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Abstract

There has been considerable research done on the problems of errors-in-vartables for linear
regression, including a Bayestan solution by Lindley and El-Sayyad (1968). Recently, interest has
extended to binary regression and in particular probit regression. Burr (1985) performed frequentist
analysis of Berkson’s error in probit regression and fouad that the MLE does not always exist in finite
samples. In this paper, we show that it is the tail behaviour of the likelihood that causes the problem
and this in turn makes Bayesian estimation inadmissible if improper priors are used. Two non-
informative priors are derived and simulation results indicate that the Bayesian solutions are generally
superior to various likelihood based estimates, including the modified MLE proposed by Burr. It is
further shown that the estimation problem vanishes if there are replicates and that the logistic model
has the same behaviour as the probit model.

1 Introduction

The probit model is given by

€+Px

/

“ V2

2
exp(—%) dr -~ < g <o >0
il

p(Y=1Ix

Q{a+Px)

where Y is a binary success/failure variable and x is the known covariate. For the Berkson error
model (Berkson, 1950), a surrogate of x, z, is observed instead of x and I

X=Z+U

U ~ N(0,0%) . ' +

- -



p(r=112) = [®[a + Bx] £, (x|2) dx

where
and
Note that

is not affected by the error. Therefore, the probit model considered in the sequel is given by

p(Y=1|2) = &[ —P— (z-v)
1+p*a;

There is a problem in that

lim o B -1 = @[ﬂ]

P~ 1+B20i

which does not go to 1 or 0 for fixed z ,y and g,.

For binary data, the contribution of an observation to the likelihood is either the probability
of success or the probability of failure, which is 1 minus the probability of success, depending on
whether the observation is 2 success or a failure. In the current situation, the fact that the probability
of success does not go to 1 or O implies that the probability of failure is also bounded within 0 and i.
This means that the likelihood for 8 does not decay to zero in the tail for any finite sample. We define
a likelihood to be improper if the likelihood function, when treated as a function of a parameter, does
not decay 10 zero as the parameter goes to infinity for a fixed sample. Note further that the larger the
variance of the error distribution is, the more serious the problem it brings.

2 Probit Model

Burr (1985) noted that the problem is unidentifiable in § and o,. In the classical approach,
it is assumed that o, is known to avoid the problem of unidentifiability (Carroll, Spiegelman, Lan,
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Bailey and Abbott, 1984 and Burr, 1985). For this problem, we foilow Burr to assume ¢, is known.
Let § = (v, §)7. The simplest approach is to ignore the error and treat the observed z's as true x’s.

The ordinary probit regression MLE is called the naive estimate. That is, assuming the underlying
model is

p(Y=1]2) = @(By(z - )

2.1 Maximum Likelihood Estimators

The naive estimate of vy is consistent but that of @ is inconsistent as
B, - e ;
2
J1 + plo;
in probability.

Note that : |

Thus, using the invariance property of the MLE, we obtain the error-in-x MLE, or the true MLE, B.,
as :

. 1 ,
— i y<— {
9y

A 1
oo if B2 —
0“
i
The major drawback of B, is that it does not exist when B, = o, as the likelihood attains its

maximum at infinity.

Burr (1985) proposed a modified MLE which always exists and reduces the skewness in the
distribution of B8,. The modified MLE, B,, is given by !

B
p a2 2.
exp(-.5By0,)

The major drawback of this estimator is that

R
* exp(-5pia)

in probability. Therefore it is inconsistent and biased downward in absolute value. To summarise,
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for A, both the naive MLE and the modified MLE are inconsistent, and the true MLE may not exist
in finite samples. '

2.2 Bayesian Approach

In order to compare the various maximum likelihood approaches and the Bayesian approach,
it is assumed that g, is known though this is unnecessary in a strict Bayesian sense. Given that vy is
little affected by error, we concentrate on the prior distribution for 8. Recall that the likelihood for
{3 is improper. Hence an improper prior for § would result in an improper posterior for §. Therefore
if a uniform pror or an inverse prior for 8 is used, the posterior distribution of 8 will be improper.
The dangers of using improper priors are discussed in detail in Dawid, Stone and Zidek (1973). Ifan
unbounded loss function is used, an infinite Bayes estimate will incur an infinite loss. This implies that
the use of an improper prior and a square loss function is inadmissible, because the Bayes estimate
resulting from a squared loss function is the posterior mean and the mean of an improper distribution
is undeftned.

When more prior knowledge of § is available, a class of proper priors is the half normal
family

B"NO, L ) B>0

2
Ko

where the hyperparameter k corresponds to Z,,, where p is the prior probability that B8 > a.

When p is small, i.e. it is less likely that 8 > ¢,", then Z,, would be large so that 1/k% 2 will
be small. Oune the other hand, the prior will tend to the uniform distribution when the possibility that
g > o' is very likely. However, it is true that it is difficult to determine k in many practical
problems. '

A simulation study of the performance of the posterior mean resulting from the half normal
priors and various other priors can be found in Tang (1992).

