
Title Dynamic bin packing of unit fractions items

Author(s) Chan, WT; Lam, TW; Wong, PWH

Citation

The 32nd International Colloqium on
Automata, Languages and Programming (ICALP 2005), Lisbon,
Portugal, 11-15 July 2005. In Lecture Notes In Computer Science,
2005, v. 3580, p. 614-626

Issued Date 2005

URL http://hdl.handle.net/10722/60598

Rights Theoretical Computer Science. Copyright © Elsevier BV.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37895937?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Dynamic Bin Packing of Unit Fractions Items

Wun-Tat Chan1,�, Tak-Wah Lam1, and Prudence W.H. Wong2,��

1 Department of Computer Science,
University of Hong Kong, Hong Kong

{wtchan, twlam}@cs.hku.hk
2 Department of Computer Science,

University of Liverpool, UK
pwong@csc.liv.ac.uk

Abstract. This paper studies the dynamic bin packing problem, in
which items arrive and depart at arbitrary time. We want to pack a se-
quence of unit fractions items (i.e., items with sizes 1/w for some integer
w ≥ 1) into unit-size bins such that the maximum number of bins used
over all time is minimized. Tight and almost-tight performance bounds
are found for the family of any-fit algorithms, including first-fit, best-fit,
and worst-fit. We show that the competitive ratio of best-fit and worst-
fit is 3, which is tight, and the competitive ratio of first-fit lies between
2.45 and 2.4985. We also show that no on-line algorithm is better than
2.428-competitive. This result improves the lower bound of dynamic bin
packing problem even for general items.

1 Introduction

Bin packing problem has been studied since the early 70’s and different variants
of the problem continue to attract researchers attentions (see the survey [6, 9,
10]). In the classical bin packing problem, we want to pack a sequence of items
each with size in the range (0, 1] into unit-size bins using the minimum number
of bins. One of the generalizations of the problem is known as the dynamic bin
packing problem [8], in which items arrive and depart at arbitrary time. The
objective is to minimize the maximum number of bins used over all time. In this
paper, we study dynamic bin packing of unit fractions items. A unit fraction item
has size of the form 1/w for some integer w ≥ 1. We analyze the performance
of the family of any-fit algorithms, which includes first-fit, best-fit and worst-fit,
and provide tight and almost-tight performance bounds. Our lower bound on
dynamic bin packing of unit fractions items even improves the lower bound of
Coffman et al. [8] on dynamic bin packing of general items.

There is a long history of results for the classical bin packing problem and its
variants [6, 9, 10]. Most of the previous works considered the “static” bin packing

� This research was supported in part by Hong Kong RGC Grant HKU-5172/03E.
�� This research was supported in part by Nuffield Foundation Grant NAL/01004/G.

L. Caires et al. (Eds.): ICALP 2005, LNCS 3580, pp. 614–626, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Dynamic Bin Packing of Unit Fractions Items 615

where items will not depart. In this model, the off-line bin packing problem is
NP-hard [11]. In the on-line setting, each item must be assigned to a bin, without
knowledge of the subsequent items. Moreover, no migration of items are allowed,
i.e., items are not allowed to move from one bin to another. The performance is
measured in terms of competitive ratio (see [3] for a survey). The current best
upper bound is due to Seiden [14], who proved that the algorithm Harmonic++
has a competitive ratio at most 1.588891. The current best lower bound is due to
van Vliet [15] who showed that no on-line algorithm can achieve a competitive
ratio less than 1.54014.

In many real applications, item sizes are often not arbitrary real numbers in
(0, 1]. Bar-Noy et al. [2] initiated the study of the unit fractions bin packing prob-
lem (UFBP), a restricted version of the classical bin packing problem in which all
sizes are of the form 1/w for some integer w ≥ 2. In the on-line setting, they gave
an on-line algorithm with a competitive ratio 1+O(1/

√
H), where H denotes the

sum of sizes of all items. Note that this algorithm is asymptotically optimal. Bin
packing with other restricted form of item sizes includes divisible item sizes [7]
(where each possible item size can be divided by the next smaller item size) and
discrete item sizes [5] (where possible item sizes are {1/k, 2/k, · · · , j/k} for some
1 ≤ j ≤ k).

Dynamic bin packing is a generalization of the classical bin packing problem
introduced by Coffman et al. [8]. The problem assumes that items may depart
at arbitrary time, and the objective is to minimize the maximum number of bins
used over all time. It was shown in their paper that the on-line algorithm first-fit
has a competitive ratio lies between 2.75 and 2.897, and no on-line algorithm can
achieve a competitive ratio better than 2.5. Note that these results assume a very
general optimal off-line algorithm, which can re-pack the items. Coffman et al.
also gave an improved lower bound of 2.388 when the off-line algorithm is not
allowed to re-pack the items. Ivkovic and Lloyd [12] studied an even more general
problem called the fully dynamic bin packing problem, where migration of items
are allowed, and gave a 1.25-competitive on-line algorithm for this problem.

