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Abstract

The directional contact range of two convex polyhedra is the range of po-
sitions that one of the polyhedron may locate along a given straight line
so that the two polyhedra are in collision. Using the contact range, one can
quickly classify the positions along a line for a polyhedron as “safe” for free of
collision with another polyhedron, or “unsafe” for the otherwise. This kind
of contact detection between two objects is important in CAD, computer
graphics and robotics applications. In this paper we propose a robust and ef-
ficient computation scheme to determine the directional contact range of two
polyhedra. We consider the problem in its dual equivalence by studying the
Minkowski difference of the two polyhedra under a duality transformation.
The algorithm requires the construction of only a subset of the faces of the
Minkowski difference, and resolves the directional range efficiently. It also
computes the contact configurations when the boundaries of the polyhedra
are in contact.
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1. Introduction

The collision status of two objects, i.e., whether they are separate or inter-
secting, as well as their contact configurations, i.e., at which parts they are in
contact, are important in many applications in CAD, computer graphics and
robotics, or other areas that involve physical simulations, where responses
are subsequently deduced based on these pieces of information. In this pa-
per, we focus on the collision status and contact configurations of two convex
polyhedra, assuming that they may only move along a given direction. The
restriction regarding the direction is deemed reasonable, as there are a lot
of applications in which object translations are only allowed in some spe-
cific directions. In industrial modeling or motion design, for example, the
directions of movements that a mechanical part can take are limited by the
constraints imposed by the degree of freedom of the part. The directional
collision status of two objects is therefore useful, e.g., for object placements
and motion design in a dynamic environment.

We define the directional contact range (DCR) of two convex polyhedra
P and Q with respect to a direction s to be the range of positions that Q
can locate along s so that P and Q are in contact or overlap, assuming that
P is kept static. Equivalently, we say that

DCR(P,Q, s) = [α, α] iff P ∩Qt̂s 6= ∅, ∀t ∈ [α, α]

where α, α ∈ R, ŝ = s/‖s‖ and Qt̂s = {q + t̂s | q ∈ Q} is the result of Q
translated by t̂s. In particular, Qαŝ and Qαŝ are in external contact with P ,
i.e., they touch P only at some boundary points.

The DCR essentially gives the relative positions between the polyhedra at
which they are in contact, and therefore can solve collision queries when Q is
considered moving along s. Since the polyhedra are convex, it is obvious that
the DCR is either empty or is a single closed interval. The DCR captures
the collision status of P and Q along s, so that one can easily tell where P
and Q should collide in this direction. The directional separating distance
or penetration distance of P and Q, when they are separate or overlap,
respectively, can also be computed from the DCR, so that if DCR(P,Q, s) =
[α, α], the required directional distance is given by min{|α|, |α|}.

Object interference testing or collision detection has been intensively
studied in the fields of computational geometry, computer graphics and
robotics (see a survey in [1, 2]). Given two convex polyhedra, Cameron
and Culley considered their minimum translational distance [3]; there are
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feature-based algorithms [4, 5] that determine their closest features. The
GJK [6] algorithm works on the simplices of the Minkowski difference of two
polyhedra and uses convex optimization techniques to compute the closest
points. Agarwal et al. [7] presented a randomized algorithm to determine the
penetration depth of two convex polyhedra with an expected running time
O(m

3
4

+ε + n
3
4

+ε + m1+ε + n1+ε), for any constant ε > 0, where m and n are
the number of faces of the two polyhedra. Further to this theoretical result,
Kim et al. [8] estimated the penetration depth of two intersecting polyhedra
using the Gaussian map of their Minkowski sum.

In relation to directional contact, Dobkin et al. devised an O(log2 n) al-
gorithm to compute the directional penetration depth of two intersecting
convex polyhedra [9], and showed that the directional distance corresponds
to the directional distance between the origin and the Minkowski difference
polyhedron, M , of the polyhedra. Hence, a brute-force algorithm for finding
the directional distance by intersecting a line from the origin and M has
O(n2) complexity, which is also the geometric complexity of M . There are
efficient solutions for computing the intersection of line and a convex polyhe-
dron, including linear programming approaches or geometrical methods such
as [10, 11] that transform the problem to locating a point in a convex plane
partition in the dual space. Our algorithm differs by using another form of
duality transformation, and most importantly, we exploits the fact that M is
not a general convex polyhedron, but the Minkowski difference of two convex
polyhedron with much simpler geometric complexity.

1.1. Major contributions

In this paper, we present an algorithm to compute the directional contact
range (DCR) of two convex polyhedra efficiently. The goal of the algorithm
is to seek a face on the Minkowski difference of the two polyhedra which gives
the contact features at their touching positions, given that one of them may
move freely along a specific direction. We define a convex function which
guarantees convergence and therefore guides the search in a robust manner.
Moreover, we break down the search on the Minkowski difference into three
different phases (corresponding to the three different types of faces), skipping
most of the EE-type faces which is of O(n2) where n is the number of faces of
the polyhedra (Section 3.2), and thereby obtaining the target face efficiently.

The essence of our idea is to consider the DCR problem in its dual equiv-
alence. We study the Minkowski difference under a duality transformation
and a convex function is then defined as the signed distance of a vertex on
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the dual polyhedron to a plane. We also show that maximizing the convex
function is essentially the same as to finding a face containing the intersection
of a ray from the origin with the Minkowski difference in the primal space,
hence solving the DCR problem. The convex nature of the search process
is difficult to perceive in the primal space intuitively, but could be proved
easily by its dual counterpart. Although our algorithm is based on the con-
cept of duality transformation, its computation does not involve any explicit
application of the transformation and therefore no overhead is incurred in
this regard.