Empirical Bayes analysis (Berger, 1985, Sec. 4.5) suggests estimating k from the marginal
probability of data given k

ke,
2n

m(data|k) = [ [L(data|y,B) cxp(—%kz[izai) dy dp .
v 8 ' '

k is found by taking the value that maximizes m(data | k). Unfortunately, preliminary simulation
studies show that the variability in k is so large, particularly when @ is large, as to make this method
useless. In fact, it is expected that this method will not work well since the data do not provide much
information about 3 because the likelihood is improper. Any effort to extract information about § from
the likelihood is thus futife. Therefore, empirical Bayes procedures do not make any sense in such
situation.

We need to find a proper prior for 8 by other means. If we have no further information about
B, it is difficult to find a proper prior for it. One way to get around the difficulty is to put a
noninformative uniform prior on §,. This is a standard Bayes solution for models with a restricted
parameter space (Berger, 1980). Since f§, is bounded between 0 and 1, this gives




3B,

J(B 1 a,)=f(B) T

= (1+p*a) "
which is O(#?).

This is a proper prior in # given that g, is known. Moreover, it is a uniform prior in 8 when
o, is 0. When there is no measurement error, the probit model can be solved using an improper prior
for §. Recall that the density function for y conditional on z is a constant when § - oo for given z
and v. Then the conditional likelihood, as a function of 8, also tends to a constant in the tail. Hence,
any proper prior distribution of § that decays to 0 at the tail or any prior with a finite range will make
the resulting postertor distribution of # proper. Obviously, the prior distribution given in (1) has such
a property. ’

) Another approach is to consider the Jeffreys prior (Jeffreys, 1946) for ¥ and § which is

proportional to the squaré root of the determinant of the expected Fisher information matrix. Given
a design measure putting n, weight at k distinct design points z, i=1,...,k, £n; = 1. Then the
Jeffreys prior is

P(Y.B) = (—1-—9% @
+ B*o, :

k
s =), mw (22
i1

: q)‘ =& B(Z—Y)

;]

Note that this is a proper prior in v and in 8. In particular, (2) is O(8?) in the tail for fixed 7.

It is desirable to perform Bayesian inference for parameters based on some type of
noninformative prior. In situations such that a uniform prior for the parameters or the log of the
parameters would yield improper posterior densities, 2 commonly used alternative is to use Bernardo's
reference prior (Bemardo 1979, Berger and Bernardo 1989, and Ye and Berger 1991). If there is no
nuisance parameter, Bernardo’s reference prior is simply Jeffreys prior. For the current model, since
v, is assumed 1o be known, there is no nuisance parameter and hence the Jeffreys prior can also be
viewed as Bernardo’s reference prior.

Another issue regarding the point estimate is the form of the loss function. Since there is
substantial uncertainty about the correctness of the informative prior (1) and of the Jeffreys prior (2),
1
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it will be a wise choice to find a loss function that is loss robust (Kadane and Chuang, 1978, Berger,
1984, 1985) so that we will not get a very different estimate when the prior is changed slightly.
According to Kadane and Chuang (1978), the squared loss function is unstable and they recommended
to use a bounded loss function. One of the most common Bayesian point estimates is the posterior
mode. Note that the posterior mode is derived from the bounded loss function

0 if [6 -a| <€
L (0,a) =
if (6 -al|>c¢

where 8 is the true parameter, a is the point estimate of § and ¢ is a small positive constant. When we
try to select a to minimize the loss w.r.t. the above loss function, it is easily found that the decision
we take is to use the posterior mode as the point estimate (Box and Tiao, 1973, Lee, 1989). Recall
that a Bayes estimate resulting from a bounded loss function and a proper prior is admissible (Lindley
and Smith, 1972). Therefore, the posterior mode, if it exists, resulting from using (1) as the prior for
8 in conjunction with any proper prior for y is admissible. Bayes decisions arising from an unbounded
loss function-can change enormously when the distribution of the random variable changes slightly
(Kadane and Chuang, 1978). Further discussion of the dangers of using an unbounded loss function
can be found in Kadane and Chuang {1978) and Bayesian estimation using bounded loss function is also
discussed by Smith (1580).

One must be reminded that though the likelihood is bounded below by some non-zero bound
for fixed sample size, the bound decreases to O as the sample size gets large which implies that the
problem of improper likelihood decreases as the sample size increases. In practice, when the sample
size is very large, the chance of getting an infinite MLE of 8 becomes small.

Aitchison and Lauder (1979) noted the improper behaviour of the likelihood of the current
model. Their concern was to find the posterior distribution of the parameters and their approach was
to make use of the Bayesian form of large sample maximum likelihood theory (Lindley, 1961). We
fesl that their approach is rather ad hoc and may not work well for small samples for two reasons.
The first reason is that the large sample property only holds for very large samples and the second
reason is that small samples are likely to give an infinite maximum likelihood estimate of the slope
parameter.

3 Logistic Model

Another common binary regression model is the fogistic model which specifies the probability
of success conditional on the covariate x as

Y=1 _ _exp(Blx-v)) D<fB <o, -—w<y<o®
P Toep (B G-v) : !