This paper studies the problem of dynamic bin packing of unit fractions
items, the main contribution are several very close upper and lower bounds (see
Table 1). We show that any-fit algorithms, which include first-fit, best-fit and
worst-fit are 3-competitive. We further show that the performance of best-fit and
worst-fit are indeed tight, i.e., they cannot be better than 3-competitive. On the
other hand, we show that first-fit has a better performance, its competitive ratio
lies between 2.45 and 2.4985. In addition, we prove that no on-line algorithm
can be better than 2.428-competitive. This result improves the lower bound of
2.388 of Coffman et al. [8] on dynamic bin packing for general items.

There is a problem related to UFBP, called the windows scheduling prob-
lem (WS) [1, 2, 4], as pointed out by Bar-Noy et al. [2]. Similar to UFBP, the
input of WS is a sequence of items, each with a window represented by an inte-

1 Seiden [14] pointed out that the previous best algorithm Harmonic+1 by Richey [13]
has competitive ratio at least 1.59217 rather than the claimed 1.58872.



616 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

Table 1. Summary of results

Algorithms Upper bounds Lower bounds

First-fit 2.4985 2.45

Best-fit 3 3

Worst-fit 3 3

Any-fit 3 2.428

Any on-line algorithms – 2.428

ger. Each item represents a piece of information to be broadcast to all clients. It
is assumed that all items are of the same length, which takes the same amount
of time to broadcast. The objective of WS is to use the minimum number of
broadcast channels to broadcast each item periodically such that the duration
between two consecutive broadcasts of the same item must not exceed the win-
dow of that item. By letting the bins as broadcast channels and the reciprocal
of item sizes as windows, UFBP can be considered as a special case of WS, and
hence the lower bound result on UFBP applies to WS. (Note that the upper
bound on UFBP does not carry over to WS.) Chan and Wong [4] considered
the dynamic version of WS, in which items may also depart. They gave a 5-
competitive algorithm and showed that no on-line algorithm can be better than
2-competitive. The lower bound of dynamic bin packing of unit fractions item
in this paper improves the lower bound for the dynamic version of WS to 2.428.

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 analyzes the performance of the family of any-fit algorithms. This
includes upper and lower bounds for first-fit (Sections 3.1 and 3.2, respectively),
and upper and lower bounds for best-fit and worst-fit (Section 3.3). Finally,
Section 4 gives a lower bound for any on-line algorithm.

2 Preliminaries

In this section, we give a precise definition of the dynamic unit fractions bin
packing problem and the necessary notations for further discussion. We are to
pack a sequence of items into bins of unit-capacity. Items arrive and depart at
arbitrary time. We denote the i-th item by mi and its arrival time by ai. Each
item mi comes with a size si which is a reciprocal of an integer, i.e., si = 1/wi

for some integer wi ≥ 1. When item mi arrives at ai, it must be assigned to a
bin immediately. At any time, the load of a bin is the total size of items that
are currently assigned to that bin and have not yet departed, and this load must
be at most 1 because of unit-capacity. Migration is not allowed in the sense
that once an item is assigned to a bin, it cannot be moved to another bin. The
objective is to minimize the maximum number of bins used over all time.

As with previous work, we measure the performance of an on-line algorithm
in terms of a competitive ratio. Given a sequence σ of items and an on-line bin
packing algorithm A, let A(σ, t) denote the number of bins used by A at time t.



Dynamic Bin Packing of Unit Fractions Items 617

We say that A is c-competitive if there exists a constant k such that for any
input sequence σ, we have maxt A(σ, t) ≤ c · maxt O(σ, t) + k, where O is the
optimal off-line algorithm.

In this paper, we consider several on-line algorithms: any-fit, first-fit, best-
fit, and worst-fit. When an item arrives, all these algorithms pack the item into
an occupied bin as long as there exists such a bin that can accommodate the
item; a new bin is only used when no occupied bins can accommodate the item.
The algorithms differ in the rule used to choose the occupied bin for the newly
arrived item. To describe the rules of these algorithms, we first define a way to
label the occupied bins at a specific time.

At any time t, suppose that there are n occupied bins. For any bin X
among these n bins, let f(x) ≤ t be the latest time X turns from empty
to non-empty. At time t, we label these n non-empty bins using integers
1, 2, . . . , n such that the label of bin X is less than that of bin Y if
f(X) ≤ f(Y ). Notice that the labels of bins change over time.

When a new item mi arrives, if there is any occupied bin with load no more
than 1−1/wi, the algorithms assign mi to one of these bins as follows:

Any-fit (AF) assigns mi to any of these bins arbitrarily.
First-fit (FF) assigns mi to the one with the smallest label at ai.
Best-fit (BF) assigns mi to the heaviest load one; ties are broken arbitrarily.
Worst-fit (WF) assigns mi to the lightest load one; ties are broken arbitrarily.

