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Abstract—An improved direction-of-arrivals (DOAs) estima-
tion via phase information of sparse solution is presented
in this paper. Unlike the conventional sparse source local-
ization approach using the amplitude of sparse solutions
only, through a special partition of the receiving data of
the sensors, the phase information of the available sparse
solutions is also extracted to estimate DOAs. For the true
DOAs exactly on the grids which are used to generate the
over-complete dictionary, the performance of our method is
close to the conventional sparse source localization method.
For the true DOAs that are not on the grids, our method is
far superior to the conventional method, as demonstrated by
several simulation results.

I. INTRODUCTION

The problem of source localization plays a fundamental
role in many fields, such as radar, sonar, acoustic, and
seismic sensing. The conventional subspace-type DOAs
estimation methods, including MUSIC (MUltiple SIgnal Clas-
sification) [1] and ESPRIT (Estimation of Signal Parameters
via Rotational Invariance Techniques) [2], need the assump-
tions that the number of snapshots is sufficient, signal-to-
noise ratio (SNR) is moderately high, and the sources are
not strongly correlated. Compared with the conventional
subspace-type DOAs estimation method, source localization
from sparse solution is another effective DOAs estimation
method, which can achieve super-resolution without the
need for a good initialization or a large number of snapshots,
and with lower sensitivity to SNR and to correlation of the
sources [3], [4], [5].

However, most of the existing sparse source localization
methods only use the amplitudes of the sparse solutions to
realize DOAs estimation. For the single measurement vector
(SMV) case, the disadvantage is not significant, but for the
multiple measurement vector (MMV) case, more information
of the sparse solution will be lost.

In order to improve the precision of DOAs estimation
further, we propose an improved DOAs estimation approach
via phase information of the sparse solution. The main idea
is as follows. We partition the receiving data of uniform linear
array (ULA) into two or more special parts, then combine
them into a new one and use the basis pursuit method to
obtain the sparse solutions. The phase information between

the sparse solutions is extracted for DOAs estimation. Com-
pared with the existing algorithms, our approach can obtain
a satisfactory DOAs estimation whether the true DOAs are
on grid or not. Simulation results demonstrate the efficacy
of our methods.

II. DOAS ESTIMATION VIA SPARSE SOLUTION

A. The signal model problem

We consider a ULA of M omnidirectional sensors re-
ceiving K (K < M ) stationary random signals emanating
from far-field point source signals. The element spacing is
d = λ/2, with λ being the signal wavelength, and the DOA
of the kth source is denoted by θk. The received vector of
sensors can be expressed as

y = A (θ) s + w (1)

where A (θ) = [a (θ1) , · · · , a (θK)] is a steering matrix with

a (θk) =
[
1, ejπ sin θk , · · · , ejπ(M−1) sin θk

]T
being a steering

vector. In addition, s = [s1, s2, · · · , sK ]T is a signal vector
with si (i = 1, 2, · · · , K) being a far-field point source signal
and w is an unknown noise vector. The problem here is to
estimate DOAs θ from a single measurement y.

B. Amplitude of sparse solution: Conventional sparse
source localization method

In order to cast the above problem into a sparse repre-
sentation framework, Malioutov et al. [3] defined an over-
complete dictionary D in terms of all possible source lo-
cations {θ̂1, · · · , θ̂N}, (N � K, N � M), where N is the
grid number. Then, one can construct the over-complete

dictionary D, where D =
[
a

(
θ̂1

)
, · · · , a

(
θ̂N

)]
. Likewise,

the source s can be extended to an N × 1 vector h, where
the nth element h (n) is nonzero and equal to sk if the
source k comes from θ̂n for some k, and zero otherwise.

For the SMV case, the problem (1) is reduced to

y = Dh + w (2)

The sparsest representation is the solution to the following
optimization problem [6], [7]:

ĥ = arg min
h

‖y − Dh‖22 + λ ‖h‖1 , (3)
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where the �1 norm ‖·‖1 leads to a sparse solution. λ
is a regularization parameter. The method to choose an
appropriate value for λ can be found in reference such
as [6].

