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RATEWISE EFFICIENT ESTIMATION OF REGRESSION

COEFFICIENTS BASED ON Lp PROCEDURES

P. Y. Lai and Stephen M. S. Lee

The University of Hong Kong

Abstract: We consider the problem of estimation of regression coefficients under

general classes of error densities without assuming classical regularity conditions.

Optimal orders of convergence rates of regression-equivariant estimators are estab-

lished and shown to be attained in general by Lp estimators based on judicious

choices of p. We develop a procedure for choosing p adaptively to yield Lp esti-

mators that converge at approximately optimal rates. The procedure consists of a

special algorithm to automatically select the correct mode of Lp estimation and the

m out of n bootstrap to consistently estimate the log mean squared error of the Lp

estimator. Our proposed adaptive Lp estimator is compared with other adaptive

and non-adaptive Lp estimators in a simulation study, that confirms superiority of

our procedure.

Key words and phrases: Adaptive, Lp estimator, m out of n bootstrap, ratewise

efficient, regression.

1. Introduction

Consider a random sample (Y1, Z1), . . . , (Yn, Zn) under a general linear re-

gression setup, such that

Yi = ZT
i β0 + Ui, i = 1, . . . , n, (1.1)

where (U1, . . . , Un) and (Z1, . . . , Zn) denote two independent random samples

drawn from the univariate distribution function FU and the d-variate distribu-

tion function FZ respectively, and β0 is an unknown d-variate parameter in R
d.

Under classical regularity conditions, the Cramér-Rao lower bound provides a

benchmark for asymptotic efficiency, and the maximum likelihood estimator of

β0 is asymptotically efficient with convergence rate n1/2. The situation is far less

conclusive if FU is not parametrically specified and does not satisfy the regularity

conditions. There may, for example, exist hyper-efficient estimators having con-

vergence rates faster than n1/2. It would therefore be of interest to derive results

analogous to the Cramér-Rao lower bound under general FU or to at least estab-

lish a notion of “ratewise efficiency” to identify the best achievable convergence

rates.
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In this paper we relax the classical regularity conditions and ask only that FU

have a symmetric density fU regularly varying at 0 with index ζ − 1 ∈ (−1,∞).

This allows for a broad variety of density shapes near 0, at which fU may, for

example, possess a cusp or a point of singularity. In Section 2 we establish,

under this general class of error densities, the best convergence rates which can

be achieved by any regression-equivariant estimators of β0. The special case of

location estimation under a known fU and similar regular variation conditions

has been extensively studied in the literature. However, if fU is unspecified, no

general estimation strategy has yet been found to yield ratewise efficient estima-

tors under either the location or regression setup. A related study by Jurečková

(1983) shows that under a certain type of singularity the convergence rate of a

class of M-estimators can exceed the conventional n1/2 but still not be ratewise

efficient.

Conventionally the Lp estimator β̂(p) of β0, for a fixed p ∈ (0,∞), is defined

as the value of β that minimizes the criterion function Cp(β)
def
= n−1

∑n
i=1 |Yi −

ZT
i β|

p. It is generally conceived that the L2 estimator is efficient under nor-

mal fU but is very sensitive to departures from normality, whilst the L1 es-

timator is robust against outliers in the observed data or heavy tails of fU .

The last few decades have seen considerable work done on adaptive selection

of p ∈ [1, 2], which is found to be advantageous under certain contaminated

or skewed error densities. Earlier literature focused predominantly on methods

adaptive to the tail behaviour of FU ; see, for example, Hogg (1972), Harter

(1974–1975), Money, Affleck-Graves, Hart and Barr (1982), Sposito and Hand

(1983) and Nyquist (1983) for procedures targeted at specific error densities.

However, these procedures remain largely exploratory and lack formal justifica-

tion for their adaptivity under general classes of error distributions. A more

rigorous treatment is given by Arcones (2005) in the context of location esti-

mation. His procedure selects p ∈ (1,∞) by minimizing an estimate of the

asymptotic mean squared error of β̂(p) under regularity conditions. Choices of

p < 1 have received only sporadic attention in the literature, where focus is on

the design of computational algorithms for Lp minimization; see, for example,

Barrodale and Roberts (1970) or Ekblom (1974). None of the above adaptive Lp

procedures yield ratewise efficient estimators under the nonregularity conditions

presently considered.

Lai and Lee (2005) discuss the asymptotic properties of Lp estimators under

different types of regular variation of fU at 0. We review their results in Sec-

tion 3 and show further that, in almost all cases, there exist Lp estimators that are

ratewise efficient. When ζ is unknown, selection of the best p, which depends in

general on ζ, poses a practical problem. A second difficulty arises when ratewise

efficiency demands that p be chosen from the interval (0, 1) so that the correct
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mode of Lp estimation should be carefully determined, that is, β̂(p) should be

defined as a minimizer or local maximizer of Cp(β) in accordance with the shape

of the fU in question. In the case of local maximization, computation of β̂(p) is

further complicated by the existence of multiple local maxima which obscure, to

some extent, the major feature of Cp(β). We propose in Section 4 an adaptive

procedure for computing Lp estimators that are approximately ratewise efficient.

The procedure selects the optimal p adaptively, and computes β̂(p) by automat-

ically locating the global minimum or local maximum of a smoothed version of

Cp(β) without having to fix the actual mode of optimization in advance. Its im-

plementation is illustrated with a data set. Section 5 discusses the generalisation

of our theory and adaptive procedure under asymmetric fU . Section 6 reports

a simulation study in which our adaptive Lp estimator is compared with other

adaptive and non-adaptive alternative estimators in terms of mean squared error.

Section 7 concludes our findings. Technical proofs are given in the Appendix.

2. Ratewise Efficiency

For the linear regression model (1.1), consider a class of symmetric error

density functions fU = F ′
U regularly varying at 0 with index ζ − 1:

fU (u) = |u|ζ−1L(|u|) for |u| ≤ ∆, (2.1)

for some ζ,∆ > 0 and nonnegative function L on (0,∞) which is slowly varying

at 0. The class comprises density functions that may be continuous or discontin-

uous, differentiable or nondifferentiable, upwardly or downwardly sharp-pointed,

infinite or zero at the origin. Special examples include normal densities, Laplace

densities, symmetric gamma and Weibull densities. Ibragimov and Has’minskii

(1981) term the origin a singularity of order ζ − 1, of the first type if ζ ∈ (1, 2)

and of the third type if ζ ∈ (0, 1). The form (2.1) represents a natural general-

ization of the classical regularity conditions, which assume that ζ = 1 and that

L is sufficiently well-behaved near 0. Smirnov (1952) provides an early reference

to (2.1) and identifies with it three of his four domains of attraction for sample

quantiles. Knight (1998) and Rogers (2001) focus on the same class of distribu-

tions, among others, in their investigation of L1 regression asymptotics. Polfeldt

(1970) focuses on the case ζ = 1 and studies the location problem under different

forms of L. The condition of symmetry is imposed to ensure Fisher-consistency

of Lp estimators for a common estimand β0: E[ sgn(Y1−Z
T
1 β0)|Y1−Z

T
1 β0|

p−1] =

E[ sgn(U1)|U1|
p−1] = 0 for all p > 0, provided that the moment exists. The case

of asymmetric fU will be discussed in Section 5.