3 Performance of the Family of Any-Fit Algorithms

In this section we analyze the performance of any-fit algorithms. In Sections 3.1
and 3.2, we give an upper bound of 2.4985 and a lower bound of 2.45 for the
competitive ratio of FF. Then in Section 3.3, we show that both BF and WF
cannot be better than 3-competitive and then give the matching upper bounds.

3.1 Upper Bound for First-Fit

Before we analyze the upper bound of FF, let us have some definitions. Consider
any positive integers x and y. Suppose that we pack a bin using items of sizes
1, 1/2, . . . , 1/x only. We want to define the notion of the minimum load that such
a bin must have in order that an additional item of size 1/y cannot be packed
into the bin. We define a function α(x, y) to capture this notion. Formally,

α(x, y) = min
1≤j≤x & nj≥0

{n1 + n2/2 + . . . nx/x | n1 + n2/2 + . . . nx/x > 1 − 1/y}.

For example, when x = 4 and y = 3, we have α(4, 3) = 3/4 and correspondingly
n1 = 0, n2 = 1, n3 = 0 and n4 = 1.

With respect to a particular input σ,we define a sequence of integer pairs (bi, ri)
as follows. Let b1 denote the maximum number of bins used by FF over all time.



618 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

Suppose the smallest item that FF ever packs into a bin with label b1 is of
size 1/r1. We define bi and ri for i ≥ 2 as follows. Let bi < bi−1 be the largest
integer such that FF ever packs an item of size smaller than 1/ri−1 into a bin
with label bi. The size of the smallest item that FF ever packs into a bin with
label bi is denoted 1/ri. Let k be the largest value of i that bi and ri can be
defined. Notice that b1 > b2 > . . . > bk and r1 < r2 < . . . < rk.

Now we are ready for the analysis. Consider the time instance tk when FF
packs an item X of size 1/rk into a bin B with label bk. Since k is the largest
index of bi that can be defined, no item with size smaller than 1/rk has ever been
packed into any bin, in particular the bins with label from 1 to bk − 1. Together
with the fact that FF packs X into B but not bins with labels 1 to bk − 1, we
can conclude that at time tk, each of the bins with labels from 1 to bk − 1 must
have a load at least α(rk, rk). Including item X, the total load of all bins at tk
is at least 1/rk + (bk − 1) · α(rk, rk). Let

�k = 1/rk + (bk − 1) · α(rk, rk).

Next, for any integer 1 ≤ i ≤ k−1, consider the time instance ti when FF packs
an item Xi of size 1/ri into a bin with label bi. By the definition of bi and ri,
we can use a similar argument as before to show that: (1) each of the bins with
labels from 1 to bk must have load at least α(rk, ri); (2) for any integer p with
k > p ≥ i+ 1, each of the bins with labels from bp+1 + 1 to bp must have load at
least α(rp, ri); and (3) each of the bins with labels from bi+1 + 1 to bi − 1 must
have load at least α(ri, ri). Including item Xi, the total load of all bins at time ti
is at least 1/ri+(bi−bi+1−1)·α(ri, ri)+

∑k−1
p=i+1(bp−bp+1)·α(rp, ri)+bk ·α(rk, ri).

For 1 ≤ i ≤ k − 1, let

�i = 1/ri +(bi − bi+1 − 1) ·α(ri, ri)+
∑k−1

p=i+1(bp − bp+1) ·α(rp, ri)+ bk ·α(rk, ri).

Let � = max1≤i≤k �i. The number of bins used by the optimal off-line algorithm
is at least �. On the other hand, the maximum number of bins used by FF is b1.
Below we show that b1 < 2.4985� + 1.337, which implies the following theorem.

Theorem 1. First-fit is 2.4985-competitive.

To prove Theorem 1, we assume k ≥ 5. The case for k < 5 can be proved
similarly and will be given in the full paper. Depending on the values of ri’s,
we consider the following six sub-cases: Case 1: r1 ≥ 2; Case i, for 2 ≤ i ≤ 5:
r1 = 1, r2 = 2, · · ·, ri−1 = i− 1, and ri ≥ i + 1; and Case 6: r1 = 1, r2 = 2, · · ·,
r5 = 5. We analyze the relationship between b1 and � case by case in each of the
following lemmas.

Lemma 1. If r1 ≥ 2, then b1 < 2� + 1.

Proof. Since α(x, y) > 1−1/y for any integers x and y, we have �1 > 1/r1 +
(b1−b2−1)(1−1/r1)+

∑k−1
p=2(bj−bj+1)(1−1/r1)+bk(1−1/r1) = 1/r1+(b1−1)(1−

1/r1). By simple arithmetic, we have b1 < �1r1/(r1−1)+(r1−2)/(r1−1) < 2�+1;
the latter inequality holds because r1 ≥ 2 and �1 ≤ �.



