instance [11],

[17] and references therein)

η =

N
∑

i=1

(

mT
i Em∗

i

)2
(9)

where mi and m∗

i are the available estimates of the image

points in normalized-camera coordinates given by

mi = A−1pi

m∗

i = A∗−1p∗

i .
(10)

The problem we aim to solve in this paper is hence the

following:
min
R,t

η

s.t. R ∈ SO(3), ‖t‖ = 1.
(11)

Let us observe that in (11) we take into account the structure

of the essential matrix, i.e. its dependence on the rotation R

and translation t. Let us also observe that the free scale factor

of the essential matrix, and hence the free scale factor of the

algebraic error, is fixed by our choice to consider that the

translation t is a unit-norm vector.

As it is well known, the minimization (11) is a non-convex

optimization problem. In this paper we want to investigate

how this minimization can be addressed by using convex

optimization tools, in particular we provide an extension

of our approach in [18] through relaxations for constrained

polynomial programming.

Before proceeding it is worthwhile to explain that more

accurate estimates of the camera pose can be found by min-

imizing the geometric error rather than the algebraic error.

In this paper, however, we are interested in the algebraic

error, since it can provide satisfactory estimates and since

it represents a reasonable trade-off between accuracy and

complexity.
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B. SMR of polynomials

The approach proposed in this paper is based on the square

matricial representation (SMR) of polynomials introduced in

[16] to solve some control problems. Let p(x) be a polyno-

mial of degree 2m in the real vector x = (x1, . . . , xn)T ∈
R

n, i.e.

p(x) =
∑

i1 + . . . + in ≤ 2m
i1 ≥ 0, . . . , in ≥ 0

pi1,...,in
xi1

1 · · ·xin

n (12)

for some coefficients pi1,...,in
∈ R. Then, according to the

SMR, p(x) can be expressed as

p(x) = y(x)T P(α)y(x) (13)

P(α) = P + Q(α) (14)

where y(x) is any vector containing a base for the polyno-

mials of degree m in x, and hence can be simply chosen as

the set of monomials of degree less than or equal to m in

x, for example via

y(x) = (xm
1 , xm−1

1 x2, x
m−1
1 x3, . . .)

T . (15)

The matrix P is any symmetric matrix such that

p(x) = y(x)T Py(x) (16)

which can be simply obtained via trivial coefficient compar-

isons. The vector α is a vector of free parameters, and the

matrix function Q(α) is a linear parametrization of the set

Q = {Q = QT : y(x)T Qy(x) = 0 ∀x} (17)

which can be computed through standard linear algebra

techniques for parameterizing linear spaces. The matrices P

and P(α) are known as SMR matrix and complete SMR

matrix of p(x). The dimension of y(x) is given by

d1(n, m) =
(n + m)!

n!m!
(18)

while the dimension of α is

d2(n, m) =
1

2
d1(n, m)(d1(n, m) + 1) − d1(n, 2m). (19)

See also [19]–[21].

The usefulness of the SMR is to allow one to establish

positivity of polynomials via convex optimizations. Indeed,

p(x) is positive if there exists α such that

P(α) ≥ 0 (20)

which is a linear matrix inequality (LMI), and whose feasible

solutions can be found via convex optimizations, see for

instance [22].

C. Estimate via convex optimization

In order to solve (11), we parameterize the rotation R

through polynomials. This can be done, for instance, by using

Euler parameter as follows:
{

R = Ω(r)
‖r‖ = 1

(21)

where r = (r1, . . . , r4)
T ∈ R

4 is a unit-norm vector

which represents the Euler parameter of R, and Ω(r) is

quadratic matrix function, see for example [23] for details.

This parametrization is complete, in the sense that:

1) for any unit-norm vector r ∈ R
4 it follows that Ω(r)

is a rotation matrix in SO(3);
2) for any rotation matrix R ∈ SO(3) there exists a

vector r ∈ R
4 with unit-norm such that R = Ω(r).

This allows us to reformulate the problem (11) by using

polynomials. Indeed, let us define the new variable

x =

(

r

t

)

(22)

and let us rewrite the term mT
i Em∗

i as

mT
i Em∗

i = mT
i [t]

×
Rm∗

i

= mT
i [t]

×
Ω(r)m∗

i

= fi(x).
(23)

The quantity fi(x) is a cubic function of the new variable

x. In fact, mT
i Em∗

i is a bilinear function of R and t, i.e.

a linear function of R for fixed t and a linear function of t

for fixed R, moreover R is a quadratic function of r.

Let us consider now the cost function of (11). We have

that η can be rewritten as

η =
∑N

i=1

(

mT
i Em∗

i

)2

=
∑N

i=1 fi(x)2
(24)

where each term fi(x)2 is a polynomial of degree six in x

(specifically, a polynomial of degree four in r and a quadratic

function of t).