An estimator β̂ = β̂({(Yi, Zi) : i = 1, . . . , n}) of β0 is regression-equivariant if

for any t ∈ R
d, β̂({(Yi +Z

T
i t, Zi) : i = 1, . . . , n}) = β̂({(Yi, Zi) : i = 1, . . . , n})+ t.

Denote by ‖ · ‖ the Euclidean norm. Assume that
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(A0) E‖Z1‖
2 | log ‖Z1‖ | <∞ and P(ZT

1 β = 0) < 1 for any nonzero β ∈ R
d.

To establish the best possible convergence rates of regression-equivariant estima-

tors of β0, we assume the following additional conditions on fU :

(A1) If ζ > 2, then fU is continuously differentiable and IU
def
= E(f ′U(U1)/fU (U1))

2

<∞.

(A2) If ζ = 2, then L is twice continuously differentiable on [0,∆), L(0) > 0, fU

is differentiable and E[(f ′U (U1)/fU (U1))
2; |U1| > ǫ] <∞ for some ǫ > 0.

(A3) If ζ ∈ (0, 1) ∪ (1, 2), then L is continuous on [0,∆), L(0) > 0 and there

exists ζ∗ > ζ such that, as ǫ ↓ 0,

∫ ∆
2

0

∣

∣

∣
L(u+ ǫ)

1
ζ∗ − L(u)

1
ζ∗

∣

∣

∣

ζ∗

uζ−1du = O(ǫζ
∗

).

(A4) If ζ = 1, then L(0) > 0, γ0
def
= limu↓0 u

−q(L(0) − L(u)) 6= 0 for some q > 0,
∫

fU(u − ǫ)2/fU(u) du < ∞ for sufficiently small |ǫ|, and for some fixed

η∗ > 0,

0 < lim
ǫ→0

ǫ−2

∫

|u|>η∗

{

fU (u− ǫ)

fU (u)
− 1

}2

fU(u) du <∞.

The condition (A1) requires that fU be sufficiently smooth with finite Fisher

information. An “almost” finite Fisher information is assumed under (A2). Both

(A2) and (A3) contain smoothness conditions on L. In particular, (A3) holds if

L is differentiable and
∫ ∆

2

0

uζ−1|L′(u)|ζ
∗

L(u)ζ
∗−1

du <∞.

The condition (A4) requires that fU be sufficiently smooth and second-order

(ζ− 1, q) regularly varying at 0. It has a peak or trough at 0 according as γ0 > 0

or γ0 < 0 respectively, and is sharp-pointed there if q < 1.

The following theorem gives the orders of the smallest possible mean absolute

or squared error of regression-equivariant estimators β̂ under scenarios described

by (A1)−(A4). The proof is given in the Appendix.

Theorem 1. Assume that FZ satisfies (A0) and fU has the form (2.1). Let β̂ be

a generic regression-equivariant estimator of β0. Then,

(i) under (A1), lim inf
n→∞

inf
β̂
n1/2

E‖β̂ − β0‖ > 0;

(ii) under (A2), lim inf
n→∞

inf
β̂

(n log n)1/2
E‖β̂ − β0‖ > 0;
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(iii)under (A3), lim inf
n→∞

inf
β̂
n1/ζ

E‖β̂ − β0‖ > 0;

(iv) under (A4), lim inf
n→∞

inf
β̂
ϕq(n)2E‖β̂−β0‖

2 > 0, where ϕq(n) = n1/2, (n log n)1/2

and n1/(2q+1) for q > 1/2, = 1/2 and < 1/2 respectively.

It is clear from Theorem 1 that the fastest possible convergence rates of β̂ are

n1/2, (n log n)1/2, n1/ζ and ϕq(n) under (A1), (A2), (A3), and (A4) respectively.

Any β̂ which achieves the above rate is said to be ratewise efficient. Note that

the best convergence rate exceeds the conventional n1/2 under (A2), (A3) and,

for q ≤ 1/2, under (A4).

In the special case of location estimation with Z1 ≡ 1, Ibragimov and

Has’minskii (1981) obtain results similar to Theorem 1 (i)−(iii). They show that

if fU is completely specified, then the maximum likelihood and Bayes estimators

are ratewise efficient under ζ > 1 and ζ > 0, respectively. Smith (1985) and

Ghosal and Samanta (1995) generalize these results to cases where fU depends

on an unknown vector parameter. Polfeldt (1970) proves that the minimum vari-

ances of unbiased location estimators have the same orders as those stated in

Theorem 1(iv). Daniels (1960) and Prakasa Rao (1968) show under (A4) that

the maximum likelihood location estimator is ratewise efficient for q > 1/2 and

q < 1/2, respectively. If fU is unspecified, no general strategy has yet been

developed for constructing ratewise efficient equivariant estimators under either

the location or regression model. We address this issue in the rest of the paper.

3. Lp Estimation: Asymptotic Theory

Under the general class of error densities (2.1), both ζ and p are determi-

native factors in the convergence rate, and hence accuracy, of β̂(p). Lai and Lee

(2005) provide a detailed account of the asymptotics of Lp regression for each ζ >

0 under weaker conditions on FU . Specializing Theorems 1 and 2 of Lai and Lee

(2005) to our present context, but slightly weakening their definition of Lp esti-

mator, we establish in Theorem 2 the convergence rates and correct modes of Lp

estimation under various scenarios. Denote hereafter by B an open neighbour-

hood containing β0, the unique minimizer or maximizer of E|Y1 − ZT
1 β|

p over

β ∈ B.

THeorem 2. Assume that FZ satisfies (A0), fU satisfies (2.1), the conditions

on L specified in one of (A1)−(A4), and that E |U1|
max{2p−2,0} < ∞. Define rn

according to the following:

(i) rn = n1/2 if p+ ζ > 2 and p 6= 1;

(ii) rn = n1/2 log n if p+ ζ = 2 and p 6= 1;
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(iii) rn = n1/2(p+ζ−1) if p+ ζ < 2, 2p+ ζ > 2 and ζ 6= 1;

(iv) rn = n1/(2ζ) if p = 1, ζ ∈ [1, 2] and E‖Z1‖
ζ+1 <∞;

(v) rn ∼
{

n1/2L(1/rn)
}1/ζ

if p = 1, ζ > 2 and E‖Z1‖
ζ+1 <∞;

(vi) rn = (n/ log n)1/ζ if 2p + ζ = 2 and ζ 6= 1;

(vii)rn = n1/ζ if 2p+ ζ < 2 and ζ 6= 1;

(viii)rn = min{n1/2, n1/(3−2p)} if ζ = 1, p+ q > 1 and 1 > p 6= 1/2;

(ix) rn = (n/ log n)1/2 if ζ = 1, p = 1/2 and q > 1/2;

(x) rn = min{n1/(2p+2q), n1/(2q+1)} if ζ = 1, p+ q < 1 and p 6= 1/2;

(xi) rn = min{n1/2 log n, (n1/2 log n)2/(3−2p)} if ζ = 1, p+ q = 1 and p 6= 1/2;

(xii)rn = (n log n)1/2 if ζ = 1 and p = q = 1/2;

(xiii)rn = (n/ log n)1/(2q+1) if ζ = 1, p = 1/2 and q < 1/2.