Dynamic Bin Packing of Unit Fractions Items 619

Lemma 2. If r1 = 1 and r2 ≥ 3, then b1 < 2.4445� + 1.

Proof. Notice that for any integer x, α(x, 1) is the minimum value in the form
of n1 + n2/2 + n3/3 + . . . + nx/x that is greater than 0; therefore, α(x, 1) must
be equal to 1/x. Then, we have �1 = 1/1 + (b1 − b2 − 1) · α(1, 1) +

∑k−1
p=2(bp −

bp+1) · α(rp, 1) + bk · α(rk, 1) > (b1 − b2) + (b2 − b3)/r2.
Next, by the definition that α(x, y) ≥ 1 − 1/y for any integers x and y, we

have �2 = 1/r2+(b2−b3−1)·α(r2, r2)+
∑k−1

p=3(bp−bp+1)·α(rp, r2)+bk ·α(rk, r2) >
(b2 − 1)(1 − 1/r2). Similarly, we have �3 > (b3 − 1)(1 − 1/r3). By solving the
three inequalities, we have b1 < 22�/9 + 1 < 2.4445� + 1.

Lemma 3. If r1 = 1, r2 = 2, and r3 ≥ 4, then b1 < 2.4792� + 1.25.

Proof. Recall that α(x, 1) > 1/x for any integer x. We have �1 > (b1 − b2) +
(b2 − b3)/2+ (b3 − b4)/r3. By the fact that α(2, 2) = 1 and α(x, 2) > 1/2 for any
integer x, we have �2 = 1/2+ (b2 − b3 − 1) ·α(2, 2)+

∑k−1
p=3(bp − bp+1) ·α(rp, 2)+

bk ·α(rk, 2) > (b2 − b3 −1)+ b3/2. We can also prove that �3 > (b3 −1)(1−1/r3)
and �4 > (b4 − 1)(1 − 1/r4). By solving the four inequalities, we have b1 <
119�/48 + 5/4 < 2.4792� + 1.25, and the lemma follows.

Lemma 4. If r1 = 1, r2 = 2, r3 = 3, and r4 ≥ 5, then b1 < 2.4942� + 1.3167.

Proof. Using the same approach, we have
�1 > (b1 − b2) + (b2 − b3)/2 + (b3 − b4)/3 + (b4 − b5)/r4,
�2 > (b2 − b3 − 1) + (b3 − b4)(2/3) + b4/2, {∵ α(3, 2) = 2/3}
�3 > ((b3 − b4 − 1)(5/6) + 2b4/3, {∵ α(3, 3) = 5/6}
�4 > (b4 − 1)(1 − 1/r4), and
�5 > (b5 − 1)(1 − 1/r5).

By solving the five inequalities, we have b1 < 2993�/1200 + 79/60 < 2.4942� +
1.3167, and the lemma follows.

Lemma 5. If ri = i for all 1 ≤ i ≤ 4, and r5 ≥ 6, then b1 < 2.49345� + 1.3325.

Proof. Using the same approach, we have
�1 > (b1 − b2) + (b2 − b3)/2 + (b3 − b4)/3 + (b4 − b5)/4 + (b5 −b6)/r5,
�2 > (b2 − b3 − 1) + (b3 − b4)(2/3) + (b4 − b5)(7/12) + b5/2, {∵ α(4, 2) = 7/12}
�3 > (b3 − b4 − 1)(5/6) + (b4 − b5)(3/4) + 2b5/3, {∵ α(4, 3) = 3/4}
�4 > ((b4 − b5 − 1)(5/6) + b5(3/4), {∵ α(4, 4) = 5/6}
�5 > (b5 − 1)(1 − 1/r5), and
�6 > (b6 − 1)(1 − 1/r6).

Solving these inequalities, we have b1 < 2.4935�+1.3325, and the lemma follows.

Lemma 6. If ri = i for all 1 ≤ i ≤ 5, then b1 < 2.4985� + 1.337.

The proof of Lemma 6 uses a similar approach as in Lemmas 1 to 5, and the
details will be given in the full paper. By Lemmas 1 to 6, Theorem 1 follows.

In fact, we conjecture that the worst case happens when ri = i for all 1 ≤
i ≤ k. In that case, the computed competitive ratio is approaching 2.48.



620 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

3.2 Lower Bound for First-Fit

In this section we give a lower bound for FF by constructing an adversary se-
quence of items such that the maximum number of bins used by FF is at least
2.45 times that used by the optimal off-line algorithm. For any positive integers x
and y, define β(x, y) to be the minimum number of items of size 1/x in a bin
such that an additional item of size 1/y cannot be packed into the bin. Formally,

β(x, y) = min
z∈Z+

{z | z/x > 1 − 1/y},

i.e., β(x, y) = 1 + x − �x/y�. For example, if x = 4 and y = 3, then β(x, y) = 3.
Let n be an integer and let D = n!. The adversary sequence consists of n

stages. In each stage, some items released in the previous stage depart and a
number of new items of the same size are released. The choices of which items
to depart depend on how FF packs the items in previous stages. In Stage 1, Dn
items of size 1/n are released. FF packs all Dn items into D bins, and each bin
is fully packed.