Therefore, problem (11) can be reformulated as

min
x

N
∑

i=1

fi(x)2

s.t. ‖C1x‖ = 1, ‖C2x‖ = 1

(25)

where the matrices C1 and C2 are given by

C1 = (I4 04×3) , C2 = (03×4 I3) . (26)

Now, let us observe that (25) can be rewritten as

−mins s

s.t.
∑N

i=1 fi(x)2 + s ≥ 0 ∀x :

{

‖C1x‖ = 1
‖C2x‖ = 1

(27)

where s ∈ R is an additional variable.

At this point, let us introduce auxiliary polynomials g0(x),
g1(x) and g2(x). We select g0(x) in order to satisfy the

condition

g0(x) ≥ 1 ∀x. (28)
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The constrained minimization in (27) can be addressed via

− min
s,g1(x),g2(x)

s

s.t. u(x, s, g1(x), g2(x)) ≥ 0 ∀x
(29)

where

u(x, s, g1(x), g2(x)) = g0(x)
(

∑N

i=1 fi(x)2 + s
)

+
∑2

i=1 gi(x)
(

‖Cix‖
2 − 1

)

(30)

which is a polynomial in x and an affine linear func-

tion of g1(x) and g2(x). In fact, let us observe that

u(x, s, g1(x), g2(x)) ≥ 0 reduces to
∑N

i=1 fi(x)2 + s ≥ 0
for all x satisfying ‖C1x‖ = 1 and ‖C2x‖ = 1.

The next step consists of exploiting the SMR of poly-

nomials introduced in Section III-B. Let us express the

polynomials g1(x) and g2(x) as

gi(x) = gT
i yi(x) ∀i = 1, 2 (31)

where y1(x),y2(x) are vectors containing suitable poly-

nomial bases, and g1,g2 are the vectors containing the

coefficients of g1(x) and g2(x) with respect to these bases.

Then, let U(α, s,g1,g2) be a complete SMR matrix of

u(x, s, g1(x), g2(x)) built with respect to a vector y(x)
containing a suitable polynomial base, i.e. such that

u(x, s, g1(x), g2(x)) = y(x)T U(α, s,g1,g2)y(x). (32)

The vector α is a free vector of suitable dimension

which parameterizes all possible SMR matrices with re-

spect to y(x) describing u(x, s, g1(x), g2(x)). Such a matrix

U(α, s, g1(x), g2(x)) is an affine linear function of α,

s, g1(x), and g2(x), which can be simply obtained via

trivial coefficient comparisons and standard linear algebra

procedures for parameterizing linear spaces, see for instance

[19], [21] for details. Problem (29) becomes

− min
α,s,g1,g2

s

s.t. y(x)T U(α, s,g1,g2)y(x) ≥ 0 ∀x.
(33)

Let us observe that the positivity of the constraint in (33) is

ensured by the positivity of the inner matrix, hence obtaining

− min
α,s,g1,g2

s

s.t. U(α, s,g1,g2) ≥ 0.
(34)

The minimization in (34) belongs to the class of convex

optimizations. In fact, both cost function and constraint set

in (34) are convex since the former is a linear function and

the latter is the feasible set of an LMI, see for instance [22].

Therefore, the advantage of the new formulation (34) over

the original formulation (25) is hence that (34) is a convex

optimization whereas (25) is a non-convex one. Moreover,

the solution of (34) is guaranteed to be a lower bound of the

solution of (27), and the conservatism of this lower bound

can be regulated by increasing the degree of the introduced

polynomials.

Once (34) has been solved, we build the estimate of the

camera pose as follows. Let x̄ be a non-zero vector satisfying

U(ᾱ, s̄, ḡ1, ḡ2)y(x̄) = 0l (35)

where l is the size of the matrix U(ᾱ, s̄, ḡ1, ḡ2), and

ᾱ, s̄, ḡ1, ḡ2 are the minimizers returned by the solver used

for (34). Then, the sought estimate is given by

R̂ = Ω

(

C1x̄

‖C1x̄‖

)

t̂ =
C2x̄

‖C2x̄‖
.

(36)

The vectors x̄ satisfying (35) can be computed via linear

algebra operations as explained in [24]. In case there exist at

least two linearly independent vectors x̄ satisfying (35), the

best one is selected as the vector which provide the camera

pose for which all object points are kept in front of the

cameras. Let us observe that the scale factor of the vector x̄,

which is undefined by the relation (35), does not affect the

estimate (36).

IV. NUMERICAL RESULTS

In this section we present some results obtained with both

synthetic and real data.

A. Synthetic data

We have generated 400 camera-object configurations by

randomly locating the camera frames F and F ∗ in the 3D

space and by randomly generating some object points inside

a sphere of radius 150 mm centered along the optical axis

of F ∗ at a distance of 400 mm from its origin under the

constraint that the object points lie in the field of view of

F and F ∗. 100 of these configurations have N = 7 point-

correspondences, other 100 have N = 8, other 100 have

N = 9, and the remaining 100 have N = 12. The screen

size is 800 × 600 pixels, and the intrinsic parameters in A

and A∗ are fx = 800, fy = 600, s = 20, ux = 400,

uy = 300. Figure 1 shows one of these configurations and

the corresponding camera view.

