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Summary

Optimal design is the study of the choice of design points in an expertment. However,
measurements are seldom precise in practical situations. If measurement error is suhstantial, it may
ruin the whole experiment in that the objective of the experiment 1s not achieved. , There is substantial
literature on optimal designs, all based on the assumption that there is no measurement error in the
covariates. For the Berkson error model, the observed design points are fixed by the experimenter but
they deviate randomly from the pre-assigned level. In this paper, the Berkson error structure is
incorporated into the probit regression modet for which Buyesian D-optimal and A-optimal designs are
studied. In addition, a2 new optimal design criterion is proposed. i

i
!
‘Keywords: optimal design, posterior mode, errors-in-variables, Berkson’s model, probit

regression.
1 Introduction

Suppose that the expeniment 1s to be designed by choosing n values of tﬁe design variable x
from an experimental region X. Let the unknown parameters be 67 = (8,,...,6,). By expanding the
definition of a design to include any probability measure non Z we define the normalized matrix 1,

by |

1 dx).
3,66, og(p & | 6, %) n( x)_:!

=0

(7 (8., = -[E

i
Whittle (1973) stated a necessary condition, which involves a directional derivative, to check if the
design for linear regression model without measurement error is optimal. ‘An explanation of
directional derivative is given as follows:



For two measures %, and 1, in H the derivative at %, in the direction of 7. is defined by

lim t\t’((]- - €)T|1 + €‘I'|2) - ¢(1‘|1)

Fnpn,) = g .

The special case that , is a one point design plays a key role in Whittle's findings. We will denote
such F(x,,m,) by d(3,x). Whittle (1973) proved that if =, is the optimal design then the support points
will be the roots of d(x,, x) = 0.

Chalener and Larntz (1989) gave the conditions under which Whittle's condition applies to
non-linear regression models. The assumptions are:

1. X is compact;
the directional derivative exists and is continuous in X;

3. there is at least one measure in H, where H is the set of all probability measures on X, for
which ¢ is finite; and

4, ¢ is such that if 5, = # in weak convergence then ¢(n,) = é(n).

Note that X in the assumptions refers to the experimental region. Under the Berkson error
model, the proxy variable, z, which can be controlled by the experimenter, is obhserved rather than the
design variable x. Berkson's measurement error model is particularly suitable in this situation.
Therefore, the experiment turns into one designed by choosing n values of the observed variable z from
a controllable region Z. In practice, we are dealing with the controliable region and so assume the
above assumptions aiso hold for Z. Hence, Whittle's condition can be applied in our study.

Given the prior distribution of 8, we would like to find the designs that are derived from the
maximization of two concave criteria which were studied by Chaloner and Larntz (1989). The first
criterion, which corresponds to maximizing the average over the prior distribution of the log of the
determinant of the expected information matrix, is

é,(n) =E,log [ 1(6 n) |

For a design measure 5 for which 1(#,7) is singular for 8 values of non-zero prior probability
we define ¢, to be -oo. This criterion corresponds to the D-optimality criterion in the linear case.

The second criterion corresponds to minimizing the approximate expected posterior variance
of the quantities of interest. This criterion requires the experimenter to specify what is to be estimated
or what is to be predicted and the relative importance of these predictions. A weighted trace of the
inverse of the expected information matrix is then averaged over the prior distribution and minimized.
This criterion corresponds to A-optimality in linear design and it is stated as the maximization of

¢,(n) = -E(ur (B(O) IO, ).

The relative importance of the predictions is specitied through the symmetric matrix B,

The corresponding directional derivatives for the two criteria are
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d(n,2) = Eyur (1(8,2)1(8,n)") -p;

and

d(n,z) = E, r ( B(8) I(6,m)7 1(6,2) I(8,1)™" ) + ¢,(n) .

For most models, the posterior distribution is intractable and asymptotic arguments are used,
The asymptotic posterior distribution of the Bayes estimator is specified in terms of either the observed
Fisher’s information matrix or the expected Fisher's information matrix. For generalized linear models
with canonical link function, the two matrices are the same. For generalized linear models with non-
canonical link function, the observed Fisher's information matrix is different from the expected Fisher's
information matrix. For simplicity, the expected Fisher's information matrix is used, although Efron
and Hinkley (1978) have shown that, in the case of MLE, if the likelihood function is close to normal
then the variance approximation by the observed Fisher's information is better than by the expected
Fisher’s information.