For subsequent stages, i.e., Stage i, for 2 ≤ i ≤ n, the adversary targets to
maintain an invariant on how FF packs the items: At the beginning of Stage i,

– each occupied bin contains only items of the same size; and
– a bin that contains items of size 1/x contains β(x, n − i + 2) items.

The invariant holds at the beginning of Stage 2 because each occupied bin con-
tains β(n, n) = n items of size 1/n. Stage i consists of two steps.

1. For each occupied bin, if it contains items of size 1/x, we arbitrarily choose
β(x, n − i + 2) − β(x, n − i + 1) items and let them depart, in other words,
there are β(x, n−i+1) items remained. Let Di be the sum of item size for all
the departed items. We will prove later that Di is an integer (see Lemma 7).

2. Next, Di(n−i+1) items of size 1/(n−i+1) are released. Since each bin with
item of size 1/x contains β(x, n − i + 1) items, none of the newly released
items can be packed into any occupied bin. Therefore, FF will use Di empty
bins to pack all these items, each bin contains n−i+1 = β(n−i+1, n−i+1)
items. Thus, the invariant also holds at the beginning of Stage i + 1.

Define D1 = D, which is the number of empty bins used in Stage 1. From the
above discussion, we can see that the number of empty bins required for items
of size 1/(n− i+1) in Stage i is Di. Then, at the beginning of Stage i, there will
be Dj bins each with items of size 1/(n− j + 1) for all 1 ≤ j ≤ i− 1. Therefore,
the sum of the size of all departed items in Stage i satisfies:

Di =
i−1∑
j=1

{
Dj(β(n − j + 1, n − i + 2) − β(n − j + 1, n − i + 1))

n − j + 1

}
.

Lemma 7. Di is an integer multiple of (n − i + 1) for 1 ≤ i ≤ n.



Dynamic Bin Packing of Unit Fractions Items 621

Proof. We prove by induction a stronger claim that Di is an integer multiple
of (n − i + 1)! for 1 ≤ i ≤ n. It is clear that D1 = D is an integer multiple of
n!. Suppose Di is an integer multiple of (n − i + 1)! for 1 ≤ i ≤ k. We have
Dk+1 =

∑k
j=1(Dj/(n − j + 1))(β(n − j + 1, n − k + 1) − β(n − j + 1, n − k)).

Since the function β gives an integer output and Dj/(n − j + 1) is an integer
multiple of (n − j)!, the summation gives an integer multiple of (n − k)!, which
completes the induction.

The following lemmas give the performance of FF on the adversary sequence.

Lemma 8. There exists some integer n such that the maximum number of bins
used by FF is at least 2.45D.

Proof. After Stage n, FF uses
∑n

i=1 Di bins. We carry out the analysis on the
value of

∑n
i=1 Di by actually computing the value of

∑n
i=1 Di with different

values of n. We find that the increase in n generally leads to an increase in∑n
i=1 Di, though not monotonically. By letting n = 21421, and computing the

values of Di, we have
∑n

i=1 Di > 2.45D.

Lemma 9. The optimal off-line algorithm uses at most D bins at any time.

Proof. We give an algorithm O to pack the items in the adversary such that O
uses at most D bins over all time. In this proof permanent items refer to the
items remain after Stage n and temporary items refer to the items depart in
Stage n or before.

The algorithm O runs as follows. In each stage, when there are new items
released, O packs the new items using the minimum number of empty bins such
that a bin contains only permanent items, or temporary items that will depart
in the same stage. We claim that O uses exactly D bins after each stage. In the
initial stage, O packs the D = n! permanent items into (n − 1)! bins and the
(n − 1)n! temporary items to another (n − 1)(n − 1)! bins. Totally, there are
n! = D occupied bins.

We prove that in each subsequent Stage i, for 2 ≤ i ≤ n, the departed items
produce Di empty bin and O uses the Di empty bins to pack the Di(n − i + 1)
items of size 1/(n− i+1) released. First, the number of empty bins produced in
Stage i equals

∑i−1
j=1�Dj(β(n−j+1, n−i+2)−β(n−j+1, n−i+1))/(n−j+1)�,

which is equal to Di because by Lemma 7, the term Dj/(n− j +1) is an integer.
Second, among the Di(n − i + 1) items of size 1/(n − i + 1) released in Stage i,
the total size of those items that will depart in Stage p, for i + 1 ≤ p ≤ n, is
Di(β(n − j + 1, n − p + 2) − β(n − j + 1, n − p + 1))/(n − i + 1), which is an
integer because by Lemma 7, Di/(n− i+1) is an integer. Thus, we show that O
can use Di empty bins to pack all Di(n − i + 1) items of size 1/(n − i + 1). In
other words, O, and thus the optimal off-line algorithm, uses at most D bins at
any time, and the lemma follows.