Let β̂(p) ∈ B satisfy,

— under case (i),

Cp(β̂(p))







≤ inf
β∈B

Cp(β) + op(r
−2
n ), p > 1,

≥ sup
β∈B

Cp(β) − op(r
−2
n ), p < 1;

— under case (ii),

Cp(β̂(p))







≤ inf
β∈B

Cp(β) + op(r
−2
n log rn), p > 1,

≥ sup
β∈B

Cp(β) − op(r
−2
n log rn), p < 1;

— under cases (iii), (vi) and (vii),

Cp(β̂(p))











≤ inf
β∈B

Cp(β) + op(r
−p−ζ
n ), ζ < 1,

≥ sup
β∈B

Cp(β) − op(r
−p−ζ
n ), ζ > 1;

— under cases (iv) and (v), Cp(β̂(p)) ≤ infβ∈B Cp(β) + op(r
−1−ζ
n L(1/rn));

— under cases (viii) and (ix),

Cp(β̂(p))







≤ inf
β∈B

Cp(β) + op(r
−2
n ),

∫

|u|p−2 [fU (u) − fU(0)] du < 0,

≥ sup
β∈B

Cp(β) − op(r
−2
n ),

∫

|u|p−2 [fU (u) − fU(0)] du > 0;



RATEWISE EFFICIENT ESTIMATION OF REGRESSION COEFFICIENTS 1625

— under cases (x), (xi), (xii) and (xiii),

Cp(β̂(p))







≤ inf
β∈B

Cp(β) + op(r
−p−q−1
n + r−2

n log rn), γ0 > 0,

≥ sup
β∈B

Cp(β) − op(r
−p−q−1
n + r−2

n log rn), γ0 < 0.

Then rn(β̂(p) − β0) = Op(1).

Ratewise efficiency of Lp estimators now follows immediately from Theo-

rems 1and 2. The results are summarized in the following corollary.

Corollary 1. Assume the conditions of Theorem 2. Then

(i) under (A1), Lp estimators are ratewise efficient for p 6= 1;

(ii) under (A2), Lp estimators based on p 6= 1 have the fastest convergence rate

n1/2, which is slower than the optimal rate (n log n)1/2;

(iii)under (A3), Lp estimators are ratewise efficient for p < 1 − ζ/2;

(iv) under (A4), Lp estimators are ratewise efficient for p > 1/2 if q > 1/2, for

p = 1/2 if q = 1/2, and for p < 1/2 if q < 1/2.

We see from Corollary 1 that ratewise efficient Lp estimators exist in all

cases under our assumptions except when ζ = 2. Even in the latter situation the

most efficient Lp estimators have convergence rates only slightly slower than the

optimal rate, by a factor slowly varying in n. Note that consideration of ratewise

efficiency tends to favour use of a small p in the sense that β̂(p) can be made

ratewise efficient for arbitrarily many ζ by choosing a sufficiently small p > 0.

Indeed, if p < 1/2 is fixed, then β̂(p) is ratewise efficient for ζ ∈ (0, 1) ∪ (1, 2(1 −

p)) ∪ (2,∞), and for q < 1/2 under ζ = 1.

Two other implications of Theorem 2 are of importance in practice. First,

when fU exhibits a trough at the origin and p < 1 is chosen, Lp estimation has to

be undertaken by locally maximizing, rather than minimizing, Cp(β) over β in an

appropriate region. Secondly, the assertions of Theorem 2 hold for β̂(p) defined

liberally as approximate minimizers or local maximizers of Cp(β), enabling use

of a smoothed version C̃p in place of Cp as criterion function for more convenient

calculation of β̂(p).

Denote by β̂∗(p) the Lp estimator calculated, in a way analogous to the

derivation of β̂(p), from a bootstrap sample (Y ∗
1 , Z

∗
1 ), . . . , (Y ∗

m, Z
∗
m) drawn from

(Y1, Z1), . . . , (Yn, Zn). Theorem 3 of Lai and Lee (2005) establishes m out of n

bootstrap (Bickel, Götze and van Zwet (1997)) consistency for Lp regression for

a large majority of cases covered by Theorem 2. It has a trivial extension to the

more liberally defined Lp estimators β̂(p) considered in Theorem 2.
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Theorem 3. Assume the conditions of Theorem 2 and that m = o(n) and

m → ∞. Then the conditional distribution of rm(β̂∗(p) − β̂(p)), given (Y1, Z1),
. . ., (Yn, Zn), converges weakly in probability to the same weak limit as that of

rn(β̂(p) − β0) for cases (i)−(vi), (viii), (ix), (xi) and (xii) of Theorem 2. The

result also holds for case (x) if max{p, q} > 1/2.

Note that we have not been able to assert m out of n bootstrap consistency

for cases (vii), (xiii) or, for p, q ≤ 1/2, under case (x) of Theorem 2. However,
comparison of Corollary 1 and Theorem 3 shows that under the above situations

m out of n bootstrappable Lp estimators can be found which are arbitrarily close

to being ratewise efficient.

4. An Adaptive Lp Procedure

In practical situations where fU is unknown and ζ is unspecified, the opti-
mal value of p is in general unknown and it is uncertain whether β̂(p) should

be obtained by minimizing or locally maximizing Cp(β). Section 4.1 describes
an algorithm for automatically computing β̂(p) without prior knowledge of fU .

Section 4.2 gives another algorithm for consistent estimation of the log mean

squared error of β̂(p), logMSE(β̂(p)), using an m out of n bootstrap approach.
An adaptive procedure is then given in Section 4.3 for calculating an approxi-

mately ratewise efficient β̂(p).