Assuming that the expected information matrix is non-singular, the posterior distribution of
@ using a design measure g 15 approximately distributed as

i N, (6, nI(8, n)™)

where & is the maximum likelihood estimate of 6.
2 Probit Model

Recall that the p.d.f. of y=1 conditional on z (Burr, [988) 15 given by

p=112) = [ ®(plz-1)¢} = | ax
g

]

o —L —(z-y)
1+B20i

(]

Q(B,(z-v))



where

B, -

since, under the Berkson error madel,

X=2+U,

It is further assumed that ¢,” is known,

L=

ik

i=l

2 2
+p°a,

B

Y1+ Bzoi

The expected Fisher's information matrix for iy and 3 is

where

and

n

Y

=1

n

)y

| ial

Here, # = {y, ). The likelihood for y and § is then

_ Ly
B(z, v)] ol B v)]

U~ N(0,d) .

\/1+B20§

P
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3 Classical D-optimal Design
In the error free situation, the classical approach to a two point D-optimal design would mean

that given 4 and 3, the support points are symmetrically placed on either side of y (Abdelbasit and
Plackett, 1981 and Minkin, 1987). Letc = z - -y and the design criterion is to maximize

in?,.2
2B gpo), M

1=
o3 (1-0) )

where

® = d(Po).

In the current situation, the classical approach would find ¢ that maximizes (1) with 8 replaced
by B3,

Let p* = &(B,c) where ¢ maximizes (1). Then

oUp*) = — P (z-v)
1+[320i

o (p)yf1+plo; 2)

It can be seen that z is an increasing function in ¢, and a decreasing function in f. Hence,
we need to put the support poiats turther away from ¥y if error is present.

Given a known value of 8, 8, ¢ is determined tfrom (1). Then
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n

®(B, (z-v))

g | een 1B ®

Consider the behaviour of p when § — oo
- * 2.2
m _ lmogl B | @ {(p)y1+Bo0,
ﬁ_. B_. ’1 + B'Z aﬁ Bo
O l(p*) 1+ 205
- @ (p Bo

ou BO
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It can be seen that the conditional density does not go to O or | as § goes to infinity which
causes an estimation problem (Tang and Bacon-Shone, 1992). Furthermore. if error is ignored at the
design stage, i.e. set g, =0 in (2), the likelihood does not decay to zero and it is thicker in the tail than
when error is taken into consideration at the design stage. In fact, the design resulting from ignoring
error at the design stage will result in a likelihood with the thickest tail and hence there is the greatest
chance of getting an infinite maximum likelihood estimate of §.

4 Bayesian Optimal Designs

We consider Bayesian optimal designs under 3 criteria. The first criterion, ¢, ts the D-
optimal criterion, which is same as the Fisher's information criterion. The second criterion, ¢, is
the A-optimal criterion which is derived from using the posterior mean as the Bayes point estimate,
The third criterion, ¢, is the optimal criterion derived trom using the posterior mode as the Bayes
point estimate as it has been recommended that the posterior mode should he used for estimation in
binary regression models with measurement error (Tang and Bacon-Shone, 1992).

Given a design measure, 1, putting n; weight at k distinct design points z;, i=1,....,k, En, =
1, we define




P (zi—v)]

1+ pal
£
t =5 nw,
Y

k
s = E now (z,-2)* .
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Then, the expected Fisher’s information matrix can be re-expressed as
3 5 _ \
_Pr _Prz-v)
1+p2o’ (1+B2o2)?

_ Be(z-y)  s+t(z-y)?
(1+p%a,)  (1+B*al)]

And the determinant of the expected Fisher's information matrix hecomes

2z
0. = —E
(1+p%0)"

The inverse of I(n) is

-1+(E-1)2](1+B%§) (E-v),(hazai)zﬁ
t s J B sP
(Z-y)(1+p2o2)? (1+p2ory
sf s

I"'(8,n) =

4.1 ¢, Optimal Design |

It can be shown that the criterion function and the directional derivative. for the ¢, optimal
design are respectively 4
i




Bits
(1+p2aly*

w[L(f-UEH -2,
t S

$,(n) = Ey|log

and

d(n,2) = E,

Note that the directional derivative function is in the same form as that of the no error case. As |z|
- o, w - 0 at an exponential rate, i.e. d(»,z)—~ -2. Hence, the support points will never be placed
at infinity. This is also in accordance with the no error situation.