The probability of success conditionat on z becomes

i [ exp(Bz-v)+Bu)
p(¥=12 !;1 + exp(P(z-v)+Pu) p(u) du

Itu ~ N(O, 0,9), the probability of success conditional on z can be approximated (Abramowitz
and Stegun, 1970) by

- : N |
f e™ fu) du = Y wy; f(sy)
le i=1




where sy, (i=1,...,N) are the roots of the Hermite polynomial equation Hy(x)=0 and

W o 2INL/m |
Ni T T o . . '
NZHN-I(SN,E)

The approximation of the integral will be exact, (Davis and Rabinowitz, 1984, p. 228), if N

- oo, 1.8 -

N
f f(u) du = hm Wy, f(Sy;)
isl

-0
—~a

if for all sufficiently large values of [u|, f(u) satisfies the inequality i

u!

| flu) | < , p>0. (3)
a|'7P

In the current situation,

| flu) | = i‘ exp(ﬁ(z-y)»f[}guﬁu)
\ \/; 1+cXP(B(Z—Y)+ﬁquﬁu) i;
Note that ‘I

exp(B(z-v) +P 0,y2u)
L+exp(B(z-v)+P o,y2u)

—o0 < [ <o, H

Therefore, condition (3) is satisfied because r.h.s. of (3) is unbounded in u. Then we have

im

p(Y=1|2) =

¥

ﬁ’: exp(B(z-v) +Boy2sy,)

1
Zyn "1eexp(Blz-v) +Bo,y2sy,)

When z = ¥, then [i

p(¥=1]z) = llm 1 E exp(Bo ﬁsm)
r: i=l 1+cxp(Bo \/_SN‘

The following properties of the Hermite polynomial equation are useful:

1. The roots are symmetric about zero so that the sum of the roots equals 0,
2. Sum of the wy; equals V.
3. wy; at skew-symmetric roots are equal.

Then, we have




exp(P 0,v2sy)

lim 1 —
p(Y=1|z) =, — Wy, :
Nom e 2 | L renp (B ot

 fimo 1oy
N—.cnﬁz
1
2

That is, v is little affected by the measurement error.
Note that in the case of probit model, we have, for z = v,

p(Y=1]2) = SO = %

Now, consider z - ¥ = ¢ > 0. The general idea can be easily illustrated by using an even
grid integration rule though it is the same idea if an odd grid rule is used. Using the skew-symmetric
property of the roots, the s are all positive in the following derivation.

N .
im 1 « exp(Pc+Po,y2sy,)

)=y — Wy
Nee e 55 |1« exp(BeeBo,y2sy)

p(Y=1 |

exp(Bc-Po,y2sy,)
1+ cxp(lﬁ c- ﬁ auﬁSN,,‘)

As N = oo, some sy; will be so large as to make the value of the difference in the exponent
of the second term become negative. As a result, as § — oo, the second term goes to 0 so that the
conditional probability of success is less than 1. Following the argument given in the probit model,
it can be seen that the likelihood in the logit model is also bounded within O and 1 for the given sample
and is improper for §. Furthermore, the conditional probability goes to zero at an ex pornential rate as
o goes to + oo or as vy goes to + oo for fixed § and z. This is additiona} evidence that the behaviour
of the logistic mode! is similar to that of the probit model.

4 Binomial Model
In the Binomial Model, the random experiment consists of n repeated independent Bernoulli

Trials when the probability of success at each individual trial is the same. Let r be the number of
successes in n independent Bernoutli Trials. Then

pr=r |0 =) 7 (1P




where p is the probability of success at each trial. .

For the probit model, the probability of getting r successes out of n trials conditional on x is
given by

p(Y=r|x) = (:]p’(l-p)""
) (:] [P G-y DY [1-2BEx-yDI

The probability of getting r successes out of n trials conditional on z is given by

p(Y=r|z)

- [ (j] [ (Bz-1) +Bu)] [1-@(Blx-1)+Bu)I™ x

2

2
e “™ du

Note that

| fuy | = U [®(B(z-7)+PBo, y2u)] x
Jn

L4

[1-3(B(z-v)+Ba,y2Zw)I""

and

| [@(B(z-v)+BoZmY[1-8(P(z-v)+po,/20)]"" | < 1

for -0 <€ u < oo,

Therefore, | f(u) | is bounded and condition (3) is satisfied and we can use the Gauss Hermite
rule to find .

; N '
p(Y=r|z) = ,ﬁ‘f‘m b Y wy {[2(Bz-v)+y20,Bs)|
TI:

i=1
x [1-0(B(z-7)+/20,Bs)] " }

Consider z - y = ¢ > O and sy;'s > 0. Using an even gnd rule, we have



p(Y=r | 2)

=

- N L 5w { [@(Be20,B5)] @

A
W

[l —(D(BclJrﬁouBsNJ)]"'r
. [cp(ﬁc-‘/ioupsw)]’[1-¢»((3c-,/§a“psw)]""} .

We consider the behaviour of (4) when § — .