4.1. Algorithm (A): automatic search for Lp estimate

Recall that an open neighbourhood B exists around β0 such that β0 is the

unique minimizer or maximizer of E|Y1 −ZT
1 β|

p over β ∈ B. It is therefore natu-
ral to require that β̂(p) be searched within B so that it minimizes or maximizes

Cp(β) there. For p ≥ 1, Lp estimation is necessarily done by minimization. Many

efficient computational algorithms have been developed for this purpose: see, for
example, Gonin and Money (1989, Chap. 1). For p < 1, Cp(β) possesses multi-

ple local minima at which the function is non-differentiable, and multiple local
maxima at which it is differentiable. The number of local minima or maxima

increases with the sample size n at a rate of order nd. This poses difficulties

in correct determination of β̂(p). We circumvent the problem by applying a
specially-designed searching algorithm to automatically locate β̂(p). The algo-

rithm first fixes a neighbourhood B̄ around an initial consistent estimate of β0,
smooths Cp(β) by a moving weighted average method to get rid of the noisy

local minima and maxima while retaining its major feature, and then proceeds

to search for a global minimum or local maximum of the smoothed Cp(β) over
β ∈ B̄. Whether the result is a minimum or a maximum is determined adaptively

by the feature of Cp(β) without the user’s prior interference. We now describe

in detail Algorithm (A) for calculating β̂(p):
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Step 1. Calculate an initial consistent estimate β̃ of β.

Step 2. Define B̄ = {z ∈ R
d : ‖z − β̃‖ ≤ r} for some fixed r > 0. Let

z1, . . . , zT denote points in the lattice {β̃ + δ[j1, . . . , jd]
T : j1, . . . , jd =

0,±1,±2, . . .} which are contained in B̄, for some fixed δ > 0.

Step 3. Construct a smooth approximation of Cp(β) by the moving weighted

average method given by

C̃p(β) =

T
∑

t=1

Cp(zt)K(
β − zt
h

)
/

T
∑

t=1

K(
β − zt
h

),

whereK is a d-variate kernel function and h > 0 denotes the bandwidth.

Step 4. Set B̄[1] = B̄, r[1] = r and l = 1.

Step 5. Find the global maximizer, β̂[l] say, of C̃p(β) over β ∈ B̄[l].

Step 6. If β̂[l] lies in the interior of B̄[l], then terminate and return β̂(p) = β̂[l]

as a local maximizer of C̃p(β). If β̂[l] lies on the boundary of B̄[l], then

shrink the ball B̄[l] to a new ball B̄[l+1] ⊂ B̄[l], such that the two balls

have boundaries touching at the point diametrically opposite to β̂[l],

share a common axis, and so that B̄[l+1] has radius r[l+1] = (1 − ρ)r[l]

for a fixed pre-determined shrinking factor ρ ∈ (0, 1). If r[l+1] falls below

a pre-determined lower limit RL, then terminate and return β̂(p) = β̂[l]

as a minimizer of C̃p(β); otherwise increment l and return to Step 5.

Algorithm (A) permits a local maximizer or minimizer to be adaptively iden-

tified according to the shape of C̃p(β). This proves to be crucial to our present

regression context where the mode of Lp estimation cannot be a priori deter-

mined due to unavailability of fU . For better and more stable performance of

the algorithm, we can standardize the (Yi, Zi) beforehand to have zero sample

means and unit sample variances.

For a practical choice of r we suggest the following scheme. Solve theN ≡
(

n
d

)

subsets of d simultaneous equations of the form Yi = ZT
i β, i = 1, . . . , n, for β

to obtain solutions β†1, . . . , β
†
N respectively; set r to be a constant multiple of

(log n)−1 times the 75% quantile of the N distances ‖β†1 − β̃‖, . . . , ‖β†N − β̃‖.

This choice of r prescribes a reasonably robust region B̄ which contains, and

shrinks toward, the true parameter β0 in probability, provided that β̃ converges

to β0 at a polynomial rate. Our empirical experience shows that Algorithm (A)

performs stably and efficiently if the search is confined to the region B̄ for a

start. Convenient choices of the initial consistent estimate β̃ are β̂(1) or β̂(2).

The former is less sensitive to outliers in the dataset, whilst the latter maintains

a more stable convergence rate over the entire class of error distributions under

consideration.
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Step 3 involves smoothing of Cp, which can be skipped so that the search

is carried out directly on Cp(β). In this case the resulting estimate corresponds

typically to the value of β that gives rise to the highest local maximum or the

minimum in B̄, and proves to be asymptotically valid. Finite-sample performance

of our searching algorithm can nevertheless be improved by a small amount of

smoothing as done in Step 3, which enables more convenient detection of the

estimate by alleviating the obscuring effects of the multiple local maxima present

in Cp(β). The following lemma describes sufficient conditions for C̃p and Cp to

be at most op(εn) apart, for εn ↓ 0. The proof is given in the Appendix.

Lemma 1. Assume the conditions of Theorem 2. Let εn ↓ 0 be fixed. Suppose

that K is a d-variate differentiable density function such that, for some λ0 > d

and λ1 > 0,

K(x) = O(‖x‖−λ0) and ‖∇K(x)‖ = O(‖x‖−λ1), (4.1)

and set, with p̄
def
= min{p, 1},

δ = o

(

h
1+ d2

d+λ1

)

and h = o

(

ε
p̄−1 λ0+p̄

λ0−d

n

)

. (4.2)

Then supβ∈B | C̃p(β) − Cp(β)| = op(εn).

Theorem 2 asserts that the asymptotics of β̂(p) remains unaltered provided

β̂(p) minimizes or locally maximizes Cp(β) up to order op(r
−̺
n l(n)), for some

̺ > 0 and function l slowly varying at infinity. It thus follows from Lemma 1,

with εn set to r−̺
n l(n), that the above condition is guaranteed by choosing a

kernel function K with properties (4.1), selecting a sufficiently small bandwidth

h, and fixing a sufficiently fine lattice {z1, . . . , zT } such that (4.2) holds. We see

from (4.2) that choices of both δ and h are subject to more stringent conditions in

higher-dimensional problems as d increases. In practice h should not be chosen

to be too small, or the smoothing effect will not be adequate to fend off the

undesirable perturbations caused by the multiple local maxima. In view of the

relations between (λ0, λ1) and (4.2), a kernel function with exponentially decaying

tails, such as the standard d-variate normal density, is recommended to allow for

more flexibility in the selections of h and δ.

4.2. Algorithm (B): m out of n bootstrap estimation of log mean squ-

ared error

We have established in Theorem 3 consistency of m out of n bootstrap

estimation of the distribution of rn(β̂(p) − β0) for a majority of cases under
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(A1)−(A4). However, that rn is in general unknown renders m out of n boot-

strap estimation of MSE(β̂(p)) not immediately possible. We develop below

Algorithm (B) for consistently estimating logMSE(β̂(p)) based on repeated ap-

plications of the m out of n bootstrap, without explicit specifications of rm, rn.

Step 1. For some fixed 0 < α1 < · · · < αS < 1, set ms to be the integer part of

nαs , s = 1, . . . , S.

Step 2. For each s = 1, . . . , S, draw B bootstrap samples, each of size ms,

from (Y1, Z1), . . ., (Yn, Zn); calculate the Lp estimate β̂
∗(b)
s (p) using

Algorithm (A) from the bth bootstrap sample, b = 1, . . . , B.