4.2 ¢, Optimal Design

In the case of ¢, optimality, the experimenter is required to specify what is to be estimated
or predicted. Suppose we wish to estimate z, such that (8,(z,-y)) = . We have

_et

iy y.

This expression is non-linear in the parameters. The asymptotic variance of z o can be found
by using the delta method (Serfling, 1980, p. 118). Thus, B(#} can be defined as

B(8) = c(8)c(8)

where

~3°1(1)
B24/1+ B0,

Therefore, we have the criterion tunction and directional derivative of ¢, optimality for the
percentiles response point to be

2
1+p2a _ @ 1(A)y/1+p2o.
$,(n) = - Eq —E;f—%+l z-y - ; ik ;

c(®)’ =1,

s

and




d(n,2)

o lw (1 (T-y)(GE-2)\ @ MD(E-2)3 +pla)
= E, F1/l+[}20u(?+ . )_ i ,
+ b, (n)

respectively.

Note that if we want to estimate y alone, we can set A = 0.5. If both y and § are of equal
interest, B(#) is the identity matrix. For this B(8), we have the criterion function and the directional
derivative function of ¢, optimal design for the sum of parameters to be

~_ 32 1 (14 p2 2 1+82 2.3
¢2(Tl) = _EB (%+(Z Y) ]( Bc“) " ( Bou)

s [32 S

and

d(n,2). =

w(l+p2ay) (l L (Z-7)(z-2) Jz . w(z-2)}(1+p2a’)
p? 2

t 5 5

Note that there is singularity at =0 in the objective functions.
4.3 ¢, Optimal Design
If 8 is the posterior mode, then, as the sample size gets large,

- - - -1
6~ N6, [1®])
where 8 is the MLE and 1(8) is the expected Fisher information matrix with (i,j} element

3

38,38,

ij

I = —nEl lng(Zle)]

To minimize the loss w.r.t. the 0-1 loss function is essentially the same as to maximize the
p.d.f. of the posterior mode. From the asymptotic theory, the mode of the posterior distribution is the
MLE and the corresponding density is inversely proportional to the square root of the determinant of
the variance-covariance matrix. The variance—covariance matrix is the inverse of the Fisher's
information matrix evaluated at the MLE. Therefore, the design criterion of the posterior mode, call
it the ¢, criterion, becomes the maximization of the square root of the determinant of the expected
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Fisher’s information matrix. It seems that there is no reported research on optimal design for the
posterior mode.

For ¢,-optimality, i.e. the average of the square root of the determinant of the Fisher's
information matrix is maximized, the criterion function and the directional derivative function are
respectively

- [
Bots 3
o(n) =E, | — P 7
’ "l (s prady

and

: 1
prls? Wl 1. (Z-2)

d(n,z) = E :
“la2a - prodel N s

[ ]

where w is the design point of a single point design. Note that as | z| - oo, w = 0 at the exponential
rate and hence d(7,z} = constant. Theretore, the support points will never be placed at infinity. The
derivation of the criterion and derivative functions are given in the appendix,

4.4 Tail behaviour of the design criteria

Let us look at the tail behaviour of these design criteria. For a given z, when g - oo,

¢, ~ o2

)

>

We can see that w, tends to a constant as 8 — os. This behaviour of the w;’s will make t, 5
and z tend to constants as § goes to infinity.
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The criterion function of the ¢, optimal design is

pzrs !

$,(n) = E, | log
i 2] (1 . Bzoi)4

The argument of the log function goes to 0 as 8 goes to infinity.

Recall that the design criterion of ¢. optimal design for the percentile response points is given
by .

—+—1iZz
pl‘ t s

o
1+p2o - @y 1+p2ad
dyln) = ~Ep) — 11+ 7y - . {:

Note that as § goes to infinity, the criterion tunction goes to

_%{1+(E-v—¢4un2}_ o

t 5

In this case, a proper prior for 8 will ensure that the expectation is finite so that the
maximization process can proceed.