By Lemmas 8 and 9, the following theorem holds.

Theorem 2. FF is at least 2.45-competitive.



622 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

3.3 Performance of Other Any-Fit Algorithms

We show that BF and WF have a worse performance than FF, precisely, we show
that BF and WF cannot be better than 3-competitive. On the other hand, we
give the matching upper bounds. We prove in the Appendix that AF, including
BF and WF, is 3-competitive.

Theorem 3. Any-fit is 3-competitive.

We give an adversary for WF as follows. Let k be an arbitrarily large integer
constant and let w = 2k. The sequence contains 5k items, m1,m2, . . . ,m5k, with
mi arriving at time i. There are three different sizes of the items: (1) si = 1/2
for i = 1, 3, . . . , 4k − 1; (2) si = 1/w for i = 2, 4, . . . , 4k; and (3) si = 1 for
i = 4k + 1, 4k + 2, . . . , 5k. All items of size 1/2 depart at time 4k while items
of size 1/w and 1 never depart. In the Appendix we show that the maximum
number of bins used by WF is at least 3k and by the optimal off-line algorithm is
at most k+1. For any 0 < ε ≤ 3/2, setting k = 3/ε−1 results in the competitive
ratio 3k/(k + 1) > (3 − ε). Hence, we have the following theorem.

Theorem 4. Worst-fit is no better than 3-competitive.

Next, we give an adversary for BF. Let k be an arbitrarily large integer con-
stant and let w = 2k. The adversary sequence consists of 2k stages, each lasts
for 4 time units. Precisely, Stage i spans from time 4i + 1 to 4i + 4. There are
three different sizes of items: 1/w, 1/2 and 1, all items of size 1/2 will depart
at some time while items of size 1/w and 1 never depart. Before Stage 0, two
items are released, one with size 1/2, and the other with size 1/w. The stages
proceed as follows. Stage i, for 0 ≤ i ≤ 2k − 2: At time 4i + 1, i items of
size 1/2 are released. At time 4i + 2, one more item of size 1/2 is released. At
time 4i + 3, all items of size 1/2 released before time 4i + 2 depart, including
those released at time 4i + 1 and the one released in Stage i− 1. At time 4i + 4,
a single item with size 1/w is released. Stage 2k − 1: At time 4(2k − 1) + 3,
the item with size 1/2 released in Stage (2k − 2) departs. At time 4(2k − 1) + 4,
k items of size 1 are released. In the Appendix, we show that the maximum
number of bins used by BF is at least 3k and that by the optimal off-line al-
gorithm is at most k + 1. For any 0 < ε ≤ 3/2, setting k = 3/ε − 1 results
in the competitive ratio 3k/(k + 1) > (3 − ε). Hence, we have the following
theorem.

Theorem 5. Best-fit is no better than 3-competitive.

4 General Lower Bound

We give an adversary sequence of items such that the maximum number of bins
used by any on-line algorithm is at least 2.428 times that used by the optimal
off-line algorithm. First, we need the following notion. For any positive integers x
and y, define λ(x, y) to be the maximum number of items of size 1/x that can
be packed into a bin containing an item of size 1/y. Formally,



Dynamic Bin Packing of Unit Fractions Items 623

λ(x, y) = max
z∈Z+

{z | z/x ≤ 1 − 1/y},

i.e., λ(x, y) = x − �x/y�. For example, if x = 4 and y = 3, then λ(x, y) = 2.
Consider any on-line algorithm A. Let n be an integer and let F = n!(n−1)!.

The adversary sequence consists of n stages and has the following properties: In
each stage, some items released in the previous stage depart and a number of
items of the same size are released. The arrival of items in the adversary sequence
ensures that at the end of each stage, A has to use some additional bins to pack
the items released in that stage. We are going to define a sequence of numbers Fi

for 1 ≤ i ≤ n, which is related the number of additional bins required in Stage i.
In Stage 1, Fn items of size 1/n are released. The algorithm A uses at least F

bins to pack the Fn items. If A uses more than F bins, all items in bins other
than the first F bins depart. We define F1 to be F .

In each of the subsequent stages, i.e., Stage i, for 2 ≤ i ≤ n, there are three
steps. (1) For each occupied bin, all its items except the smallest one depart.
(2) Let Ri be the total size of the items remained. (We will prove later, in the
proof of Lemma 11, that Ri is indeed an integer.) The adversary then releases
(F − Ri)(n − i + 1) items of size 1/(n − i + 1). At this point, the total size
of all items not yet departed, including those released in previous stages, is F .
(3) Define

Fi = F −
i−1∑
j=1

Fj

(
1

n − j + 1
+

λ(n − j + 1, n − i + 1)
n − i + 1

)
.