Step 3. For each s = 1, . . . , S, calculate T ∗
s (p) = log{B−1

∑B
b=1(β̂

∗(b)
s (p) −

β̂(p))2} and Us = log (n/ms). Then calculate T̄ ∗(p) = S−1
∑S

s=1 T
∗
s (p),

Ū = S−1
∑S

s=1 Us, SUU =
∑S

s=1(Us−Ū)2, γ̂(p) = (2SUU )−1
∑S

s=1(Us−

Ū)T ∗
s (p) and Ĝ(p) = T̄ ∗(p) − 2Ū γ̂(p).

We prove the following lemma in the Appendix. It asserts that Ĝ(p) con-

sistently estimates logMSE(β̂(p)) under conditions sufficient for m out of n

bootstrap consistency.

Lemma 2. Suppose that E|U1|
ν < ∞ for some ν > 0 and that p ∈ (0, 1 +

ν/2] is fixed. Assume the conditions of Theorem 3 and that r2n(β̂(p) − β0)
2

and r2m(β̂∗(p) − β̂(p))2 are uniformly integrable, the latter being conditional on

(Y1, Z1), . . . , (Yn, Zn). Then Ĝ(p)/ logMSE(β̂(p)) = 1 + op(1).

To exclude cases where m out of n bootstrappability of Lp regression has not

been confirmed by Theorem 3, we may restrict our choice of p to [1,∞) ∪ {p ∈

(1/2, 1) : 2(1 − p)γ̂(p) ≤ 1} ∪ {p ∈ (0, 1/2] : γ̂(p) ≤ 1/2} in our empirical

determination of p. Our remark following Theorem 3 implies that such restriction

incurs no essential loss of ratewise efficiency.

The convergence rate of the m out of n bootstrap estimator Ĝ(p) clearly

depends on both p and the choice of sizes ms. In general, a smoother criterion

function such as that corresponding to p > 1 results in a faster rate, whereas

the bootstrap may work less satisfactorily for p ≤ 1 even if ms = o(n) is cho-

sen optimally to achieve the best rate. Related discussions can be found in

Hall and Martin (1988), DeAngelis, Hall and Young (1993) and Cheung and Lee

(2005) for the case p = 1.

4.3. Adaptive procedure for determining p

With the aid of Algorithms (A) and (B), we propose an adaptive procedure

for selecting p in Lp estimation of β0 under conditions (A0)−(A4). The procedure

consists of the following steps.
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Step 1. Select a grid of candidate values p1, . . . , pW ∈ (0,∞) for p.

Step 2. For each w = 1, . . . ,W , apply Algorithm (B) to estimate logMSE(β̂(pw)).

Step 3. Set p̂ to be that pw which minimizes the Ĝ(pw) values.

To fully exploit the range of achievable convergence rates, we should take

a large W and select the pw’s from both sides of 1. An upper bound of at

least 2 may be imposed on our choice of p without loss of generality. To see

the optimality property of p̂, consider two Lp estimators β̂(q1) and β̂(q2) with

convergence rates nγ1ℓ1(n) and nγ2ℓ2(n), respectively, for some γ1, γ2 > 0 and

some slowly-varying functions ℓ1 and ℓ2. Then

(log n)−1
{

logMSE(β̂(q1)) − logMSE(β̂(q2))
}

= (log n)−1(Ĝ(q1) − Ĝ(q2)) + op(1) = −2(γ1 − γ2) + op(1).

It follows that β̂(p̂) has the fastest convergence rate, up to a slowly varying factor,

among the candidate values p1, . . . , pW .

We illustrate application of our adaptive procedure with a dataset drawn

from Montgomery and Peck (1992) that contains twenty observations on the tool

life (Yi) and the lathe speed in revolutions per minute (Si). A simple linear

regression model Yi = β1 +β2Si +Ui was fitted to the data under an unspecified

fU . To improve stability of Algorithm (A) we first standardized the data (Yi, Si)

to have zero sample means and unit sample variances. For p < 1, there are

altogether
(20

2

)

local minima at which Cp(β) is non-differentiable. The radius

of the circular region B̄ was calculated to be r = 2.3564. We set δ = 0.04713

and h = 0.09426 in Algorithm (A). For Algorithm (B), we selected six bootstrap

sample sizes, m1 = 5, m2 = 7, m3 = 9, m4 = 11, m5 = 13 and m6 = 15, and

drew 500 bootstrap samples for each size. A total of 121 distinct points from the

interval [0.03, 2] were selected as candidate values for p. Figure 1 displays the

estimates Ĝ(p), which attain a minimum at about p = 0.87. The corresponding

L0.87 estimate is (26.58,−0.002303). The plot of Ĝ(p) exhibits a sharp drop

as p passes from 0.8 to 0.9, where the mode of Lp estimation switches from

local maximization to global minimization. Figure 2 compares the fitted L0.87

regression line with those obtained from the more conventional L2 and L1 fits.

5. Lp Estimation under Asymmetric fU

Extension of our theory and adaptive Lp procedure to asymmetric fU is

possible if d > 1 and the regression model (1.1) contains an intercept term such

that Z1 = [1,W1]
T, with W1 having a nondegenerate distribution in R

d−1. In
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this case β̂(p) converges in probability to [β01(p), β02, . . . , β0d]
T, where β01(p)

depends on p and satisfies E[ sgn(U1 − β01(p))|U1 − β01(p)|
p−1] = 0, and the

regression parameters β02, . . . , β0d remain independent of p. Thus adaptive Lp

estimation still makes sense if we are interested in estimating only the regression

parameters but not the intercept term.

To fix ideas, we consider a fixed p > 0 and suppose that fU (u) = (u −

β01(p))
ζ+
p −1L+

p (u−β01(p)) if u > β01(p) and fU (u) = (β01(p)−u)
ζ−p −1L−

p (β01(p)−

u) otherwise, for some ζ+
p , ζ

−
p > 0 and nonnegative functions L+

p ,L
−
p slowly

varying near 0. Assume without loss of generality that ζ+
p ≥ ζ−p . We can show

that the asymptotic properties of β̂(p) are determined by the shape of fU (u) for

u ≤ β01(p). Results of our Theorems 2 and 3 then carry over if we replace (ζ,L)

by (ζ−p ,L
−
p ) and slightly modify the boundary conditions of the various cases

in Theorem 2. Technical details are given in Lai and Lee (2003). We remark

also that the best possible convergence rates, as derived from Theorem 1, are in

general ζ- and q-specific under (A3) and (A4), respectively. Ratewise efficiency

should therefore be attributed to any estimator of [β02, . . . , β0d]
T which achieves

the fastest rate maximized over all location shifts of fU that give rise to possibly

different values of ζ or q. Our adaptive Lp procedure can be applied without

change to this general situation. Whether the resulting adaptive Lp estimator is

ratewise efficient remains, however, an open question.