2. The Key Idea

In this section, we explain the fundamental idea of our algorithm, which
relates the DCR problem of two polyhedra in the primal space to a search for
a vertex on a Minkowski difference polyhedron in the dual space. Let P be
a convex polyhedron in E3, then VP , FP , and EP denote the set of vertices,
faces, and edges of P , respectively.

2.1. Minkowski difference of two polyhedra in relation to DCR

Given two polyhedra P and Q, let −Q = {−q | q ∈ Q}. We consider the
Minkowski difference of P and Q (or equivalently, the Minkowski sum of P
and −Q) defined by M ≡ P ⊕ (−Q) = {p−q | p ∈ P, q ∈ Q}. Since P and
Q are both convex, M is also a convex polyhedron [12]. The origin o is in
M if and only if there are some p ∈ P and q ∈ Q such that p = q, i.e., P
and Q overlap and share a common point. Moreover, o is on the boundary
of M if and only if P and Q share common boundary points only.

When Q moves in a direction s, M moves in the opposite direction −s. If
P and Q do not intersect along s, M does not contain the origin when moving
along s and the DCR is empty. Otherwise, the DCR is the range of distances
that M can travel along s with the origin remains in M . In other words,
the DCR are bounded by the distances from the origin to the intersections
of the line os and the boundary of M (Fig. 1). These two intersection points
corresponds to when P and Q are in external touch. In the case where os
has only one intersection with M , the DCR is a single value which is the
distance from the origin to the intersection. The intersection points must
lie on the boundary of M , and hence our primary task is to compute the
intersection between the line os and the boundary M . Since intersections
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must always lie on some faces of M , faces of M (but not edges nor vertices)
are only considered in our algorithm.

(a) (b)

Figure 1: The DCR [α, α] of two convex polyhedra P and Q, and the corresponding
distances from the origin to the boundary of the Minkowski difference M when P and Q
are (a) separate; and (b) overlap.

Proposition 1. Let the line os be given by s(u) = uŝ, u ∈ R. Suppose os
intersects M = P ⊕−Q at the faces fmin and fmax with points of intersection
s(umin) and s(umax), respectively, so that umin ≤ umax and s(u) ∈ M if and
only if u ∈ [umin, umax]. Then the DCR of P and Q is given by [umin, umax].

Note that fmin (or fmax) could be more than one face which happens when
os intersects M at a vertex or an edge.

2.2. The dual of the Minkowski difference

Given an arbitrary point c ∈ R, we may classify the faces of M into three
groups depending on the positions of c to the plane Hf containing a face f
of M : f is a supporting face, a convex face or a concave face if c lies on Hf ,
in the inner half space (i.e., the half space in which M resides) of Hf , or in
the outer half space of Hf , respectively.

Suppose M is transformed under a duality as described in Appendix A.1
using an interior point of M as the centre of duality. Then every faces of M
are properly transformed to a vertex not at infinity and the dual M∗ is a con-
vex polyhedron, with vertices F∗

M and faces V∗
M . The dual of an edge defined

by two adjacent vertices v0, v1 in M is an edge common to two adjacent faces
v∗

0, v∗
1 in M∗. In general, if an arbitrary point c not in the interior of M is

used as the centre of duality, the above correspondence between the features
of M and M∗ still applies, but M∗ is no longer compact in E3. Its boundary
is defined by two disjoint shells that extends to infinity. In particular, the
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supporting faces (if any) of M with respect to c are transformed to points
at infinity, while the dual of the convex faces are the convex faces w.r.t. the
origin in the dual space which form one of the continuous convex shell of M∗

(Fig. 2). As we shall see, our algorithm will work on the convex faces with
respect to a given point.

Figure 2: A 2D illustration of M and its dual M∗ with the centre of duality c not in M .
The convex faces w.r.t. c on M (thick lines) corresponds to the black points lying on the
convex shell (marked with thick lines) with respect to the origin in E3∗.

2.3. Signed distance of a face from the origin

Suppose that a plane is given by Π : ATx = k where A ∈ R3, x =
(x, y, z)T , k ∈ R, and we assume that Π is normalized such that ‖A‖ = 1 and
k > 0 is the shortest distance from the origin to Π. The signed distance of a
point x0 to the plane Π is then given by dΠ(x0) = ATx0 − k. Given a point
c /∈M, let F̂c denote the set of convex faces of M with respect to c. We define
the signed distance of f ∈ F̂c, denoted by d(f), to be the signed distance of
f ∗ to the plane o∗ in E3∗, i.e., d(f) = do∗(f ∗), where c is the centre of duality
and o∗ is the dual of the origin o ∈ E3. Let Hf : NTx = k, where ‖N‖ = 1
and k > 0, be the containing plane of f . Then f ∗ = N/(k −NTc) ∈ VM∗ in
the dual space with c as the centre of duality. The origin o is first translated
by −c and the plane equation of o∗ is −cTx = 1. Hence, we have

d(f) = do∗(f ∗) =
−cT

‖c‖
· N

k −NTc
− 1

‖c‖
= − k

‖c‖(k −NTc)
. (1)

The quantity do∗(f ∗) uniquely determines a plane l∗ in E3∗ passing through
f ∗ and parallel to o∗ such that do∗(x) = do∗(f ∗) for all points x ∈ l∗ (Fig. 3).
Since l∗ and o∗ have the same normal direction, it can also be shown that l,
c and o are collinear. Moreover, l∗ passes through f ∗ and hence l must lie
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Figure 3: The vertex f∗0 in E3∗ attaining maximum signed distance to o∗ is the dual of a
face f0 in E3 intersecting the ray co.

on Hf , the containing plane of f . This implies that l is the intersection of
Hf and the line co.