If A uses more than Fi additional bins in Stage i, all items packed into the
additional bins other than the first Fi additional bins depart. Roughly speak-
ing, Fi is the minimum number of additional bins required in Stage i; the term
λ(n− j + 1, n− i + 1) reflects the maximum number of items released in Stage i
that can be packed into an occupied bin which was an additional bin in Stage j.
We will prove this formally in Lemma 11. We first prove a property of Fi.

Lemma 10. Fi is an integer multiple of (n − i + 1)!(n − i)! for 1 ≤ i ≤ h.

Proof. We prove the lemma by induction. It is clear that F1 = F is an integer
multiple of n!(n−1)!. Suppose Fi is an integer multiple of (n−i+1)!(n−i)! for 1 ≤
i ≤ k. We have Fk+1 = F −∑k

j=1 Fj(1/(n−j+1)+λ(n−j+1, n−i+1)/(n−k)).
Since the function λ gives an integer output and Fj/((n − j + 1)(n − k)) is an
integer multiple of (n− k)!(n− k − 1)! as k ≥ j, the summation gives an integer
multiple of (n − k)!(n − k − 1)!, which completes the induction.

Lemma 11. For 1 ≤ i ≤ n, A uses no less than Fi additional bins in Stage i.

Proof. In Stage 1, it is clear that A uses at least F1 = F additional bins. We
show by induction that in Step (2) of Stage i for 2 ≤ i ≤ n, A also uses at least
Fi additional bins. Assume that it is true for i = k. Before Step (2) of Stage k+1,
A already has Fj bins containing a single item of size 1/(n−j +1) for 1 ≤ j ≤ k.
Therefore, Rk+1 =

∑k
j=1 Fj/(n − j + 1). We can see that Rk+1 is an integer as



624 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

Fj is an integer multiple of (n − j + 1)!(n − j)!. The number of items of size
1/(n − k) released is (F − Rk+1)(n − k) = (F − ∑k

j=1 Fj/(n − j + 1))(n − k).
The number of items that can be packed into the occupied bins is equal to∑k

j=1 Fj · λ(n − j + 1, n − k). Therefore, the number of additional bins needed
in Stage k + 1 is at least

F −
k∑

j=1

Fj

n − j + 1
−

k∑
j=1

Fj · λ(n − j + 1, n − k)
n − k

= F −
k∑

j=1

Fj

(
1

n − j + 1
+

λ(n − j + 1, n − k)
n − k

)
= Fk+1.

This induction is completed.

Lemma 12. There exists some integer n such that the maximum number of bins
used by A is at least 2.428F .

Proof. After Stage n, A uses
∑n

i=1 Fi bins. We carry out the analysis on the value
of

∑n
i=1 Fi by actually computing the value of

∑n
i=1 Fi with different values of

n. We find that the increase in n results an increase in
∑n

i=1 Fi monotonically.
In particular, by letting n = 12794, and computing the values of Fi, we have∑n

i=1 Fi > 2.428F .

Theorem 6. Any on-line algorithm is at least 2.428-competitive.

Proof. Similar to Lemma 9, we can show that the optimal off-line algorithm uses
at most F bins. Together with Lemma 12, the theorem follows.

References

1. A. Bar-Noy and R. E. Ladner. Windows scheduling problems for broadcast systems.
SIAM J. Comput., 32(4):1091–1113, 2003.

2. A. Bar-Noy, R. E. Ladner, and T. Tamir. Windows scheduling as a restricted
version of bin packing. In J. I. Munro, editor, SODA, pages 224–233. SIAM, 2004.

3. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

4. W.-T. Chan and P. W. H. Wong. On-line windows scheduling of temporary items.
In R. Fleischer and G. Trippen, editors, ISAAC, volume 3341 of Lecture Notes in
Computer Science, pages 259–270. Springer, 2004.

5. E. G. Coffman, Jr., C. Courcoubetis, M. R. Garey, D. S. Johnson, P. W. Shor,
R. R. Weber, and M. Yannakakis. Bin packing with discrete item sizes, Part I:
Perfect packing theorems and the average case behavior of optimal packings. SIAM
J. Discrete Math., 13:38–402, 2000.

6. E. G. Coffman, Jr., G. Galambos, S. Martello, and D. Vigo. Bin pakcing ap-
proximation algorithms: Combinatorial analysis. In Handbook of Combinatorial
Optimization. Kluwer Academic Publishers, 1998.

7. E. G. Coffman, Jr., M. Garey, and D. Johnson. Bin packing with divisible item
sizes. Journal of Complexity, 3:405–428, 1987.