1. Ifr > Oand r < n, the first term inside the curly brackets tends to 0. ¢ -V2g,8sy,; goes
to -o5 or oo, depending on the sign and magnitude of ¢ and sy;. In either case, the second
term inside the curly brackets goes to 0 at an exponential rate. This will make the conditional
probability go to 0 when § - oo,

2. If r = 0, the first term inside the curly brackets tends 10 0. The second term will go either
to 0, 1f fic -N/ZU‘ﬁsN‘i—* oo, orto 1, if fc -‘/ZUﬁSN‘i - -0, This implies that the conditional
probability does not go to O and it is less than 1.

3. If r = n, the first term inside the curly brackets tends to 1. The second term will go either
10 0, if B -V 20,85y, = -, or to 1, if fc - V26,85, = o0. This implies that the conditional
probability does not go to 0 and it is Jess than 1.

Hence, if the outcomes are not all successes and not all failures, the likelihood will decay to
0 when 8 goes to infinity at an exponential rate, making the problem of improper likelihood of § in
the Bernoulli Trial disappears. Furthermore, when y goes to + oo, the conditional probability goes
to zero when other parameters are fixed under the 3 situations. Hence, using an improper prior
together with the quadratic loss will not incur infinite loss.

It can be shown that the logistic model has the same property.
5 Simulation

Following Burr, y and o} were assigned to 1.0 and 0.26 respectively. In order to assess
the behaviour of the estimators, a series of simulations, for § = 0.4, 1.4, 2.0 and 5.0, were run. For
small values of 8, e.g. §=0.4, the effect of the measurement error on the parameters estimation is
small. B8=1.4 is the most common s¢tting in simulation studies (such as Carroll et al, 1984 and Burr,
1985) as this is close to the findings of the Framingham Heart Study {Gordon and Kannel, 1968). The
boundary vaiue of the naive MLE such that the true MLE becomes unbounded is about 2.0 for ¢,* =
0.26. A large value of 3, such as 5.0, provides evidence regarding the performances of the estimators
in more difficult situations. For each value of §, 1000 simulations with sample size = 40, 80, 160,
320, 480 and 960 were run. The design points were derived from a two-point locally D-optimal
‘design. The sampling properties of the estimators are exarined. Since vy is little affected by error 50
we concentrate on the estimation of 8.

Two Bayesian solutions are considered. The first one corresponds to the joint posterior mode
of ¥ and 8. The other employs the marginal posterior mode of # and of 4. Both the joint mode and
the marginal modes can be used as Bayes point estimates (DeGroot, 1970). In the case of large
samples, the posterior joint mode is close to the posterior marginal modes.
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6 Results i;

i
Tables 1(a}-4(b) provide a summary of the simulation results. Figures 1-4 show the plots of
the bias of 8 estimates against the log of the sample size for the estimators and figures 5-8 show the
plot of the log of the MSE of § estimates against the log of the sample sizes. As the performances of
the two Bayesian solutions are very similar, only the joint modes are used in the plots. The plots for
7 estimates only show that all methods are very similar so they are not shown. It can be seen that both
the bias and the MSE of the Bayes estimates decrease as the sample size increases while the biases of
both the naive MLE and the modified MLE increase as the sample size gets large. The performance
of the Bayesian approaches are very similar. The number of finite true MLE increases while the bias
and the MSE of finite true MLE decreases as sample size increases. The Bayesian estimates perform
better than the true MLE, except under very limited conditions, i.e. when both sample size and @ are
moderate. When § i5 0.4, the naive MLE seems to be slightly better than others except when the
sample size is 40. In the case of small samples, (n=40), or large samples, (n ranges from 320 to
960), or when # is large, (f = 5.0), the Bayesian estimates are the best, The fnodiﬁed MLE is the
best when sample size is moderate, in the range of 80 to 480, and moderate values of 3, 3 = 1.4 and

2.0. Furthermore, the Bayes estimates have the smallest bias in most cases. :l

7 Conclusion

The benefits of the Bayesian approach, with a proper prior, to this problem can be stated as:

the Bayesian selutions are always finite.

the Bayesian solutions resulting from a bounded loss function and a proper prior will ke
admissibie and consistent. Also, it is better than the frequentist approaches under nearly all
conditions.

any further information about § can be specified through a suitably defined prior.

when substantial prior infonnation on § is obtained so that the prior puls sufficient probability
near the true value, the Bayes estimate must work well,
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Tables
Table la
Monte Carlo study with 1000 simulations, and
0} =026,y=108=04,
40, 80, 160,

sample sizes =

x, = -1.904, x, = 3.904

Sample sizes

n=40

n=_80 I'

n=160

Join Post, Mode ¥
B.~U(0,0.")

