Title Multivariate discrete density estimation using kernel densities
Author(s) Bacon-Shone, J; Aitchison, J
Citation Research Report, n. 15, p. 1-6
Issued Date | 1992-06
URL http://hdl.handle.net/10722/60983

Rights

Author holds the copyright




RESEARCH REPORT

Serial No. 15
June 1992

MULTIVARIATE DISCRETE DENSITY ESTIMATION

USING KERNEL DENSITIES

by

e i John Bacon-Shone and John Aitchison

THE UNIVERSITY OF HONG KONG
DEPARTMENT OF STATISTICS

Pokfulam Road, Hong Kong. Tel: (852) 839 2466 Fax: (852) 858 9041
E-Mail: STATISTGHKUCC.HKU.HK or STATIST@HKUCC.BITNET




MULTIVARIATE DISCRETE DENSITY ESTIMATION
USING KERNEL DENSITIES

John Bacon-Shone John Aitchison
Department of Statistics Department of Mathematics
and Universily of Virginia
Social Sciences Rescarch Centre Charlotiesnille, VA
Universily of Hong Kong U.S.A.
Pokfulam Roaed, Hong Kong

SUMMARY

Despite intensive recent research into density estimation little attention seems to
have been paid to its possible use in describing patterns of variability of univariate or
multivariate counts. This paper discusses the relative merits of a number of possible
kernels, and illustrates their application to univariate and bivariate count data.

1. Introduction ¥

Although there are now many parametric classes for univariate distributions of
counts and some, such as the McKendrick (1926) bivariate Poisson and the Aitchison
and Ho (1988} multivariate Poisson-lognormal classes, for multivariate counts, there
remain count data sets whose patterns of variability defy satisfactory description by
such classes. An excellent example of such a defiant data set is the Hohn and Hellerman
(1963) set of bivariate counts of 137 different Potomac River species, one by glass slide
and the other by styroform collection. In their analysis of these data Taillie et al (1979)
obtain excellent univariate fits using logarithmic series distributions but conclude that
their fit to the bivariate counts by a bivariate logarithmic series distribution is very
poor.

In view of such parametric difficulties and with the upsurge of research interest in
kernel density estimation methodology over the last three decades it seems surprising
that no detailed assessment of kernels for count distributions on the set X of non-
ncgative integers, or on its higher-dimensional counterparts X?, scems to have been
undertaken. This is perhaps surprising since there is an embarrassing number of simple
kernels from which to choose.

2. Univariate count kernels

To define a kernel on the sample space ¥ = {0,1,2,---} of non-negative integers
associated with an observed count z we require a probability (density) function K (yjz, A)
on Y, centred in some way on z and with the smoothing parameter A at our disposal.
For a data set D of N counts zy, -+, £y we then use as a kernel dcnsi.lty function

N
p(y[D,A) = N7 > K(ylz:, A).
. =1

For other sample spaces such as the real line the crucial first step of sclecting a suit-
able kernel J{ centred on an observation =z is easily achieved by choice of a standard




mean « providing a suitable location and the scale parameter, the standard deviation
A, acting as smoothing parameter. Such standard selection on the count sample space
Y is less apparent since many of the standard distributions, such as the Poisson dis-
tribution, have only a single parameter while for two-parameter distributions, such as
the negative binomial, it is not obvious how to harness the parameters to provide suit-
able location and scale. Although as part of our investigation here we shall adapt two
standard univariate count distributions to kernel duty we shall see that there are much
simpler, though non-standard, means of arriving at flexible classes of kernels.

For a count sample space ¥ a kernel (K|z,A) corresponding to an observed count
z will be determined when we decide on the weights or relative probabilities we wish to
place on z and on other possible counts y. Suppose that we use a weighting which is
symmetric about z in the sense that the weights fory = z — j and y = = + j are the
same and of the form w;(}), depending only on j and the smoothing parameter A. The
sum of such weights on Y is ' ' :

W(z, ) = Wa(z, \) + Wo(A) +1

where Wy (z, ) = i wi{ A} and Wy(A) =

i=1

8

w;(A). We can then obtain a count kernel
1

oy !
by setting

K(ylz, ) = w0/ WX (ly—z| = ).

To obtain a sensible kernel we obviously require w;{A) to decrease as j increases so that
- the greatest weight is placed on the observation z with weights decreasing as we move
from z. There are many ways in which this can be done and we have selected four,
shown in Table 1, corresponding to the geometric, logarithmic and exponential series,
and modified logarithmic with the smoothing parameter A restricted to the interval
0 < A < 1 to ensure the decreasing nature of the weights. These can clearly be regarded
as adaptations by symmetry and truncation of the geometric series, logarithmic series
and Poisson distributions to the needs of kernel weighting. For given A the geometric,

logarithmic and exponential kernels are clearly in increasing order in their concentration
around the observation z.

1

While these kernels ensure that the mode of the kernel is at the data point, asym-
metry is introduced by the truncation and the mean will always be biased upwards and
even the median of the kernel may be biased. One way to avoid this problem is to use
a double kernel. This involves placing half of the kernel on the data point and integers

above, and the other half on the data point and integers below. This ensures that the
median is at the data point.