The situation is worse when B(6) is the identity matrix since
r(B(8)I(8,n)™") = O(B°) . "

The prior of 8 should decay to zero at least as fast as o™ to guarantee that the expectation
is finite. !
1
I

5 Numerical Investigation

. Numerical investigations are performed to illustrate the effect of meausurement error on the
design of the following model

pliy=1]x =®(Bx-71). ;

¢l is set to 0.26 and to .52, v is assumed to be uniformly distributed over (0,2). Three
proper prior distributions for § are considered. The first is the uniform distribution over the range
(0,2). The other 2 priors are suggested by Tang (1992). Since all the three priors are non-zero at
§=0, only ¢, and ¢, designs are studied. The design measure for the ¢, and ¢, optimal designs using
the three proper prior distributions for 8 are found as follows. i



Table 1. ¢, and ¢, optimal designs for probit regression with errors-in-variables

v ~ U(0,2)

vy ~ U@0.2) vy ~ U(0,2)
B8 ~ U©.2) B, ~ U(0,0,") B ~ exp(-0.8)
Point Wcight Paint Weight | Point Weight
02=26 | & 2.50 0.5 2.74 0.5 2.73 0.5
-0.48 0.5 -0.75 0.3 -0.74 0.5
b, 2.29 0.5 2.37 0.5 2.30 0.5
-0.29 0.5 -0.37 0.5 -0.30 0.5
g2 =.52 ¢, 2.94 0.5 3.37 0.5 3.36 0.5
-0.92 0.5 -1.39 0.5 -1.37 0.5
&, 2.57 0.5 2.89 0.5 2.79 0.5
-0.90 0.5 -0.79 0.5

-0.58 0.5

o It is found that a two point design is enough for all the situations, i.e. Whittle's condition is
met, and the design points are symmetrically distributed about ¥, As the variance of the distribution
... of measurement error increases, the devidtion of the design points tfrom vy also increases. Furthermors,

the design points for the ¢, design seem to be closer to y than that for the ¢, design.

When no measurement error is present and assuming the priors for both y and § are uniformly

distributed over (0,2), the ¢, and ¢, optimal dcsign'_s are found as follows:

Table 2. ¢, and ¢, optimal designs tor probit regression without errors-in-variables

Point Weight
, 1.93 0.5

0.08 0.5
& 1.93 0.5

0.07 0.5
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Let ¢(n) be the criterion function value for the ¢ optimal design at the measure n. We define
the efficiency, Eff, in terms of equivalent sample size, of an ¢, optimal design adjusted for
measurement error as

Eﬁt‘ = chp (¢1(T|1) - ¢[(T|0) ) .

Similarly, for ¢;, the et:ﬁciency is defined as

$y(n,)

Ef = 217
7 $,(ng)

where ¢,, (i=1,3), is the optimal design adjusted for measurement error and 7%, 1s the corresponding
measure whereas 7, is the measure that assumes no measurement error.  For the numerical example,
we determine the efficiencies of the ¢, and &, optimal designs using uniform priors over (0,2} for both
v and . The results are as follows:

Table 3. Efficiencies of ¢, and ¢, optimal designs.

|| Etficiency for. ¢, (%) . Efficiency for ¢, (%)

91’5 | 92,6

a,

u

0.
0

X ' 83.6 : “83.3
IlIIr I'

It can be seen that the ¢, desq,n 15 more ‘affected hy small measurement error than the ¢,
design is. But ¢, design is more affected” by large measurement error than'the ¢, design is.
Moreover, the efficiency declines as the variability of the measurement error distribution increases,

.
ol

Another numerical investigation is performed using a standard gamma distribution, with shape
parameter 3, as prior for § and a uniform prior, over the range (0,2), for y. Note that the prior for
B is zero at $=0 and decays to zero at.an exponential rate in the tail so that all the three designs can
now be evaluated. qb, desmn is taken to bhe the one that 7 is the oaly concern. The results are as
follows. : e -




Table 4. &y, ¢, and ¢, optimal designs for probit regression with errors-in-variables

&, - - P
Point Weight Point Weight [ Point Weight
0} = .26 -0.08 0.5 0.15 0.5 016 ° - 0.5
2.08 0.5 1.85 0.5 190 ° 0.5
) -0.40 0.5 007 05 | 016 05
2.40 05 | ~1.93 0.5 | -2.16 0.5

Again, a two point design (s sufficient for all the criteria and the design points are further
away from the prior mean for 'y as the variance of the msasurement error distribution increases. It
can be seen that the design points for the ¢, design lie between that of the ¢, and the ¢, designs. For
the case of ¢, optimal design, the design points cannot be found using priors over the half real line
when there is no measurement error (Chaloner and Larntz, 1989). On the other hand, the design
points can be determined when there is measurement error.