Suppose that the ray co, given by l(t) = −tc, t > 0, hits some faces in F̂c

(Fig. 3). Then the containing planes of all faces in F̂c must intersect co. The
signed distance for a convex face ft ∈ F̂c whose containing plane intersects co
at a point l(t) is d(ft) = (1− t)/(t ‖c‖). Since d(ft) is a decreasing function
for t > 0, it means that the containing plane of the face with maximum
signed distance over all faces in F̂c, has the closest intersection to c with the
ray co. Due to the convexity of M , this intersection must lie on a face of M
and we have the following proposition:

Proposition 2. Let fmax ∈ F̂c be the convex face with respect to c whose
signed distance is the maximum over all faces in F̂c, i.e., fmax = arg maxf{d(f) |
f ∈ F̂c}. Then fmax contains an intersection of the ray co and M .

Since f ∗ lies on a convex shell, the signed distance function is convex over
F̂c. Starting from a face f ∈ F̂c, we may therefore search for fmax at which
the ray co intersects M . It is important to note that the intersection needs
not be solved, as its distance from the origin can be computed directly from
d(fmax) as follows. We established that d(f) = (1 − t)/(t‖c‖) is the signed
distance of a convex face f ∈ F̂c whose containing plane intersects co at l(t).
Let α(f) be the signed distance of l(t) from o along the ray co. Then,

α(f) = (t− 1)‖c‖ =
( 1

d(f)‖c‖+ 1
− 1

)
‖c‖ = − d(f)‖c‖2

d(f)‖c‖+ 1
.

Hence, the distance from the origin to the intersection of fmax and co is given
by α(fmax).

7



3. The Algorithm

Given two convex polyhedra P and Q, and a direction s ∈ R3, the fol-
lowing algorithm computes the DCR of P and Q with respect to s:

Step 1: Check whether the line os intersects M = P ⊕ (−Q). If not, we
have DCR(P,Q, s) = ∅. Otherwise, choose a point cmin = us for
some u > 0, and that both o and M lie on the same side of cmin

on os. Choose also cmax = vs for some v < 0, with both o and M
lying on the same side of cmax on os.

Step 2: Using cmin as the centre of duality, search for fmin which attains
the maximum signed distance among all convex faces with respect
to cmin, i.e., fmin = arg maxf{d(f) | f ∈ F̂cmin

}. Then, use cmax

as the centre of duality and search for fmax = arg maxf{d(f) |
f ∈ F̂cmax}.

Step 3: Report DCR(P,Q, s) = [α, α] where α = −α(fmin) and α =
α(fmax).

Our algorithm does not require the complete construction of the Minkowski
difference M . Moreover, we devise a novel search scheme in step 2 which skips
some faces in M in order to reach fmin and fmax efficiently. The details would
be discussed in subsequent sections.

3.1. Determining the center of duality c

If two polyhedra P and Q do not meet no matter how far Q moves along
a given direction s, their DCR with respect to s is empty. In this case, the
line os does not intersect the Minkowski difference M , which can be checked
without constructing M as follows.

Let Ṗ and Q̇ be the orthographic projection along s of P and Q to a
plane H normal to s. We construct the convex hull, CH(Ṗ ) and CH(Q̇),
of Ṗ and Q̇, respectively. This can be done efficiently since the vertices of
CH(Ṗ ) and CH(Q̇) are the silhouette vertices of P and Q as viewed along
s. Then, we obtain Ṁ = CH(Ṗ ) ⊕

(
− CH(Q̇)

)
. Now, os intersects M if

and only if CH(Ṗ ) and CH(Q̇) overlap, i.e., Ṁ contains the origin.
Suppose now that os intersects M . In general os has two intersections

with M which is convex, and therefore we need to choose two points, each
as the centre of duality to locate one intersection at one time. To locate
the face fmax of M (see Proposition 1), the centre of duality cmax should lie
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on os so that the ray cmaxo hits fmax and that fmax is a convex face with
respect to cmax. Hence, we require that cmax = vs for some v < 0, and o and
M be on the same side of cmax on os. Now, cmax can be computed easily
by approximating M with its bounding box MBB = PBB ⊕ −QBB, where
PBB and QBB are the bounding boxes of P and Q, respectively. The point
cmin = us for some u > 0 is then chosen similarly.

3.2. Searching the face with maximum signed distance

Step 2 of our algorithm involves searching the faces fmax and fmin at which
os intersects M . We will only describe the search for fmax, since fmin can be
found in the same way using cmin instead as the centre of duality.

A brute-force search for fmax is to first construct M , which is of O(n2)
complexity. Moreover, to locate fmax directly on M using its face adjacency
information is inefficient, as face traversal can only advance to an immediate
neighbour at one step. We therefore break down the search for fmax in three
successive phases, each within an independent face subset of M . This allows
a quicker leap over the faces on M and hence a more rapid search of fmax.
Also, the number of faces on M that needs to be constructed are greatly
reduced.