Btas

0.002621

-0.020355

-0.011718

MSE

0.218277

0.108167

0.052221

Vanance

0.218271

0.107752

0.052084

Bias

0.013679

0.007661

0.003832

MSE

0.005412

0.002374

0.001134

Vartance

0.005225

0.002315

0.001120

Marginal Post. Mode
ﬁr"’ U(09au-l)

Bias

-0.000292

-0.020714

-0.011780

MSE

0.252341

0.110700

0.052775

Variance

0.25234]

0.110271

0.052637

Bias

0.006679

0.004292

0.002161

MSE

0.005369

0.002375

0.001134

Variance

0.005324

0.002356

0.601130

Naive MLE

Bias

-0.000280

-0.020344

-0.011666

MSE

0.232053

0.108218

0.052218

Variance

0.232033

0.108218

0.052218

Bias

0.006740

-0.000553

-0.004319

MSE

0.005608

0.002042

0.001008

Variance

0.005608

0.002042

0.001008

cont....




Table la (continued)

Monte Carlo study with 1000 simulations, and

=026,y =

sample sizes

1.0, 8 = 0.4,

40, 80, 160,

x, = -1.904, x, = 3.904

Sample sizes n=40 n=280 n=160
True MLE B Bias 0.016961 0.008359 0.004159
MSE 0.007208 0.002404 0.001 141
Variance - 0.007208 0.002404 0.001141

# finite 1000 1000 1000
Mod. MLE A Bias 0.016630 0.008153 0.003975
MSE 0.007064 0.002389 0.001135
Variance 0.007064 0.002389 0.001135
Join Post. Mode 5 Bias .0.001334 0.019991 | -0.011633
Jetfreys Prior MSE 0.208758 0.104985 0.051478
Variance 0.208756 0.104585 0.051343
B Bias 0.01(518 0.007246 0.003736
MSE 0.004420 0.002232 0.001103
Variance 0.004288 0.002180 0.001089
Marginal Post. Mode | % Bias -0.001296 0.020295 | -0.011694
Jeffreys” Prior MSE 0.218119 0.107222 0.052010
Variance 0.218118 0.106810 0.051873
B Bias 0.004799 0.003930 0.002077
MSE 0.004431 0.002232 0.001103
Variance 0.004408 0.002217 0.001099
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Table 1b
_Monte Carlo study with 1000 simulations, and !I
ol =0.26,v= 108 =04,
sample sizes = 320, 480, 960,

x, = -1.904, x, = 3.904 i
I.

Sample sizes n=320 n=480 n=960

Join Post. Mode 5 Bias -0.008038 -0.004337 -0.003272
#.~U(0,0,")

MSE 0.026503 0.016746 0.008248

Variance 0.026438 0.016727 0.008238

: B Bias 0.002367 0.001669 0.000612

MSE 0.000543 0.000366 0.000199

Variance 0.000537 0.000363 0.000199

Marginal Post. Mode | % Bias -0.008059 -0.004340 -0.003277

8.~U(0,0.")

MSE 0.026644 0.016803 0.008263

Variance 0.026579 0.016784 0.008252

B Bias 0.001535 0.001115 0.000335

MSE 0.000542 0.000366 0.000199

Variance 0.000540 0.000364 0.000199

Naive MLE % Bias -0.007966 -0.004252 -0.003169

' MSE 0.026500 0.016742 0.008244

Vanance 0.026500 0.016742 0.008244

B Bias -0.005776 -0.006461 -0.007485

MSE 0.000508 0.000363.|  0.000231

Variance 0.000508 0.000363 0.000231

! cont....
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Table 1b (continued)

Monte Carlo study with 1000 simulations, and

g2 =026y =10, =04,

sample sizes = 320, 480, 960,

x, = -1.904, x, = 3.904

0=320

Sample sizes n=480 n=960
True MLE B Bias 0.002520 0.001765 0.000650
MSE 0.000545 0.000367 0.000199
Variance 0.000545 0.000367 0.000199

# finite 1000 1000 1000

Mod. MLE B Bias 0.002346 0.001594 0.000483
MSE 0.000542 0.000365 0.000198
Variance 0.000542 0.000365 0.000198
Join Post. Mode 5 Bias -0.008009 -0.004327 -0.003268
Teftreys” Prior MSE 0.026317 0.016669 0.008230
Variance 0.026253 0.016650 |  0.008219
B Bias 0.002340 0.001657 0.000609
MSE 0.000536 0.000363 0.000198
Variance (.000530 0.000360 0.000197
Marginal Post. Mods | % Bias 10.008033 -0.004328 -0.003159
Jeffreys” Prior MSE 0.026454 0.016726 0.007706
Variance 0.026390 0.016707 0.007696
A Bias 0.001516 0.001104 0.009419
MSE 0.000535 0.000362 0.000283
Variance 0.000533 0.000361 0.000194

- 16 -




Table 2a
Monte Carlo study with 1000 simulations, and
0:=026,vy=1008=14,

sample sizes = 40, 80, 160,

X] = 0-0, X: = 2.0

Sample sizes n=40 n=2%80 n=160

Join Post. Mode y Bias -0.000076 -0.007110 |  -0.003430
B~U(0,5,)