6 Conclusion

The aim of the study of an optimal design is to design an experiment which provides as precise
as possible the information about the point estimates of the regression model under consideration. A
Bayesian optimal design is one such that the pre-posterior loss is minimized. The A-optimal, ¢,, and
D-optimal, ¢,, designs are appropriate when the posterior mean is used us the point estimate,
However, because of the inadmissible property of the posterior mean tor binary regression models with
Berkson type measurement error (Tang and Bacon-Shone, 1992), both the aforementioned designs are
not appropriate as long as there is measurement error in the covariate. Since Tang and Bacon-Shone
suggest to use the posterior mode, it seems natural to devise a corresponding design, ¢,. Moreover,
this research appears to be the first study of an optimal design using the posterior mode as the point
estimate. From the simulation study, the ¢, design is found to be a useful altermative to the wel
known ¢, design as it is more efficient. To summarize, for a probit model with measurement error
in the covariate, a proper prior for the slope parameter is needed, the posterior mode should be used
as the Bayes point estimate and an optimal design should employ the @, criterion. '
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Appendix . L

We need the following lemuna to prove Theorem-1. - -
Lemma

Let %, and %, be two ditfereat design measures and let # be a real number such that 0 < «
=< I, we have e ‘.

I0,nn, + (1-7)n,) = wl(B,n)) « (1-7)(8,n,)

The proof of the temma is straight forward and omitted.

Theorem 1

For two distinct design measures, 7, and 7,. and 7, where bb‘ﬂ T < 1, we have
T ’:‘J'] |tf(9,ﬂ n]'i'*':{('l .= TE)T"Z) I" -2
> x [ TION) | + (1= ©)/TIE,0,)
Proof

The Minkowski inequality for determinants of positive definite matrices (Magnus «nd Neudecker, 1988,
p.227) stated that if A and B arc'nXn positive definite matrices, then

L 1 1 1
T e o T - oe T R
|A+B|"21A]" +|B|". '

A M ‘. =L
Given that I{#,1) is 2X2 and using the above lemma and the Minkowski inequality, we have

- x
oy

St T
= | =18, + (L - 1)I(8,n,) |
1 1
2| w180 23 [(1 - I@,n;)
St T o
. =n[I(8,n) |> + (1 - =) I(B,m,) |
Hence the theorem s proved. | o e

In fact, the theorem implies that the ¢, criterion is concave since the inequality still holds
when expectations w.r.t. § are taken on both sides of (3). The distribution of § can be approximated
by using the prior distribution of 8 as the predictive distribution of . The fact that the design criterion

16,




is concave allows us to apply Whittle's results for the determination of optimal design points. Hence
we peed to find the directional derivative

hm JIB,(1 -€)q +en) | - 11(8,n) |
: — .

F(Tl, )_

+
- I

Let X, Y and Z be positive definite matrices, Silvey (1980} showed that
O F(XL,Y) = G('X Y- X) .

Lre
l:m./|X+eZ]-,/|X|
e‘-.

G(X, Z)

PR EFE LR

To find the directional derivative for'the current-design, We_‘stértbwith considering

ViXeweY |-V X o

JIX 1 T+ex 'Y | -/]X]
1 ,
| X PV e XNy = TX]

Recall Theorem §.3.4 orGrayblll (}983) lh.lt :t Ihc k><k mdmx Cis ywcn by
- < ;!
C = D + aab" '
Ml T : HRIEST LI SR IARER TR S TN

where D is a nonsingular diagonal matnx a and b are each kxl vectors, and ¢ is a scalar such that

IR 1| -t

k -1
> aibi,dﬁ]

|y i=l V. o
T te

Therefore, we have

|I+eX YI 1+err(X Y)




VIiX+eY|-y[X]

1 1

| X 21T +e( X'V )2 - | X |

e

1 1
B |2(1 + vy +o<e2)_) x|

1
% | X 20(X7'Y) + O(6)

The directional derivative, G, is

L
| X |2
2

tr(X°'y)

Hence, the directional denivative for the ¢, design is

S
b

F(X.,Y)

It

(XY - X))

2

(XY

% (XY - 1)

It

2=

[ X |

> [r(X™'Y) -2].
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