For the MMV case (L > 1), the following optimization can
be used:

Ĥ = min
H

‖Y − DH‖2
F + λ

∥∥∥∥∥∥
L∑

j=1

H(i, j)

∥∥∥∥∥∥
1

, (4)

where the ‖·‖F is the Frobenius norm, Y = [y1, · · · ,yL]
and H = [h1, · · · ,hL] with L bing the number of mea-
surement. Most of the existing DOAs estimation methods
use the amplitude of sparse solutions to realize sources
localization, i.e., the indices of the non-zero row of Ĥ will
give the DOAs estimation. For the sake of comparison, we
denote the DOAs estimation via the indices of non-zero row
as θ̂ind.

C. Phase of sparse solution: An improved sparse source
localization method

We define two permutation matrices J1 and J2 as J1 =[
IM−1 0

]
(M−1)×M

and J2 =
[

0 IM−1

]
(M−1)×M

respectively, where IM−1 is a (M − 1) × (M − 1) identity
matrix. By premultiplication of permutation matrices, one
can obtain two different parts of (2) as follows:

y1 = J1y = J1Dh + J1w = D1h + w1 (5)

y2 = J2y = J2Dh + J2w = D2h + w2 (6)

where y1 = [y1, · · · , yM−1]
T , y2 = [y2, · · · , yM ]T , and the

others have similar forms. Obviously, D1 and D2 have the
special relationship as

D2 = D1Φ (7)

in which Φ = diag
([

ejπ sin θ̂1 , · · · , ejπ sin θ̂N

])
. In the fol-

lowing, we can combine equations (5) and (6) into one:

Y = [y1,y2] = [D1,D2]h + [w1,w2]
= D1 [I,Φ]h + [w1,w2]
= D1H + W, (8)

where H = [I,Φ]h = [h1,h2] ∈ CN×2. The sparse solution
of (8) can be given by convex optimization of (4), which can
be solved efficiently in a second-order cone programming
(SOCP) framework[8].

From the above partitioning of receiving data, we find that
the phase information between sparse solutions also can
be extracted to DOAs estimation, similar to the amplitude
of sparse solution. In order to discover the sparse solution
information, we depict the structure of sparse solution Ĥ in
Table I when the number of sources K equals to two. From
the figure, the nonzero entries in the same row of sparse
solutions are related as

h2i = ejπ sin θih1i (9)

and

θ̂pha
i = sin−1 [angle (h2i/h1i) /π] (10)

where θ̂pha denotes the DOAs estimation via the phase
of the sparse solution, and angle (·) denotes the phase
operator.

TABLE I
THE STRUCTURE OF SPARSE SOLUTION WHEN THE SOURCE NUMBER

K = 2 AND THE MEASUREMENT NUMBER L = 2, WHERE “...” DENOTES

ZERO, AND THE OTHERS ARE NONZERO ENTRIES.

H
h1 h2

... ...
h1i h1j

... ...
h2i h2j

... ...

D. Discussion

For our method there are other aspects to be noted:

1) Although our method considers the L = 2 case, it can
be easily generalized to L > 2, which will generate
more phase information to be used. However, too
big a value of L will degenerate the performance
of DOAs estimation, hence a reasonable L may be
M − K > L ≥ 2.

2) If a refining grid strategy is used, the performance of
our method will be close to the conventional method,
and so how to combine the two results is worthy of
further study.

3) The proposed method considers the ULA case. In
fact, it can extend to other manifolds which satisfy the
rotational invariance property (RIP), such as uniform
circular array (UCA), uniform plane array, etc.

4) The performance of the amplitude-based method is
worse than the phase-based method because the for-
mer only uses the indices of the nonzero row of sparse
solutions. Therefore, the information is limited for both
SMV and MMV, while the phase-based method can
use more information between sparse solutions for
the MMV case. With more measurements, we can
have more precise DOA estimation results. This also
demonstrates that MMV is superior to SMV in many
cases [9], [10].