Then, we have introduced uncertainty on the available data

of each configuration as follows:

1) we have introduced image noise by adding to each

component of all image points p1, . . . ,pN random

variables with uniform distribution in the interval

[−1, 1] pixels;

2) we have introduced calibration error by multiplying the

scaling parameters, principal point, and skew parame-

ter in (3) by random variables with uniform distribution

in the interval [0.9, 1.1].

Hence, we have evaluated the estimation errors

ǫr = arccos

(

tr(RT
trueR) − 1

2

)

ǫt = arccos
(

tT
truet

)

(37)

which are, respectively, the angle in the exponential coor-

dinates representation of the rotation matrix RT
trueR and

the angle between the translation vectors ttrue and t. These

errors range from 0 (perfect estimation) to π (worst-case

estimation).

The proposed approach is compared with the following

algorithms:
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Fig. 1. Synthetic data. Figure (a) shows a camera-object configuration with
N = 9, while figure (b) shows the image points in F (“o” marks) and F ∗

(“x” marks).

1) LIN (for the case of N ≥ 8): linear least-squares

where the unknown variables are the entries of E.

From the found estimate, R and t are computed as

the rotation matrix and the unitary-norm vector that

better approximate E = [t]
×

R and keep the object

points in front of the cameras, see [10], [11], [17];

2) LIN (for the case of N = 7): similar to the previous

case, but this time the minimizer of the linear least-

squares is a matrix pencil, and by imposing the rank

constraint there are up to three solutions. The one that

better approximates the singular values property of the

essential matrix is selected as explained in [13], [25];

3) EMMG: minimization of the algebraic error over the

essential matrices manifold via gradient algorithm us-

ing as initialization the solution provided by LIN (in

(a) (b)

(c) (d)

Fig. 2. Real data. There are N = 8 point correspondences in the images
pair (a)–(b), and N = 12 in the images pair (c)–(d).

both cases of N ≥ 8 and N = 7).

Table I shows the average of these estimation errors. As

we can see, the proposed approach favorably compares with

the other methods. The reason is that the LIN methods do

not search on the manifold of the essential matrices, indeed

the structure of the essential matrix is imposed after solving

the linear least-squares, while the EMMG method is affected

by the presence of local minima.

N method ǫr ǫt

7 LIN 0.391 0.353
7 EMMG 0.382 0.285
7 this paper 0.235 0.150

8 LIN 0.324 0.282
8 EMMG 0.293 0.253
8 this paper 0.152 0.097

9 LIN 0.192 0.153
9 EMMG 0.186 0.137
9 this paper 0.114 0.073

12 LIN 0.122 0.083
12 EMMG 0.106 0.067
12 this paper 0.085 0.057

TABLE I

AVERAGE ESTIMATION ERRORS WITH SYNTHETIC DATA (EXPRESSED IN

RADIANS).

Regarding the computational time, the averages for the

performed estimations are 0.01 seconds for LIN, 0.23 sec-

onds for EMMG, and 1.15 seconds for our approach. Hence,

our approach is the slowest among the ones considered,

however its estimates are the most accurate as shown in Table

I, moreover faster implementations of the proposed approach

can be obtained by using C instead of Matlab.
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B. Results with real data

In this section we report some results obtained with

real data. We have considered the general scenarios shown

in Figure 2. In particular, for the pictures in Figure 2a–

b we have used a Canon digital camera with resolution

1600 × 1200 pixels, and we have considered N = 8 point

correspondences. For the pictures in Figure 2c–d we have

used a Logitech webcam 960 × 720 pixels, and we have

considered N = 12 point correspondences. In both cases an

estimate of the corresponding intrinsic parameters has been

obtained by using standard calibration techniques.

Contrary to the case of synthetic data, the true camera dis-

placement is unknown with real data, and therefore we have

compared the various methods by using the found minimum

of the algebraic error, in particular we have compared the

normalized error

ζ =

√

√

√

√

1

N

N
∑

i=1

(

mT
i [t]

×
Rm∗

i

)2
(38)

where R and t are the estimates found by each method. Table

II shows the results obtained with our approach and with

the methods described in Section IV-A. As we can see, the

proposed approach provides significantly smaller algebraic

errors than the the other methods.

scenario method ζ

Figures 2a–b LIN 0.0220
Figures 2a–b EMMG 0.0020
Figures 2a–b this paper 0.0010

Figures 2c–d LIN 0.0930
Figures 2c–d EMMG 0.0062
Figures 2c–d this paper 0.0053

TABLE II

RESULTS WITH REAL DATA.

V. CONCLUSION

We have proposed a new approach for estimating the cam-

era pose. This approach determines the essential matrix by

minimizing the algebraic error through a convex optimization

with LMI constraints, and is obtained by exploiting the SMR

for representing polynomials. The advantages with respect

to other methods for minimizing the algebraic error consist

of not presenting local minima and not introducing approx-

imations of nonlinear terms. Future work will investigate

the possibility of reducing the numerical complexity, which

presently represents the main drawback.
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