MSE 0.024971 0.013-345 0.006225

Variance 0.024971 0.013294 0.006213

" Bias 0.030038 0.021345 0.010025
MSE 0.112651 0.061087 0.020458

Variance 0.111749 0.060632 0.029357

Marginal Post, Mode Bias -0.000202 -0.007375 -0.003468
ﬁ,"'U(O.U"'I)

MSE 0.026741 0.013768 0.006298

Vanance 0.026740 0.013714 0.006286

Bias -0.009052 0.004544 0.001634

MSE 0.117254 0.060407 0.029306

1

Variance 0.117172 0.060387 0.029304

Naive MLE Bias -0.000639 -0.007225 -0.003423

MSE 0.027679 0.013447 0.006231

Variance 0.027679 0.013447 0.0062314

Bias -0.260140 -0.236256 -0.249500

MSE 0.100839 0.073609 0.070811

Variance 0.100797 0.073553 0.070749

cont....




Table 2a (continued)

Monte Carlo study with 1000 simulations, and

ol =026,y =

sample sizes

I

1.0, 8 = 1.4,

40, 80, 160,

x, = 0.0, x, = 2.0

Sample sizes n=4{J n=380 n=160
True MLE B Bias 0.192623 0.073347 0.032193
MSE 3.252274 0.087337 0.033560
Variance 3252236 0.087332 0.033559

# finite 989 1000 1000

Mod. MLE i Bias 0.090746 -0.001153 0.028335
MSE 0.426147 0.049280 0.023140
Variance 0.426139 0.049280 0.023140
Join Post. Mode % Bias 0.000012 -0.006971 -0.003402
Jeffreys” Prior MSE 0.023581 0.012948 0.006137
Variance 0.023581 0.012899 0.006126
B Bias 0.017305 0.019127 0.009510
MSE 0.101731 0.056966 0.028613
Variance 0.101431 0.056600 0.028523
Marginal Post. Mode ¥ Bias -0,000137 -0.007206 -0.003439
Jeftreys” Prior MSE 0.024749 0.013314 0.006206
Variance 0.024794 0.013262 0.006194
B Bius -0.014778 0.002628 0.001206
MSE 0.101209 0.056358% 0.028468
Variance 0.100990 0.056351 0.028466
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Tuble 2b
Monte Carlo study with 1000 simulations, and
o, =0.26,v=1008= 1.4,

sample sizes = 320, 480, 960,

x, = 0.0, x, = 2.0

Sample sizes n=320 n=4801 n=960

Join Post. Mode
ﬁr -~ U(O!Uu-l)

.‘?

Bias

-0.002648

-0.001252

-0.001079

MSE

0.003049 .

0.002067

0.000972

Varianca

0.063042

0.002065

0.000970

Bias

0.003700

0.003293

0.000310

MSE

(.014436

0.009507

0.004812

Varance

0.014423

0.009497

0.004812

Marginal Post. Mode
B8,~U(0,0,")

Bias

-0.002659

0.001255

0.00108!

MSE

0.003066

0.002074

0.000973

Varianca

0.003059

0.002073

0.000972

Bias

-0.000503

0.000489

-0.001093

MSE

0.014409

0.009491

0.004812

Variance

0.014408

0.009490

0.004810

Naive MLE

Bias

-0.002625

-0.001223

-0.001044

MSE

0.003050

0.002067

0.000971

Variance

0.003050

0.002067

0.000971

Bias

-0.235878

-0.257014

-0,259559

MSE

0.069660

0.068824

0.068774

Variance

0.0695%4

0.068758

0.068707

cont....




Table 2b {continued)

Monte Carlo study with 1000 simulations, and
o7 =026,v=100=14,
sample sizes = 320, 480, 960,

x, =00, x, =20

Sample sizes n=320 n=480 n=960
True MLE B Bias 0.014098 0.010088 0.003592
MSE 0.015316 0.009889 0.0048%4
Variance 0.015316 0.009888 0.004894

# finite 1000 1000 1000

Mod. MLE B Bias -0.041154 -0.043807 -0.048651
MSE 0.012395 0.008%930 0.005899
Variance 0.012393 0.008928 0.005897
Join Post. Mode ¥ Bias -0.002638 -0.001249 -0.001079
Jeffreys” Prior ' MSE 0.003028 0.002058 0.000569
Variance 0.003021 0.002056 0.000968
i Bias 0.003573 0.003229 0.000294
MSE 0.014238 0.009422 0.004791
Variance 0.014225 0.009412 0.004791
Marginal Post. Mode ¥ Bias -0.002649 -0.001252 -0.001080
Jetfreys" Prior MSE 0.003045 0.002065 0.000971
Variance 0.003038 0.002063 0.000970
i Bias -0.000589 0.000459 -0.001084
MSE ¢.014210 0.009405 0.004791
Variance - 0.014100 0.009405 0.004790
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Table 3a

Monte Carlo study with 1000 simulations, and
o} =0.26,v=100=20,
sample sizes = 40, 80, 160,

x, = 0.1873, x, = 1.8127

Sample sizes n=40 n=280 n=160

Join Post. Mode ¥ Bias -0.002831 -0.007201 -0.002720
6r~U(0’au‘l)