Figure 4: The planar representation of the Gaussian image G(M) by superimposing G(P )
and G(−Q). There are three types of vertices in G(M): (i) (white point) a point of G(P )
falling within a region of G(−Q), i.e., a face in Ffv; (ii) (black point) a point of G(−Q)
falling within a region of G(P ), i.e., a face in Fvf ; and (iii) (shaded square) the intersection
point of two arcs, each from G(P ) and G(−Q), i.e., a face in Fee.

Let us define the supporting vertex of of a polyhedron P for a face f be
sP (f) = arg maxv{n(f) · v | v ∈ VP}, where n(f) is the normal vector of
f and · denote the vector dot-product. The Gaussian image of M , G(M),
is obtained by superimposing the Gaussian images G(P ) and G(−Q) (Ap-
pendix A.2). For any face fp ∈ FP , the point G(fp) must fall within the
region G

(
s−Q(fp)

)
. Similarly, the point G(fq) must fall within the region
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G
(
sP (fq)

)
. Hence, each point in G(P ) and G(−Q) corresponds to a face of

FV- and VF-type, respectively, in M (Fig. 4). Furthermore, each arc-arc
intersection on S2 corresponds to a pair of edges (one from P and one from
−Q) sharing a common normal direction and amounts to a EE-type face in
M . The FV-, VF- and EE-type faces form three independent subsets Ffv,
Fvf and Fee, respectively, which are given as follows (Fig. 5):

Figure 5: The Minkowski difference M of P and Q, and its three sets of faces Ffv, Fvf ,
and Fee.

Ffv: Each face F (fp,vq) is a point set {x + vq | x ∈ fp}, where fp ∈ FP
and vq ∈ V−Q. Also, vq = s−Q(fp).

Fvf : Each face F (vp, fq) is a point set {vp + x | x ∈ fq}, where fq ∈ F−Q
and vp ∈ VP . Also, vp = sP (fq).

Fee: Each face F (ep, eq) is a parallelogram with vertices v0 = vp0 +
vq0 ,v1 = vp1 +vq0 ,v2 = vp1 +vq1 ,v3 = vp0 +vq1 where vp0 ,vp1 ∈ VP ,
vq0 ,vq1 ∈ V−Q, and ep = (vp0 ,vp1) ∈ EP , eq = (vq0 ,vq1) ∈ E−Q.
Moreover, the Gaussian images of ep and eq intersect on S2 (Fig. 4).

The following pseudocode searches for fmax with the maximum signed
distance dmax among all convex faces with respect to c on M = P ⊕−Q:

Procedure MaxSignedDistance(P , Q, c)
(ffv, dfv)← Search-FV
(fvf , dvf)← Search-VF
(fmax, dmax)← Search-EE(dfv, dvf)
return (fmax, dmax)
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3.2.1. Search-FV

This procedure is to search for a face with the maximum signed distance
among all convex faces with respect to c in Ffv. The search is conducted
according to face adjacency of P . It is important that we start from a
convex face on M , which ensures that all subsequent faces in the search are
convex faces, due to the convexity of the signed distance function. We choose
f0 = arg maxf{n(f) ·co | f ∈ FP}, where n(f) is the normal vector of a face
f , as the initial face such that the corresponding face F

(
f0, s−Q(f0)

)
∈ Ffv

is guaranteed to be a convex face with respect to c. Starting from f0, the
search in Search-FV considers the neighbouring faces of the current face in P
and advances to one whose corresponding face in M has the local maximum
signed distance. Neighbouring (or adjacent) faces are those faces incident
to the vertices of the current face in P . Two faces adjacent in P may not
constitute adjacent faces in M , and therefore a gain (by skipping some faces
in M) is obtained by advancing faces in the search based on their adjacency
in P .

The procedure is described in the following pseudocode. The function
SignedDistance-FV(f) constructs a face F

(
f, s−Q(f)

)
∈ Ffv and computes its

signed distance using Eq. (1). The supporting vertex of −Q for a face f is
determined using the hierarchical representation of a polyhedron by Dobkin
and Kirkpatrick [13].

Procedure Search-FV
dfv = SignedDistance-FV(f0)
For each iteration i,

For each of the n faces f ji , j = 0, . . . , n− 1, that are adjacent to fi in P ,

dji ← SignedDistance-FV(f ji ).

If dfv < dki , where d
k
i = max{dji},

dfv ← dki , fi+1 ← fki .
Else,

Return (fi, dfv).

Theorem 1 states the correctness of Search-FV whose proof can be found
in Appendix B.
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Theorem 1 (Correctness of Search-FV). The face ffv returned by Search-FV
attains the maximum signed distance dfv among all convex faces in Ffv with
respect to c, i.e., ffv = arg maxf{d(f) | f ∈ Ffv ∩ F̂c}.

3.2.2. Search-VF

This procedure searches for a face with maximum signed distance among
all convex faces with respect to c in Fvf . The face ffv = F

(
fp, s−Q(fp)

)
∈ Ffv

computed by Search-FV is supposed to be closest to fmax among all faces in
Ffv, and it should give a good starting point for subsequent search. Hence,
we choose the initial face for Search-VF as a face f0 that is incident at s−Q(fp)
in −Q. The search then proceeds like Search-FV by interchanging the role of
P and −Q. Similarly, we have the following theorem.

Theorem 2 (Correctness of Search-VF). The face fvf returned by Search-VF
attains the maximum signed distance dvf among all convex faces in Fvf with
respect to c, i.e., fvf = arg maxf{d(f) | f ∈ Fvf ∩ F̂c}.