6. Simulation Study

We conducted a simulation study to compare our adaptive Lp procedure

with other methods for location estimation. Consider a location model Yi =

β0 + Ui, where Ui has the density function fU(u) ∝ |u|ζ−1L(|u|)1{|u| ≤ 1} with

probability 0.75 and fU (u) ∝ |u|−3.011{|u| > 1} with probability 0.25, where

1{·} is the indicator function. The true value β0 was fixed at 0. Note that the

specification of fU above allows for a heavy-tailed component which accounts

for 25% of the complete distribution. We considered in our study the following

density shapes: (a) ζ = 0.3, L(|u|) ≡ 1; (b) ζ = 0.8, L(|u|) ≡ 1; (c) ζ = 1,

L(|u|) = 2−|u|0.25; (d) ζ = 1, L(|u|) = 2−|u|2; (e) ζ = 1, L(|u|) = 1+ |u|0.25; (f)

ζ = 1, L(|u|) = 1 + |u|2; (g) ζ = 1.3, L(|u|) ≡ 1; and (h) ζ = 1.8, L(|u|) ≡ 1. All

cases except (d) and (f) favour use of p < 1 asymptotically. We approximated the

mean squared error of each estimator by averaging over 1,000 random samples

of size n = 50 drawn for each case. The range of p was restricted in (0, 2].

Included in the study were the non-adaptive L1, L1.5 and L2 estimates, as

well as the following three adaptive approaches.

(i) Our adaptive Lp estimate, β̂(p̂) — for which the bootstrap sample sizes ms

were set to be 15, 20, 25, 30 and 35 in Algorithm (B).
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(ii) Adaptive Lp estimate based on sample kurtosis — for which we combined

the results of Harter (1974–1975) and Sposito and Hand (1983) to establish

a rule for choosing p : set p = 2 if κ̂4 ≤ 2.2, and set p = 9/κ̂2
4 + 1 if κ̂4 > 2.2,

where κ̂4 = n
∑n

i=1(Yi − Ȳ )4/{
∑n

i=1(Yi − Ȳ )2}2 is the sample kurtosis and

Ȳ denotes the sample mean.

(iii)Arcones’ (2005) adaptive Lp estimate based on asymptotic MSE — for which

p was taken to minimize (p − 1)−2n−1
∑n

i=1 |Yi − β̂(1)|2p−2{n−1
∑n

i=1 |Yi −

β̂(1)|p−2)}−2, which, as implied by Arcones (2005), is consistent for the MSE

of β̂(p) for p > 1 under n1/2-consistency conditions.

Note that the adaptive approaches (ii) and (iii) confine the choice of p to only

values greater than 1.

We see from Figure 3 that the MSE of our adaptive estimate β̂(p̂) is generally

the smallest under each density considered. Compared to our procedure, both

adaptive approaches (ii) and (iii) are relatively less accurate, with approach (iii)

outperforming (ii) slightly. The L1.5 estimate lies somewhere between (ii) and

(iii), but the L1 and L2 estimates are markedly less accurate. Particularly poor

is the performance of β̂(2), which is adversely affected by the heavy tails present

in our underlying densities. Accuracy of β̂(1) deteriorates as ζ increases, which
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0.00

0.04

0.06

(a) (b) (c) (d) (e) (f) (g) (h)

M
S
E

(i) Lai&Lee
(ii) Kurtosis
(iii) Arcones

L2

L1

L1.5

Figure 3. MSE’s of Lp estimators under various error densities : (a) ζ = 0.3;

(b) ζ = 0.8; (c) upwardly pointed, ζ = 1, q = 0.25; (d) upwardly pointed,

ζ = 1, q = 2; (e) downwardly pointed, ζ = 1, q = 0.25; (f) downwardly

pointed, ζ = 1, q = 2; (g) ζ = 1.3; and (h) ζ = 1.8.
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Table 1. Means of adaptive choices of p over 1,000 samples under different
procedures. Standard deviations are given in square parentheses.

Density q ζ Lai & Lee’s approach Sample Kurtosis Arcones’s method

(a) 0.3 1.024 [ 0.067 ] 1.227 [ 0.225 ] 1.321 [ 0.127 ]

(b) 0.8 1.368 [ 0.380 ] 1.343 [ 0.328 ] 1.530 [ 0.232 ]

(c) 0.25 1 1.420 [ 0.472 ] 1.359 [ 0.332 ] 1.565 [ 0.252 ]
(d) 2 1 1.396 [ 0.481 ] 1.352 [ 0.325 ] 1.580 [ 0.249 ]

(e) 0.25 1 1.583 [ 0.574 ] 1.381 [ 0.346 ] 1.647 [ 0.271 ]

(f) 2 1 1.678 [ 0.507 ] 1.421 [ 0.363 ] 1.709 [ 0.276 ]

(g) 1.3 1.653 [ 0.502 ] 1.410 [ 0.369 ] 1.725 [ 0.270 ]

(h) 1.8 1.760 [ 0.455 ] 1.451 [ 0.385 ] 1.806 [ 0.252 ]

is not surprising in view of its convergence rate of rn = n1/(2ζ). The advantage

of our adaptive procedure over β̂(1.5) is discernible in cases (a), (b), (g) and (h);

whereas in cases (c)−(f), the two methods have very similar performance. A plau-

sible explanation can be found by examining the ratio MSE(β̂(p̂))/MSE(β̂(1.5))

which, as asserted by Theorems 1 and 2, has orders n−65/12, n−3/2, n−1/3, n0,

n−1/3, n0, n−7/13 and n−1/9 under cases (a)−(h), respectively. This suggests

that the discrepancy between the two methods should be most notable, at least

asymptotically, in cases (a), (b) and, to a lesser extent, case (g).

Table 1 reports the means and standard deviations of p found under the

adaptive approaches (i), (ii) and (iii), respectively. In general, the values of p

selected by all three procedures decrease as ζ decreases. This agrees broadly with

our theoretical assertion that a faster convergence rate is associated with a small

p for small ζ. Note also that our adaptive procedure occasionally selected p̂ < 1

for calculating β̂(p̂) when ζ was small, and thus adapted more effectively to the

shape of fU around 0.