III. SIMULATION RESULTS

To demonstrate the efficacy of the proposed method,
three simulation results are presented here. The perfor-
mance measure used in this paper involves the cumulative

DOAs estimation error, which is defined as
I∑

i=1

∣∣∣θ̂i − θ
∣∣∣,

where I is the number of independent trials, θ̂i is the ith
DOA estimation, and θ is the true DOA.
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(a) M = 8, SNR=10dB, θ = 50◦.
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(b) M = 8, SNR=30dB, θ = 50◦.
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(c) M = 16, SNR=10dB, θ = 50◦.
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(d) M = 16, SNR=30dB, θ = 50◦.

Fig. 1. The DOAs cumulative (absolute) errors for different cases.
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(a) M = 8, SNR=10dB, θ = 50.5◦.
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(b) M = 8, SNR=30dB, θ = 50.5◦.
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(c) M = 16, SNR=10dB, θ = 50.5◦.
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(d) M = 16, SNR=30dB, θ = 50.5◦.

Fig. 2. The histogram of DOAs estimation errors for different cases.
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Fig. 3. Two DOAs estimation results, with sensor number M = 12,
SNR=30dB, and the true DOA θ1 = 20◦, θ2 = 50.5◦.

A. One source, true DOA is on the grid

The true DOA is from 50◦. The possible source DOAs are
confined from 1◦ to 89◦ and the distance between adjacent
grids is 1◦, so the grid number is N = 89. An additive white
Gaussian noise is added. The signal-to-noise ratio (SNR) is
10dB and 30dB, respectively, and the sensor number is 8
and 16, respectively. The convex optimization of equation (8)
is solved by SPGL1 [11]. The cumulative DOAs estimation
error against 200 independent trials are shown in Fig. 1.

From the figure, we find that the DOAs estimation from
θ̂pha is more precise than θ̂ind when SNR and M are lower
(Figs. 1 (a) and (b)). Note that for high SNR and M , the
former is slightly worse than the latter, but the difference is
not remarkable. The mean bias of Fig. 1 (c) is less than
0.2◦, while the mean bias of Fig. 1 (d) is no more than 0.1◦.
For higher SNR and M , the DOAs estimation precision of
the former is higher than the latter mainly because the true
DOA is on grid. If it is not on grid, the fixed bias will exist
whenever M and SNR are lower or higher (see below).

B. One source, true DOA is not on the grid

All the simulation conditions are the same with the
example above except that the true DOA is from 50.5◦.
For different M and SNR cases, the histogram of DOAs
estimation errors with 200 independent trials are shown in
Fig. 2.

For the case that the true DOA is not on the grid, the
phase-based method is superior to the amplitude-based
method for different SNR and M cases. All histogram figures
show that θ̂ind has a fixed bias for different cases because of
the grid problem, i.e., θ̂ind is seriously influenced by the grid
distance. Although a refining grid strategy [3] can improve
the estimation results, it will also increase the computational
burden. In addition, the refining grid strategy cannot solve
the DOAs estimation precision problem fundamentally.

C. Two sources, one of them is on the grid, the other is not

Let us consider an example with sensor number M = 12,
the source number K = 2, the true DOAs θ1 = 20◦ and
θ2 = 50.5◦, and SNR=30dB. All possible DOAs locations

are from 1◦ to 90◦. The grid to generate an over-complete
dictionary is 1◦, so the grid number is N = 90. The DOAs
estimation is run with 200 independent trials. The DOAs
estimations using amplitude information (blue ∗) and phase
information (red o) are depicted in Fig. 3.

From the figure, we find that the phase-based method
can improve the DOAs estimation results efficiently when
the source number K equals to two. When the true DOA is
on grid (θ1 = 20◦), the performance of amplitude-based
method is close to the phase-based method, while for
the case that true DOA is not on grid (θ2 = 50.5◦), the
amplitude-based method is much worse than the phase-
based method.

IV. CONCLUSION

In this paper, we propose an improved DOAs estimation
method via phase information of the sparse solution. The
existing methods use only the amplitude information (indices
of nonzero entries) of sparse solutions to determine the
source locations. Through a special partitioning of receiving
data, the phase information is extracted from the sparse
solution to give more precise DOAs estimation. Simulation
results proved the efficacy of the proposed method.
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