3.2.3. Search-EE

The two procedures Search-FV and Search-VF determine the faces ffv and
fvf with the maximum signed distance dfv and dvf among all convex faces with
respect to c in the set Ffv and Fvf , respectively. The next step is to search
for the remaining convex faces in Fee, starting from ffv or fvf , whichever
attains the greater signed distance. Let ep and eq be edges in EP and E−Q,
respectively. A face F (ep, eq) ∈ Fee is formed only if the Gaussian images of
ep and eq intersect on S2 (Section A.2). The steps of Search-EE are given in
the following pseudocode:
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Procedure Search-EE
dee ← max{dfv, dvf}.
fm ← the face ffv or fvf attains dee.
If fm = ffv = F

(
fp, s−Q(fp)

)
, then

FS0 ← all possible faces F (ep, eq), where ep is an edge incident to a
vertex of fp, and eq is an edge incident with s−Q(fp),

Else if fm = fvf = F
(
sP (fq), fq

)
, then

FS0 ← all possible faces F (ep, eq), where ep is an edge incident with sP (fq),
and eq is an edge incident to a vertex of fq.

For each iteration i = 0, 1, 2, . . .

Let f̂i = F (êp, êq) be the face in FS i with the maximum signed distance.

If dee < d(f̂i), then

dee ← d(f̂i), fee ← f̂i
FS i+1 ← all possible faces F (ep, eq), where ep is an edge incident to an

end vertex of êp, eq is an edge incident to an end vertex of êq
Else

Return (fee, dee).

We show in the Appendix that the initial face set FS0 contains all neigh-
bouring EE-type faces of the initial face fm, by considering all possible EE-
type faces formed by an edge incident to the vertex that forms fm and an edge
incident with a face that forms fm (Lemma 3). Moreover, the subsequent
face sets FS i includes all the neighbouring EE-type faces of the current EE-
type face f̂i with the maximum signed distance, by considering all possible
EE-type faces formed by two edges, each incident to an end vertex of an edge
forming f̂i (Lemma 4). Hence, we have the following theorem:

Theorem 3 (Correctness of Search-EE). The face fmax returned by Search-
EE attains the maximum signed distance among all convex faces in F̂c with
respect to c, i.e., fmax = arg maxf{d(f) | f ∈ F̂c}.

3.3. Computation details

3.3.1. Contact configurations

The faces fmin and fmax indicate the contact configuration of P and Q
when they are in external contact along the DCR direction. The contact
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features are given by the features on P and Q that form the faces fmin and
fmax. For example, if fmax = F (vp, fq) ∈ Fvf , the contact features of P and
Qαs are the vertex vp ∈ P and the face fq ∈ Q.

3.3.2. Supporting faces with respect to the centre of duality

We may encounter supporting faces with respect to the centre of duality
in our algorithm, which are possible neighbours of a convex face. Supporting
faces correspond to points at infinity in the dual space (Section 2.2) and can
be identified if k − NTc = 0 when evaluating the signed distance given by
Eq. (1). Supporting faces are ignored in our algorithm without affecting its
correctness.

3.3.3. To decide whether two arcs on S2 intersect.

In Search-EE, to decide whether two edges ep ∈ EP and eq ∈ E−Q form
a face F (ep, eq) ∈ Fee, we check whether G(ep) and G(eq) intersect on the
Gaussian sphere S2. Let a,b be the end points of G(ep), c,d be the end
points of G(eq) and o be the centre of S2 (Fig. 6). The arcs G(ep) and G(eq)
intersect if and only if (1) c,d are on different sides of the plane oba; (2)
a,b are on different sides of the plane ocd; and (3) a,b, c,d are on the
same hemisphere. Consider the signed volume, |cba| = det[ c b a ], of a
parallelepiped spanned by three vectors a,b, c. The above three conditions
can be formulated as (1) |cba| × |dba| < 0; (2) |adc| × |bdc| < 0; and (3)
|acb| × |dcb| > 0. We need to compute |cba|, |dba|, |adc| and |bdc| only,
since |acb| = |cba| and |dcb| = |bdc|.

Figure 6: Determining if two arcs intersect on S2. Arcs intersect in (i). No intersection
where (ii) condition (1); (iii) condition (2) and (iv) condition (3) is violated.

3.3.4. Span of faces with same normal direction

To simplify the preceding discussions, we assumed that all faces on M
have distinct normal directions. However, this is not always true for convex
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polyhedra with arbitrary mesh structures. In this case, a face is augmented
to include also its neighbouring span of faces with the same normal direction.

3.3.5. To avoid repetitive visits to a face

A hash table is used to record the visited faces in each procedure to avoid
unnecessary repetitive computations for a face which is visited previously in
the searching process.

4. Performance

We do not compare against other existing related algorithms for comput-
ing the distance between polyhedral objects, as they are generally targetted
for purposes other than computing the directional distances; hence, a direct
comparison is deemed inappropriate. However, several sets of experiments
are designed to evaluate the performance of our method. A set of six convex
polyhedra (Fig. 7) are used (whose names and number of vertices are given in
the brackets): a truncated elliptic cone (P1 – 20), a truncated elliptic cylinder
(P2 – 50), two ellipsoids (P3 – 200, P4 – 500), the convex hull of a random
point set in a cube (P5 – 100), and the volume of revolution of a convex
profile curve (P6 – 200). The sizes of the polyhedra are all within a sphere of
radius 5. The cone and the cylinder are with the aspect a : b : h = 1 : 2 : 4,
where a, b are the sizes of the base ellipse and h is the height. The size of
the ellipsoids are in a : b : c = 2 : 2 : 5 and 2 : 4 : 5 respectively for P3 and
P4, where a, b and c are the length of the three major axes.