Another possible extension is to use different smoothing parameters for positive
and negative values and this can be implemented for both the single and double kernel.

3. Multivariate count kernels

The obvious extension to multivariate counts is to use a product of the univariate
kernels considered above. Any attempt to use a correlated kernel increases computa-
tional complexity quite dramatically as the scaling constants no longer have a simple
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form. We can however extend the class by allowing the smoothing parameters to vary
across dimensions.

4, Examples

We start with a relatively tractable data set of counts of accidents sustained by 122
shunters in two consecutive periods from Arbons and Kerrich (1951). In the original
paper, the data was fit quite successfully with a bivariate negative-binomial distribution.
There is appreciable over-dispension relative to the Poisson distribution and there is
sample correlation of 0.26. Table 2 shows the log likelihood for the different kerncls
when they are fit by cross-validation. Clearly, the results are quite insensitive to the
choice of kernel. Allowing the parameter to vary across positive/negative and dimension
also has little effect, and the results here for single kernels are closely matched by the
double kernel results.

The second data set is from Aitchison and Ho (1988) and is a set of bivariate counts
of surface and interior lens faults, with mild negative sample correlation of -0.20. Table
2 shows that again there is very httle to choose between the four kernels, or the variants
of them.

The third data set is a trivariate set of bacterial counts from three air samplers,
also reported by Aitchison and Ho (1988). This data set is interesting in that it has-
relatively large negative correlation between the counts. It is clear from Table 2 that the
exponential model is not competitive, at least while we restrict A to ensure unimodality
of the kernel. The geometiric and logarithmic levels both seem more competitive than
the modified logarithmic. The picture is similar for the variants on these kernels.

The final data set is the difficult bivariate set from Taillie etal (1979) which has very
long tails. There is a slight complication with this data set in that (0,0) combinations are
censored, but this is easily adjusted for. It proved impossible to find a finite solution
for the exponential kernel as despite careful scaling and double precision arithmetic,
the cross-validated likelihood underflowed to zero, regardless of A. For this data sct
Table 3 shows that the logarithmic kernel is clearly superior, followed by the modified
logarithunic kerncl. It is interesting that for this data set, the double kerncl is far superior
to the single kernel, possibly reflecting that the estimated X is close to 1 for these kernels
making the asymmetry more severe. There is also some benefit in allowing A o vary,
although that advantage is small for the double log kernel, which is the best. Table
4 shows the goodness of fit of the logarithmic model compared with the independent
logarithmic series model tried by Taillie et al. (1979). The kernel works well except for
the boundary cells at (1,0) and {0,1) where the counts are significantly underestimated.

5. Discussion

The logarithmic kernel works well in all four of our sample data sets with the
geometric kernel appearing competitive in the more regular data sets. The exponential
kernel appears to be a poor choice, possibly because it dies away so quickly. The
limit ratio of successive terms tends to zero for this kernel, while all the.other kernels
have a ratio with a limit of A. However, the Potomac data set results are still rather
disappointing, indicating that some work still remains to be done in finding kernels that



handle data sets with as difficult boundary conditions as this one.

6. Conclusion

Discrete kernels, particularly those based on the logarithmic serics prov1de a useful
tool for modelllng variablllty in multivariate count data.
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Table 1 Four simple count kernels K(y|z, A)

Kernel

Geometric

Logarithmic

Exponential

* Modified logarithmic A oA sle(=n g

Table 2 Cross-validated log likelihoods for simple examples
i

Kernel
Data set  Dimension Geometric  Logarithmic  Exponential Mod Log

Shunter _352.4 —351.4 _352.4 _352.7
Lens fault —434.6 —434 .9 —434.3 —435.4
Sampler 3 —4105  -4108 —434.5%  —414.0

2
2

* Solution at boundary A = 1.




Table 3 Cross-validated log likelihood for Potomac data set

Type of kernel
Scale Complexity | Geometric Log Exponential Mod Log
Single Simple ~1285.5 —1068.0 t —1078.2
Single Complex —1191.6 —1050.4 —1055.1
Double Simple —1084.0 -1011.1 -1014.2
~ Double Complex —1065.8 —-1005.4 —1006.9

Simple means constant A (1 parameter)

Complex means A different for positive and negative and for different dimensions,
(4 parameters)

tUnable to find a finite solution in double precision arithmetic.

Table 4 Goodness of fit for the Potomac data set
for the bivariate logarithmic series
and the simple and complex double log kernel

X>
0 1 2 3+
0 ////// 13 9
/ (11.9,4.2,4.4) | (5.7,11.8,18.2)
- /]
1 19
(8.9,5.2,5.6) 5 5
(12.0,4.2,4.8) (8.3,10.0,9.6)
X1
' 2 10 Count
(2.7,13.2,19.1) (expected)
3+ . 8 68
(3.8,10.8,10.3) (83.6,77.6,65.0)

Overall x? = (46.1,61.1,60.7)
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