7 Conclusion and Discussion

We establish the best possible convergence rates for regression-equivariant

estimators under a broad class of error densities, and thereby define a notion

of ratewise efficiency. Similar to the parametric maximum likelihood approach,

the Lp method is shown to provide a general strategy for constructing ratewise

efficient estimators, at least up to a slowly-varying factor, provided p is selected

from (0,∞) rather than the conventional, more restrictive, range [1, 2]. Indeed,

ratewise efficiency can be achieved under an arbitrarily wide range of error density

shapes by a sufficiently small p. We propose also an adaptive procedure for Lp

regression which succeeds in adapting the choice of p to this general class of

error densities to yield an approximately ratewise efficient estimator β̂(p̂). That

the precise mode of Lp estimation and the convergence rate rn of β̂(p) depend
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on p and fU poses two practical difficulties that are successfully circumvented
by Algorithms (A) and (B) respectively. Our simulation study shows that our

adaptive procedure yields smaller MSE than other Lp estimates.
One major criticism against the classical L2 method concerns its undesirable

sensitivity to heavy tails of fU . Such non-robustness is in fact characteristic of
any Lp procedure with p > 1, for which the convergence rates never exceed and

can be markedly slower than n1/2. It is in this context that use of p ≤ 1 offers
another advantage, in addition to being ratewise efficient under the density class

(2.1). We see from Theorem 2 that results for Lp estimators based on p ≤ 1
require no moment conditions on fU and are therefore robust against heavy tails.

We also see that a convergence rate of at least n1/2 is guaranteed by choosing
p ∈ (1/2, 1) irrespective of the central or tail behaviour of fU . This suggests

that our adaptive procedure may opt to restrict the candidate values p1, . . . , pW

within the range (1/2, 1) if we are willing to trade a little ratewise efficiency for

robustness against heavy-tailed fU . It should be remarked though that even such
choices of p may not be robust against outliers in the covariate space created by,

for example, points which are highly influential or have high leverages.
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Appendix

In what follows C stands for a universal positive constant which may vary

from occurrence to occurrence.

A.1. Proof of Theorem 1

Proofs of parts (i)−(iii) are modelled after Ibragimov and Has’minskii (1981).
To prove (i), note first that the experiment E generated by (Y1, Z1) un-

der model (1.1) is regular, which follows from continuity of f ′U and finiteness of
the Fisher information E[Z1Z

T
1 ]IU . Denote by H(β1, β2) the Hellinger distance

between the distributions of (Y1, Z1) under β0 = β1 and β0 = β2. Under reg-
ularity of E , Theorem I.7.6 of Ibragimov and Has’minskii (1981) implies that

H(β1, β2)
2 ≤ (1/4)‖β1 − β2‖

2
E[ZT

1 Z1]IU . Part (i) then follows from the proof of
Ibragimov and Has’minskii’s (1981) Theorem I.6.1, and equivariance of β̂.

Under (A2), the function ψ(u)
def
= fU(u)−|u|L(0) is clearly twice continuously

differentiable with ψ(0) = ψ′(0) = 0. It follows that the arguments used for
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proving Ibragimov and Has’minskii’s (1981) Theorem II.5.1 hold almost surely

conditional on (Z1, . . . , Zn). Taking expectation with respect to (Z1, . . . , Zn) then

verifies local asymptotic normality (LAN) of model (1.1) with convergence rate
(n log n)1/2. Part (ii) now follows from the LAN property and Theorem II.12.1 of

Ibragimov and Has’minskii (1981) with the loss function set to be the Euclidean

norm.

Under (A3), note by Theorem VI.1.1 of Ibragimov and Has’minskii (1981)

that there exists ǫ∗ > 0 such that

Π(ǫ)
def
=

∫

∣

∣

∣
fU(u− ǫ)

1
2 − fU (u)

1
2

∣

∣

∣

2
du ≤ C|ǫ|ζ , |ǫ| < ǫ∗. (A.1)

Write H(β1, β2)
2 = H1+H2, whereH1 = E

[

Π(ZT
1 (β1 − β2)); |Z

T
1 (β1 − β2)| ≥ ǫ∗

]

and H2 = E
[

Π(ZT
1 (β1 − β2)); |Z

T
1 (β1 − β2)| < ǫ∗

]

. Note that

H1 ≤ 4P(|ZT
1 (β1 − β2)| ≥ ǫ∗) ≤ 4ǫ∗−2‖β1 − β2‖

2
E‖Z1‖

2 ≤ C‖β1 − β2‖
2,

and that, by (A.1), H2 ≤ CE
[

|ZT
1 (β1 − β2)|

ζ ; |ZT
1 (β1 − β2)| < ǫ∗

]

≤ C‖β1 −

β2‖
ζ . Combining the above bounds on H1,H2 and noting that ζ < 2, we obtain

that H(β1, β2)
2 ≤ C‖β1 − β2‖

ζ for sufficiently small ‖β1 − β2‖. Part (iii) now

follows from the proof of Ibragimov and Has’minskii’s (1981) Theorem I.6.1, and

equivariance of β̂.
To prove (iv), assume (A4) and note by equivariance of β̂ and Schwarz’s

inequality that, for any c, γ ∈ R
d with cTγ 6= 0,

1 =

{

E

[

cT(β̂ − β0)(c
Tγ)−1

{

n
∏

i=1

[

fU(Ui − ZT
i γ)

fU (Ui)

]

− 1

}]}2

≤ E{cT(β̂ − β0)}
2(cTγ)−2

E

[

n
∏

i=1

fU (Ui − ZT
i γ)

2

fU (Ui)2
− 1

]

= E{cT(β̂ − β0)}
2(cTγ)−2 {(1 + I(γ))n − 1} ,

where I(γ) = E
∫

fU (u− ZT
1 γ)

2/fU (u) du− 1, so that

E{cT(β̂ − β0)}
2 ≥ (cTγ)2 {(1 + I(γ))n − 1}−1 . (A.2)

Note that (A.2) holds trivially if cTγ = 0; so we remove from now on the con-

straint cTγ 6= 0. Putting c to be the d standard basis vectors in R
d successively

in (A.2) and then summing, we get

E‖β̂ − β0‖
2 ≥ ‖γ‖2 {(1 + I(γ))n − 1}−1 . (A.3)

Define, for x > 0, Iq(x)
def
= x2q+1, x2| log x| and x2 for q < 1/2, = 1/2 and

> 1/2, respectively. It follows by Polfeldt’s (1970) Theorem, under the mo-

ment condition on FZ , that there exist constants C1, C2 > 0 such that C1 <
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|I(γ)|/Iq(‖γ‖) < C2 for sufficiently small ‖γ‖. Thus we have, by putting ‖γ‖ =

I−1
q (n−1) in (A.3), that E‖β̂−β0‖

2 ≥ CI−1
q (n−1)2 ≥ Cϕq(n)−2 for some positive

constant C independent of n and the choice of β̂, which implies (iv).

A.2. Proofs of Theorems 2 and 3

Details of the proof of Theorem 2 can be found in Appendices A.1 (for cases

(i)−(vii)) and A.2 (for cases (viii)−(xiii)) of Lai and Lee (2005). Appendix A.3

of the same paper contains the proof of Theorem 3.