Figure 7: The six objects used in the experiments.

Five pairs of objects are chosen for DCR calculations: (P2, P2), (P1, P3),
(P6, P6), (P4, P5) and (P4, P6), where the total number of vertices of the two
objects are 100, 220, 400, 600, 700, respectively. We also generated another
10 pairs of objects which are ellipsoids of the same size aspect as P4, but
with different number of vertices. For each pair of objects P and Q, P
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is kept static and Q assumes 40 random orientations; for each orientation,
Q is also translated so that the shortest distance between the two objects
ranges from −1.5 to 1.5 in 11 samples, of which 5 samples correspond to
the cases where P and Q intersect, 1 sample corresponds to touching, and 5
samples correspond to separation. Also, for each fixed shortest distance with
a random orientation, we compute the DCR between P and Q with respect
to 40 random directions. It means that, for each pair of convex polyhedra, we
perform a total of 11× 40× 40 different DCR computations and the average
CPU time for each run is taken. Each reported non-empty DCR [α, α] along
a specified direction s is verified by translating Q along s by α and α, and
using the GJK algorithm to compute the shortest distance between P and
the translated Q, which should be zero as the objects are then in external
contact. We note that the average shortest distance is 1.9 × 10−6 with a
standard deviation of 10−5; the maximum of the absolute shortest distance
is found to be 10−4.

The experiments were carried out on a desktop computer with an Intel
Core 2 Duo E6600 2.40 GHz CPU (single-threaded) and a 2GB main memory.
The performance of our algorithm is shown in Fig. 8. It takes less than 0.25
milliseconds to compute the DCR of two convex polyhedra with a total of
1000 vertices. Although the cylinder pair (P2, P2) is of only 100 vertices in
total, the running time in this case is disproportionally longer than expected.
Not only that a face at the planar bases of cylinders needs to be augmented
to include the span of all other coplanar faces (Section 3.3.4), the increase
in running time is also due largely to the fact that a face at the base has a
large number of adjacent faces—which are the 50 faces on the curved surface
of a cylinder.

The result of ellipsoid pairs shows empirically an approximately linear
growth in the running time with respect to the total number of vertices.
Recall that not all faces on the Minkowski difference M are being constructed
and visited. From the above experiments, it is found that in a search of a
single intersection on M , on average 13.7% of the faces on M is visited. In
particular, only 2.5% of the EE-type faces is visited on average, which means
that most of the EE-type faces are skipped in our algorithm.

A worst case scenario is designed where the number of EE-type faces is
of O(n2), where n is the number of vertices on the polyhedra. Two cones
are constructed, each having 21 vertices (20 on the circular rim and 1 at
the apex), 38 faces (20 on the slanted surface) and 57 edges. Both cones
are very flat with aspect ratio a : b : h = 12 : 12 : 1 (Fig. 9(a)). The
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Figure 8: The average CPU time for computing the DCR of five pairs (Pi, Pj) of specific
convex polyhedra (P1 − P6), and 10 pairs of ellipsoids with varying number of vertices.

Gaussian image of each cone has one point (corresponding to the 18 faces
on the flat surface) that is antipodal to a set of 20 points (corresponding to
the 10 faces on the slanted surface), and 20 great arcs that looks like great
semicircles, which corresponds to the edges on the circular rim (Fig. 9(b)).
One of the cones is rotated about the y-axis by 90 degrees, so that each of its
20 great semicircles in the Gaussian image intersects with half of the great
semicircles in the Gaussian image of the other cone (Fig. 9(b)). Hence, there
are in total 38 FV-type, 38 VF-type and 200 EE-type faces on the Minkowski
difference of the cones. Our algorithm, on computing a single intersection
on the Minkowski difference, requires a visit to only 21 FV-type, 21 VF-type
and 20 EE-type faces, showing that most of the EE-type faces (90%) are
skipped which renders an efficient computation.

Figure 9: (a) Two thin cones whose DCR is computed. (b) Gaussian image of one of
the cones. (c) Gaussian image of the Minkowski difference of the cones; the white circles
correspond to the EE-type faces (only features on the front-facing surface of the Gaussian
sphere are shown.)

Next, we compute the DCR of two circular cylinders, both are of radius 1
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and length 4. The height of both cylinders lie along the z-axis, and the first
cylinder (in white) stays static at the origin, while the other cylinder (in grey),
with centre at z = 4, assumes different rotations about its principal x-axis.
The angle of rotation is from 0 to 360 degrees, with 10 degrees increments.
The two cylinders have external contact at the planar faces when θ = 0, 180
and 360 degrees. The DCR of the two cylinders with respect to the +z-
direction computed by our algorithm is shown in Fig. 10.

Figure 10: The DCR between two cylinders with respect to the z-direction. The white
cylinder is static and the grey cylinder rotates about its principle x-axis. The first 10
instants (with the angle of rotation for the grey cylinder θ = 0 to 90) of the two cylinders
are shown.