MSE 0.016792 0.008853 0.004274

Variance 0.016784 0.008801 0.004267

Bias -0.094029 -0.027770 -0.007964

MSE 0.240126 0.177616 0.103445

Variance 0.231285 0.176845 0.103382

Marginal Post. Mode Bias -0.002903 -0.007360 -0.002753
8.~ U(0,0,)

MSE 0.017370 0.009092 6.004329

Variance 0.017361 0.009038 0.00432]

Bias -0.147255 -0.057234 -0.023542

MSE 0.250940 0.177316 0.102722

Variance 0.229256 0.1740490 0.102168

Naive MLE Bias | -0.002994 -0.007338 -0.002721

MSE 0.018282 0.008960 0.004284

Variance 0.018282 0.008960 0.004284

Bias -0.335302 -0.572539 -0.587193

MSE 0.366153 0.354983 |~ 0.358070

Variance 0.365867 0.354636 0.357726

cont....




Table 3a {continued)

sample sizes

= 1.0, 3 = 2.0,

40, 80, 160,

x, = 0.1873, x, = 1.8127

Monte Carlo study with 1000 simulations, and

Sample sizes n=40 n=280 n=160
True MLE i Bias 0.396836 0.283131 0.089786
MSE 1.581492 . 1.988306 0.164424
Variance 1.581329 1.988226 0.164416

# finite 967 999 1000
Mod. MLE ] Bias - 0.050727 -0.115587 -0.157357
MSE 1.513346 " 0.131704 0,078146
Variance 1.513344 0.131690 0.078121
Join Post. Mode % Bias -0.002725 -0.007090 -0.002659
Jeffreys' Phior MSE 0.015879 0.008603 0.004215
Variance 0.015372 0.008553 0.004207
B Bias -0.095133 -0.029422 -0.008635
MSE 0.220638 0.168166 0.100542
Variance 0.211587 0.167300 0.100467
Marginal Post. Mode | ¥ Bias -0.002794 -0.007228 -0.002731
Jeffreys® Prior MSE 0.016299 0.008814 |  0.004265
| Varianee 0.016291 0.008761 0.004258
B Bias -0.146534 -0.058482 -0.024102
MSE. 0.229955 0.167918 0.099853
Variance 0.208483 0.164498 0.099272




Table 3b

Monte Carlo study with 1000 simulations, and

L

sample sizes = 320, 480, 960,

x, = 0.1873, x, = 1.8127

6f =026,y =10 8=20,

Sample sizes n=320 n=480 n=9%60

Join Post. Mode ¥ Bias -0.002053 -0.001174 -0.000679
B.~U(0,0,") '

MSE 0.002097 0.001383 0.000627

’ Variance 0.002093 0.001382 0.000627

i Bias -0.004475 -0.002032 -0.003021

MSE 0.054787 0.0367,}4? 0.018582

Variance 0.054767 0.036743 0.018573

Marginal Post. Mode ¥ Bias -0.002062 -0.001176 -0.000679

f.~U00 MSE 0.002109 0.001388 0.000628

Variance 0.002105 0.001387 0.000628

B Bius -0.012446 -0.007386 -0.005710

MSE 0.054552 0.036629 0.018563

Variance 0.054397 0.03655’4 0.018530

Naive MLE ¥ Bias -0.002036 -0.001151 -0.000650

' MSE 0.002098 0.001383 0.000627

Variance 0.002098 0.001383 0.000627

B Bias -0.594484 -0.596063 -0.598710

MSE 0.360005 0.359685 0.360664

Variance 0.359652 0.359329 0.360305

cont....
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Table 3b (continued)

Monte Carlo study with 1000 simulations, and

o} =026,y = 1.0, 8 = 2.0,

sample sizes = 320, 480, 960,

x, = 0.1873, x, = 1.8127

Sample sizes n=320 n=480 n=060
True MLE B Bias 0.038846 0.025803 0.010288
MSE 0.066372 0.041475 0.019599
Variance 0.066371 0.041474 0.019599

# finite 1000 1000 1000
Mod. MLE B Bias -0.177429 -0.182380 -0.189374
MSE 0.057258 0.050226 0.044305
Variance 0.057227 0.050193 0.044269
Join Post. Mode % Bias -0.002045 0.001171 -0.000678
Jeffreys” Prior MSE 0.002082 0.001377 0.000626
Variance 0.002078 0.001375 0.000625
B Bias -0,004667 -0.002123 -0.003034
MSE 0.054025 0.036415 0.018500
Variance 0.054003 0.036410 0.018491
Marginal Post. Mode Y Bias -0.002054 0.001173 -0.000678
Jeffreys' Prior MSE 0.002094 0.001382 |  0.000627
Variance 0.002090 0.001380 0.000626
i Bias -0.012612 -0.007462 -0.005717
MSE 0.053792 0.036294 0.018479
Variance 0.053633 0.036239 0.018446