Dynamic Bin Packing of Unit Fractions Items 625

8. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Dynamic bin packing. SIAM
J. Comput., 12(2):227–258, 1983.

9. E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson. Bin packing approximation
algorithms: A survey. In D. S. Hochbaum, editor, Approximation Algorithms for
NP-Hard Problems, pages 46–93. PWS, 1996.

10. J. Csirik and G. J. Woeginger. On-line packing and covering problems. In A. Fiat
and G. J. Woeginger, editors, On-line Algorithms—The State of the Art, volume
1442 of Lecture Notes in Computer Science, pages 147–177. Springer, 1996.

11. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, San Francisco, 1979.

12. Z. Ivkovic and E. L. Lloyd. Fully dynamic algorithms for bin packing: Being
(mostly) myopic helps. SIAM J. Comput., 28(2):574–611, 1998.

13. M. B. Richey. Improved bounds for harmonic-based bin packing algorithms. Dis-
crete Applied Mathematics, 34:203–227, 1991.

14. S. S. Seiden. On the online bin packing problem. J. ACM, 49(5):640–671, 2002.
15. A. van Vliet. An improved lower bound for on-line bin packing algorithms. Inf.

Process. Lett., 43(5):277–284, 1992.

Appendix

Proof of Theorem 3: Consider any input seqeunce σ. Suppose AF uses at most
n bins. The proof is based on two notions. (1) Let t1 be a time instance such
that AF uses n occupied bins, and n1 be the number of occupied bins with item
of size 1 at time t1. Notice that the optimal off-line algorithm uses at least n1

occupied bins at time t1. (2) Let n2 be the largest integer such that AF packs
an item m of size 1/2 or less into an empty bin with label n2 and suppose this
happens at t2. At time t2, all bins with labels smaller than n2 have load greater
than 1/2; otherwise, AF can pack m to one of these bins. In that case, the optimal
off-line algorithm uses at least �n2/2� bins at time t2. By the definition of n2,
at time t1, every bin with label greater than n2 contains an item of size greater
than 1/2, i.e., 1. Hence, we have n ≤ n1 + n2. On the other hand, the optimal
off-line algorithm uses at least max{n1, �n2/2�} bins. By simple arithmetic, we
have n ≤ 3max{n1, �n2/2�} (the worst case happens when n1 = �n2/2�).
Proof of Theorem 4: We first describe how WF packs the 5k items in the
adversary. WF packs the item m2j−1 of size 1/2 and m2j of size 1/w to the same
bin with label j, for 1 ≤ j ≤ 2k. After all items of size 1/2 depart, there are 2k
occupied bins; k more bins are needed for the items of size 1. Therefore, WF
uses 3k bins.

On the other hand, the optimal off-line algorithm can use a single bin to pack
all the items of size 1/w and k bins to pack the items of size 1/2. This packing
uses k + 1 bins. After all the items of size 1/2 depart, the k bins can be used to
pack the items of size 1. Thus, the optimal off-line algorithm uses at most k + 1
bins, and the competitive ratio of WF is at least 3k/(k+1). For any 0 < ε ≤ 3/2,
picking k to be 3/ε − 1 implies that WF is no better than (3 − ε)-competitive.

Proof of Theorem 5: We first describe how BF packs the items in the adver-
sary. We claim that for 1 ≤ i ≤ 2k−1, at the beginning of Stage i, BF uses i+1



626 W.-T. Chan, T.-W. Lam, and P.W.H. Wong

bins, one of them has load 1/2 + 1/w, and the other i bins each has load 1/w.
The base case for Stage 1 can be verified easily. Suppose the claim is true for
some i ≥ 1. Consider what happens in Stage i. At time 4i + 1, BF packs each of
the i new items into the i bins with load 1/w. All the i + 1 occupied bins now
have load 1/2 + 1/w. The item of size 1/2 released at time 4i + 2 must then be
packed into a new bin. After the departure of items of size 1/2 at time 4i + 3,
we are left with a bin with load 1/2 and i + 1 bins each with load 1/w. When
the item of size 1/w is released at time 4i + 4, BF packs it into the bin with
load 1/2. Then, at the beginning of Stage i+1, BF uses i+2 bins where i+1 of
them have load 1/w and one has load 1/2 + 1/w, and the claim follows. Finally,
in Stage 2k − 1, BF needs k more bins, and thus uses at least 2k + k = 3k bins.

On the other hand, the optimal off-line algorithm can reserve a single bin for
the 2k items of size 1/w. At any time, there are at most 2k items of size 1/2 which
can be packed into k bins. In the final stage, all these items depart and the k
bins can be used for the items of size 1. Hence, the optimal off-line algorithm
uses at most k + 1 bins, and the competitive ratio of BF is at least 3k/(k + 1).
For any 0 < ε ≤ 3/2, picking k to be 3/ε − 1 implies that BF is no better than
(3 − ε)-competitive.