5. Conclusion

We have presented a novel method for computing the directional contact
range (DCR) between two convex polyhedra with respect to a given direc-
tion. The DCR of two convex polyhedra can be computed by finding the
intersections of a line with the Minkowski difference M of the polyhedra. We
consider the problem in the dual space where a face on M corresponds to a
vertex on the dual polyhedron M∗, and formulate the DCR computation in
forms of searching a vertex which attains the maximum signed distance from
a plane. The search problem in the dual space is easily shown to be convex,
and a search scheme is devised accordingly to locate the face that contains
the required intersection on M efficiently. The search scheme is divided into
three stages, each working only on a subset of the faces on M . This division

18



allows the elimination of most EE-type faces whose worst case complexity is
O(n2). Our experimental results show that our algorithm exhibits efficient
performance. Although our tests do not experience major robustness prob-
lems, we note here that the signed distance function d(f) is non-linear with
respect to the distance between the duality centre c and the intersection of f
and co. Possible numerical issues thus induced will be further explored. We
shall also investigate the possibility of extending our method to work on a
convex decomposition of non-convex M , which can then be used to compute
the DCR of two non-convex objects.
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A. Major concepts

A.1. Duality transformation

There are different formulations for duality transformation. A more gen-
eral form is to consider the self-dual duality with respect to a given non-
singular quadric surface B : XTBX = 0 where X = (x, y, z, 1)T is the ho-
mogeneous coordinates of a point, and B is a 4 × 4 real symmetric matrix.
The dual of a point Y0 is a plane Y : Y T

0 BX = 0 (the polar of Y0) and the
dual of a plane V : V T

0 X = 0 is a point U0 = B−1V0 (the pole of V [14]).
It is easy to verify that if Y is the dual of Y0, then Y0 is the dual of Y .
Also, if Y0 is a point on B, its dual is the tangent plane to B at Y0. In this
work, we consider duality transformation with respect to the unit sphere in
E3. The dual relationship between a point and a plane in E3 in terms of
affine coordinates x = (x, y, z)T is as follows. Suppose a plane Π, not passing
through the origin, is given by ATx = k in the primal space E, where A ∈ R3

and k is a nonzero real number. A duality transformation maps Π to a point
w = A/k in the dual space E3∗. A point u 6= 0 in E3 is transformed to a plane
U : uTx = 1 in E3∗. If we extend E3 to include the plane at infinity (i.e.,
the extended Euclidean space), a plane passing through the origin in E3 is
mapped to a point at infinity in E3∗; whereas the origin in E3 is transformed
to the plane at infinity in E3∗. Note that E3 is the dual space of E3∗. We
use ψ∗ to denote the dual counterpart of an entity ψ in E3. We may also
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consider a duality transformation centred at an arbitrary point c ∈ E3. This
can be done by first translating the origin in E3 to c before applying duality,
and we call c the centre of duality.

A.2. Gaussian image of a polyhedron

Figure 11: A polyhedron P and its Gaussian image G(P ) on S2.

The Gaussian image G(P ) of a convex polyhedron P is a planar graph
embedded on the unit sphere S2 (Fig. 11). The Gaussian image of any feature
(i.e., vertex, edge or face) φ of a polyhedron P is the set of normal directions
of planes that may come into contact with P at φ. In other words, φ is the
supporting feature of P in the directions represented by its Gaussian image.
Hence, a face f ∈ FP corresponds to a point G(f) = n̂(f) ∈ S2 where n̂(f) is
the unit normal vector of f ; an edge e ∈ EP common to two faces f0, f1 ∈ P
corresponds to a great arc G(e) connecting two vertices G(f0) and G(f1);
a vertex v ∈ VP common to the faces f0, . . . , fm corresponds to a convex
spherical polygon G(v) whose vertices are G(f0), . . . , G(fm).

B. Proofs of correctness of the algorithm

Theorem 1 (Correctness of Search-FV). The face ffv returned by Search-FV
attains the maximum signed distance dfv among all convex faces in Ffv with
respect to c, i.e., ffv = arg maxf{d(f) | f ∈ Ffv ∩ F̂c} and dfv = d(ffv).

Proof. Since the initial face f0 is in F̂c and that the signed distance function is
increasing over F̂c, the face f returned by Search-FV must be in F̂c. Next, we
show that f in also in Ffv. Consider the set of faces Ffv and its corresponding
dual F∗

fv. If for every two faces f0, f1 ∈ FP that share an edge, we connect
F ∗(f0, s−Q(f0)) and F ∗(f1, s−Q(f1)) by an edge, then by the construction
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of M and the properties of duality, we know that the point set F∗
fv and the

augmented edges form a polyhedron W ∗. Since F∗
fv ⊂ VM∗ and M∗ is convex,

W ∗ must be convex too. Now, Search-FV searches locally for a vertex in W ∗

that attains the largest signed distance to the plane o∗. The search path also
follows the adjacency of the faces in P and therefore is along the edges of
W ∗. As W ∗ is convex, the search will eventually stop at a dual vertex f ∗ of a
face f ∈ Ffv attaining the maximum signed distance among all dual vertices
in F∗

fv (corresponding to the face set Ffv).

Theorem 2 (Correctness of Search-VF). The face fvf returned by Search-VF
attains the maximum signed distance dvf among all convex faces in Fvf with
respect to c, i.e., fvf = arg maxf{d(f) | f ∈ Fvf ∩ F̂c} and dvf = d(fvf).

Proof. Similar to the proof of Theorem 1, by considering the symmetry of P
and −Q in the two procedures Search-FV and Search-VF.

Lemma 3. The initial face set FS0 in Search-EE includes all EE-type faces
adjacent to fm, which is the face attaining the maximum signed distance
in (Ffv ∪ Fvf) ∩ F̂c. Moreover, if fmax (i.e., the face with the maximum
signed distance in F̂c) is in Fee, then the initial face set FS0 in Search-
EE must contain at least one convex face (with respect to c) fe ∈ Fee such
that d(fe) > max{dfv, dvf}.