Table 4a

Mente Carlo study with 1000 simulatiens, and |
0, =026,y =10,8=5.0,
sample sizes = 40, 80, 160,

x, = 0.3766, x; = 1.6234

Sample sizes n=40 n=80 n=160

Join Post. Mode ¥ Bias -0.005333 -0.004455 -0.002803
Br - U(O,ﬂ'u-l)

MSE 0.010176 0.005242 0.002718

Variance 0.010148 0.(}05222 0.002710

Bias -2.241226 -1.774272 -1.284754

MSE 5.422818 3.671449 | 2.323108

Variance 0.399725 0.523408 0.672516

Marginal Post. Mode Bias -0.005289 -0.004439 -0.002802
ﬁ] -~ U(O,(Tu-l)

MSE 0.010017 0.005221 0.002719

Variance 0.009989 0.005202 0.002711

Bias -2.331887 -1.838137 -1.330165

MSE 5.836318 3.8949:‘84 2.432167

Variance 0.398622 0.516‘536 0.662828

Naive MLE Bias -0.005196 -0.004480 -0.002801

MSE 0.011082 0.005296 0.002730

Variance . 0.011082 0.005296 0.002730

Bius -3.073353 -3.133056 -3.150456

MSE 9.587374 9.860808 9.947629

Variance 0.577929 9.851052 9.937703

cont....




Table 4a (continued)

« Monte Carlo study with 1000 simulations, and

6l =026v=108=50,

sample sizes = 40, 80, 160,

x; = 0.3766, x, = 1.6234

Sample sizes n=40 n=_80 n=160
True MLE i Bias 0.996723 0.485574 1.160758
MSE 28.702300 15.862030 34.280980
Variance 28.700690 15.861690 34.279250

# finite 616 - 683 782

Mod. MLE B Bias -1.363584 -1.992234 -2.081423
MSE 25.402840 4.451008 4.540688
Variance 25.400980 4,447129 4.536355
Join Post. Mode % Bias -0.005199 -0.004396 -0.002784
Jetfreys’ Prior MSE 0.009660 0.005107 0.002683
Variance 0.009633 0.005087 0.002675
B Bias 2.212540 -1.760087 -1.278419
MSE 5.280353 3.610916 2.299336
Variance 0.385020 0.513009 0.664980
Marginal Post. Mode ¥ Bias -0.005152 -0.004377 -0.002782
Jeffreys’ Prior MSE 0.009457 0.005079 0.002681
Variance 0.008470 0.005060 0.002673
B Bias -2.301695 -1.823584 -1.324136
MSE 5.680628 3.831280 2.407991
Variance 0.382829 0.505820 0.654634
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Table 4b

Monte Carlo study with 1000 simulations, and
ol =026,y =100 =5.0,
sample sizes = 320, 480, 960,

x, = 0.3766, x, = 1.6234

Sample sizes n=320 _ n=480

1=960
Join Post. Mode % Bias 0.002648 0.001662 -0.000918
B~U.0 MSE 0.001271 0.000844 0.000382
Variance 0.001263 0.000841 0.000381
B Bias -0.884142 -0.646836 -0.372232
) MSE 1.530906 1.235380 0.861404
Variance 0.749199 0.816983 0.722847
Marginal Post. Mode | % Bias -0.002648 -0.001662 -0.000917
B ~UO.a7 MSE 0.001272 0.000845 0.000382
Variunce 0.061265 0.000843 0.000382
B Bis -0.915700 -0.672207 -0.388229
MSE 1.578128 1.258682 0.867023
Variance 0.739622 0.806820 0.716302
Naive MLE 5 Bias -0.002643 -0.001645 -0.000894
MSE 0.001273 0.000845 0.000382
Variance 0.001273 0.000845 (.000382
B Bias -3.165291 -3.167592 -3.171970
MSE 10.029700 10.041210 |  10.064970
Variance 10.019680 10.031180 {  10.054900

cont....
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Table 4b (continued)

o2 =026, y=10,8 =50,

sample sizes = 320, 480, 960,

x, = 0.3766, x, = 1.6234

Monte Carlo study with 1000 simulations, and

n=960

Sample sizes n=320 n=480

True MLE i Bius 1.971829 0.930198 0.816134
MSE 128.725100 15.095600 30.051630
Variance 128.720700 15.094670 30.050950

- # finite 899 927 989
Mod. MLE A Bias -2.142563 -2.153862° -2.172300
MSE 4.684757 4.704171 4.749118
Variance 4.680167 4.699532 4.744399
Join Post. Mode 3 Bias -0.002639 -0.001658 -0.000917
Jeffreys” Prior MSE 0.001262 0.000840 0.000381
Variance 0.001255 0.000838 0.000380
B Bias -0.881446 -0.645564 -0.372105
MSE 1.521164 1.229275 0.856719
Variance 0.744218 0.812523 0.718257
Marginal Post. Mode ¥ « Bias -0.002641 0.001659 -0.000917
Joffreys” Prior MSE 0.001263 0.000841 0.000381
Variance 0.001256 0.000839 0.000381
g Bias -0.913660 -0.671537 -0.388960
MSE 1.568185 1.252587 0.862432
Variance 0.733410 0.801625 0.711142
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