As an illustration we outline below the proof of Theorem 2 as adapted from

Lai and Lee (2005). Define, for any fixed s, t ∈ R
d and λ > 0, D(s/λ) = E|U1 −

ZT
1 s/λ|

p − E|U1|
p and E(s/λ, t/λ) = E

[

|U1 − ZT
1 s/λ|

p − |U1 − ZT
1 t/λ|

p
]2

. Then

there exist 2ν > ω > 0 and functions L1, L2 : (0,∞) → [0,∞), slowly varying

at ∞, such that λωL1(λ)E(s/λ, t/λ) and λνL2(λ)D(s/λ) have finite, nontrivial,

limits as λ → ∞, for any s, t ∈ R
d. The latter limit is either strictly positive or

strictly negative for all s 6= 0. Define, for β, z ∈ R
d and y ∈ R, mβ(y, z) to be

−|y−zTβ|p times the sign of the above limit. For s ∈ R
d, define m̃s = mβ0+s−mβ0

and Mn(s) = n1/2r
ω/2
n L1(rn)1/2

(

n−1
∑n

i=1 m̃s/rn
(Yi, Zi) − E m̃s/rn

(Y1, Z1)
)

.

Consistency of β̂(p) for β0 follows from a Glivenko-Cantelli theorem for the

class of functions mβ and the fact that β0 is a well-separated maximizer of

Emβ(Y1, Z1). Note that rn satisfies r
ν−ω/2
n L2(rn)L1(rn)−1/2 ∼ n1/2 in general.

By assumption we have n−1
∑n

i=1mβ̂(p)(Yi, Zi) ≥ n−1 supβ∈B

∑n
i=1mβ(Yi, Zi) −

op(r
−ν
n L2(rn)−1). Define Sj,n = {β : 2j−1 < rn‖β−β0‖ ≤ 2j}. For fixed η,M > 0,

we have, using properties of β̂(p) and maximal inequalities,

P

(

rn‖β̂(p) − β0‖ > 2M
)

≤
∑

M≤j≤log2 ηrn

P

(

n−1 sup
β∈Sj,n

n
∑

i=1

m̃β−β0(Yi, Zi) ≥ − 22M−1r−ν
n L2(rn)−1

)

+ o(1)

= O
(

∑

j≥M

2−j(ν−ω
2
)
)

+ o(1) → 0 as n,M → ∞,

so that rn(β̂(p) − β0) = Op(1).

It is easy to verify that any finite-dimensional covariance matrix of Mn con-

verges to a nonsingular limit. Define Mδ(y, z) to be the minimum or maximum

of
{

δ‖z‖ |y − zTβ0|
p−1, δp‖z‖p

}

according as p < 1 or p ≥ 1, respectively. The

Lindeberg-Feller condition is implied by the condition that for any c, η > 0,

rω
nL1(rn)E

[

M c
rn

(Y1, Z1)
2;M c

rn
(Y1, Z1) > ηn

1
2 r

−ω
2

n L1(rn)−
1
2

]

→ 0.
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This in turn follows from the fact that rp∨1
n n1/2r

−ω/2
n L1(rn)−1/2 → ∞ for cases

(i)−(vii) and that rn = o(n) and rn → ∞ for cases (viii)−(xiii), thus confirm-

ing finite-dimensional weak convergence of Mn to a zero-mean Gaussian process

G. This, together with its stochastic equicontinuity, which follows by applying

Theorem 2.11.22 of Van der Vaart and Wellner (1996, p.220), proves that Mn

converges weakly to G as a process.

Note that rn(β̂(p) − β0) maximizes the process s 7→ n−1
∑n

i=1 m̃s/rn
(Yi, Zi)

up to op(r
−ν
n L2(rn)−1), so that, for sufficiently large n,

Mn(rn(β̂(p) − β0)) + rν
nL2(rn)E m̃β̂(p)−β0

(Y1, Z1)

≥ sup
s∈Rd

{

Mn(s) + rν
nL2(rn)E m̃ s

rn
(Y1, Z1)

}

− op(1).

Theorem 2 then follows by existence of limλ→∞ λνL2(λ)E m̃s/λ(Y1, Z1) and weak

convergence of Mn to G.

A.3. Proof of Lemma 1

Note first that, for any β ∈ B,

∣

∣

∣
C̃p(β) − Cp(β)

∣

∣

∣
≤

∑T
t=1 |Cp(β) − Cp(zt)|K(β−zt

h )
∑T

t=1K(β−zt

h )
. (A.4)

Approximation by integration gives that, for some constant C > 0,

inf
β∈B

T
∑

t=1

K(
β − zt
h

) ≥ C
(h

δ

)d
(1 + o(1)), (A.5)

provided δ satisfies (4.2). For p < 1, we have

|Cp(β) − Cp(zt)| = Op

(

n−1
n

∑

i=1

|(β − zt)
TZi|

p
)

= Op(‖β − zt‖
p). (A.6)

For any arbitrary a > 0, observe, by considering ‖β−zt‖ ≤ ah and ‖β−zt‖ > ah

separately, that

T
∑

t=1

‖β − zt‖
pK(

β − zt
h

) = Op

{

(ah)p
(h

δ

)d
+ a−λ0δ−d

}

. (A.7)

It follows by (A.4), (A.5), (A.6), (A.7), and setting a = h−(p+d)/(p+λ0) that

sup
β∈B

∣

∣

∣
C̃p(β) − Cp(β)

∣

∣

∣
= Op

(

h
p(λ0−d)

λ0+p

)

. (A.8)
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For p ≥ 1, we have |Cp(β) − Cp(zt)| = Op (‖β − zt‖
p + ‖β − zt‖). Applying

similar arguments as for p < 1 gives that

sup
β∈B

∣

∣

∣
C̃p(β) − Cp(β)

∣

∣

∣
= Op

(

h
λ0−d

λ0+1

)

. (A.9)

Lemma 1 then follows from (A.8) and (A.9), provided h satisfies (4.2).

A.4. Proof of Lemma 2

Let p ≤ 1 + ν/2 be fixed. Assume B = ∞. Denote by β̂∗s (p) the Lp estimate

calculated from a generic bootstrap sample of size ms. Then

exp(T ∗
s (p)) = E

[

(β̂∗s (p) − β̂(p))2 | (Y1, Z1), . . . , (Yn, Zn)
]

.

We see from Theorem 2 that the convergence rate rn typically has the form n̺ℓ(n)

for some ̺ > 0 and some function ℓ slowly varying at infinity. Using the fact

that log{ℓ(n)/ℓ(ms)} = o(Us), we have T ∗
s (p) = logMSE(β̂(p))+2̺Us + op(Us),

s = 1, . . . , S. We linearly regress the T ∗
s (p)’s on the Us’s to estimate the intercept

term logMSE(β̂(p)) by Ĝ(p): see Step 3 of Algorithm (B). Note that the choices

of m1, . . . ,mS guarantee that Ū and SUU have magnitudes of orders log n and

(log n)2, respectively. This, together with the fact that logMSE(β̂(p)) has order

log n, implies Lemma 2.
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