Proof. Without loss of generality, we assume that fm = F
(
fp, s−Q(fp)

)
is

the starting face in Search-EE with d(fm) = max{dfv, dvf}, where fp ∈ FP ,
s−Q(fp) ∈ V−Q. The neighbouring faces of fm on M are those faces that are
incident to the vertices of fm. Consider the Gaussian images G(M), G(P )
and G(−Q). Let Ri

M be the neighbouring regions of G(fm) in G(M), Rj
P be

the neighbouring regions of G(fp) in G(P ) and RQ be the region G
(
s−Q(fp)

)
in G(−Q). Hence, the neighbouring faces of fm correspond to those points
defining the regions Ri

M (Fig. 12).
Note that G(fm) and G(fp) are the same point on the Gaussian sphere

S2. Since G(fp) lies inside the region RQ, Ri
M must be the intersection of Rj

P

and RQ. Therefore, the points of Ri
M must be either (A) the points of Rj

P or
RQ, or (B) the intersections of an arc of Rj

P with an arc of RQ (Fig. 12(a)).
The latter set of points (B) correspond to the face set FS0 in Search-EE. If
FS0 is empty, the neighbouring faces of fm can only be faces corresponding
to points in set (A), i.e., the faces in Ffv ∪ Fvf . Then fm has the maximum
signed distance among all its neighbours, since d(fm) = max{dfv, dvf}. On
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(a) (b)

Figure 12: The Gaussian map of M with G(P ) and G(−Q) shown in solid and dotted
lines, respectively, (a) for showing the neighbouring faces of fm = F

(
fp, s−Q(fp)

)
. Thick

solid lines marked Rj
P , the neighbouring regions of G(fp) in G(P ), thick dotted lines

marked RQ = G
(
s−Q(fp)

)
in G(−Q), and the grey regions are Ri

M , the neighbouring
regions of G(fm) in G(M). The black (FV- or VF-types) and white (EE-type) points are

the neighbouring faces of fm; (b) for showing the neighbouring faces of f̂i = F (êp, êq).

Thick solid line marked Rj
P , the neighbouring regions of G(êp) in G(P ), thick dotted

lines marked Rk
Q, the neighbouring regions of G(êq) in G(−Q), and the grey regions are

Ri
M , the neighbouring regions of G(f̂i) in G(M). The black (FV- or VF-types) and white

(EE-type) points are the neighbouring faces of f̂i.

the other hand, if FS0 is non-empty, and all faces fe ∈ FS0 are such that
d(fe) < d(fm). Again, fm has the maximum signed distance among all
its neighbours. In both cases, it implies that fm = fmax. However, this
contradicts that fmax is in Fee. Hence, there must be at least a face fe ∈ FS0

such that d(fe) > max{dfv, dvf}. Moreover, since fm is convex with respect
to c and d(fe) > d(fm), due to the convexity of d(·), fe must also be a convex
face.

Lemma 4. The face set FS i+1 in Search-EE contains all EE-type faces that
are adjacent to the face f̂i = F (êp, êq), where êp ∈ EP and êq ∈ E−Q.

Proof. The neighbouring faces of f̂i on M are those faces incident to the
vertices of f̂i. Consider the Gaussian images G(M), G(P ) and G(−Q). The
point G(f̂i) is the intersection of the two arcs G(êp) and G(êq) (Fig. 12(b)).

Let Ri
M be the neighbouring regions of G(f̂i), R

j
P be the two neighbouring

regions of G(êp) and Rk
Q be the two neighbouring regions of G(êq). The

regions Ri
M must be the intersection of Rj

P and Rk
Q; hence, the points defining

Ri
M must be the intersections of the arcs of Rj

P and Rk
Q, and also some points

from Rj
P , Rk

Q. Hence the faces in FS i+1 in Search-EE corresponds to the
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intersections of the arcs of Rj
P and Rk

Q, which are all the EE-type neighbours

of f̂i.

Theorem 5 (Correctness of Search-EE). The face fee returned by Search-
EE attains the maximum signed distance among all convex faces in F̂c, i.e.,
fee = fmax = arg maxf{d(f) | f ∈ F̂c}.

Proof. The face fmax = arg maxf{d(f) | f ∈ F̂c} with the maximum signed
distance dmax must be in either Ffv ∪ Fvf or Fee. Suppose fmax is in Ffv ∪
Fvf , then fmax equals either ffv or fvf returned by Search-FV or Search-VF,
respectively. Also, no face in Fee has a larger signed distance than dmax. In
this case, the flow of Search-EE guarantees that fmax is returned.

Now, suppose that fmax is in Fee. Lemma 3 proves that the initial face
set FS0 is not empty and that max{d(f) | f ∈ FS0} > max{dfv, dvf}.
Hence, the iteration in Search-EE will proceed. For each iteration i > 0,
dee is the signed distance of the current face, and FS i is the set of all EE-
type faces neighbouring to the current face (by Lemma 4). The iteration
stops when the signed distance of the current face is the maximum among
all its neighbouring EE-type faces. Since dee is increasing for each iteration,
dee > max{dfv, dvf} also means that the signed distance of the current face
is the maximum among all its neighbouring FV- and VF-type faces. Hence,
Search-EE stops at a face fee in Fee with a maximum signed distance among
all its neighbouring faces in M . Since the initial face fm is convex with
respect to c, and dee is increasing for each iteration, due to the convexity
of d(·), fee attains the maximum signed distance among all convex faces in
F̂c.
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