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We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It

is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles

with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely

delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that

particles are always localized in one-dimensional systems for arbitrary weak disorders to break down.

Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with

cold atoms in a light-induced gauge field.
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Since the pioneering work of Anderson [1], a substantial
amount of effort has been devoted to the understanding of
transport properties of electrons in disordered systems [2].
A very significant advance along this direction is the scal-
ing theory proposed by Thouless et al. [3] and Abrahams
et al. [4]. In the scaling theory, it is argued that the quantity
� � d lng=d lnL is a monotonic and nonsingular function
of g only, with g a dimensionless conductance and L the
sample size. Currently there exists a well-known result that
the conductance g approaches zero as the sample size L
goes to infinity for any disordered one-dimensional system.
In particular, an arbitrary weak disorder strength leads to
the localization of all states of electrons in one-
dimensional chains [4–6].

Actually, an implicit precondition for the above results is
that the particles are governed by the Schrödinger equation
since the (quasi)particles addressed in condensed matter
systems are in general nonrelativistic. Notably, relativistic
Dirac particles have recently attracted a significant amount
of attention because the quasiparticles in honeycomb lat-
tices (such as electrons in the graphene [7,8] and cold
atoms in the optical lattices [9,10]), ultracold atoms in a
light-induced gauge field [11–15], and trapped ions [16]
may be described by the relativistic Dirac equation.
However, Anderson localization in the relativistic region
has been less studied in literature [17]. Apart from Klein’s
finding [18] that the transmission of Dirac particles is
essentially different from that of nonrelativistic particles,
it is also fundamentally important and interesting to study
the aforementioned localization issue of relativistic parti-
cles and to work out how to simulate the predicted results
with currently available techniques.

In this Letter we study Anderson localization of relativ-
istic particles in disordered one-dimension systems by
using the finite scaling method and the transfer-matrix
technique. The finite-size scaling analysis reveals that all
the states of the massive relativistic Dirac particles are

localized in the systems, while the localization length of
relativistic particles is longer than that of nonrelativistic
particles with the same disorder strength. More intrigu-
ingly, the states of the massless Dirac particles are entirely
delocalized for arbitrary disorder strength due to the chiral
symmetry, providing a distinct example that breaks down
the well-known result for nonrelativistic particles that all
states are localized in disordered one-dimensional systems.
Furthermore, we propose a method to simulate the wanted
Dirac particles in disordered one-dimensional chains and
the related (de)localization properties with recently or
newly developed techniques in the cold atomic systems
[19–24].
Let us consider a particle transmitting through a one-

dimensional chain with N rectangular barriers as shown in
Fig. 1(a), where the potential

FIG. 1 (color online). Schematic representation of the system.
(a) N rectangular potentials. (b) Atom with tripod-level structure
interacting with three laser beams. (c) The configuration of the
laser beams to realize a Dirac-like equation with the lasers �j

and a disordered potential with the laser �L. The atoms are
confined in a one-dimensional waveguide by a harmonic trap.
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VðxÞ ¼
�
Vn xn � x � x0n
0 others;

ðn ¼ 1; 2; . . . ; NÞ; (1)

with Vn being a constant randomly distributed in the range
½��; ��. Here � represents the disorder strength. For sim-
plicity, we assume that x0n � xn � a and xnþ1 � x0n � d for
any n. A relativistic particle with the mass m and energy E
is inserted into the N barriers from the left, which is
described by the Dirac equation

�
�i@c�x

d

dx
þmc2�z þ VðxÞ � E

�
c ðxÞ ¼ 0; (2)

where c denotes the velocity of light, �x;z are the Pauli

matrices, and c ðxÞ represents a two-component spinor. A
general solution of Eq. (2) for any region with a constant
potential, e.g., Vn in Fig. 1(a), is given by

c ðxÞ ¼ A
1
�n

� �
eði=@Þpnx þ B

1
��n

� �
e�ði=@Þpnx; (3)

where pn represents the momentum of the particle, �n ¼
ðE�mc2 � VnÞ=ðcpnÞ, and ðE� VnÞ2 ¼ m2c4 þ c2p2

n. If
E and Vn are fixed, then pn can in principle be either
positive or negative. Here we choose the positive one,
and thus the coefficients A and B denote the amplitudes
of the spinors moving along the positive x axis and its
opposite direction, respectively.

We now look into the transmission for N potentials as
shown in Fig. 1(a). Denoting the amplitudes of the spinor at
a position approaching xn (x0n) with an infinitesimal
amount from the left (right) as fAn; Bng (fA0

n; B
0
ng), we

may obtain a relation between the amplitudes based on
the continuity of the wave function,

A0
n

B0
n

� �
¼ MD

n
An

Bn

� �
; (4)

where MD
n denotes the transfer matrix of the nth barrier,

and its elements are given by

ðMD
n Þ11 ¼

�
cos

pna

@
þ i

�2 þ �2
n

2��n

sin
pna

@

�
e�ði=@Þpa;

ðMD
n Þ12 ¼

�
i
�2
n � �2

2��n

sin
pna

@

�
e�ði=@Þpðxnþx0nÞ;

ðMD
n Þ21 ¼ ðMD

n Þ�12; ðMD
n Þ22 ¼ ðMD

n Þ�11;

(5)

with � ¼ ðE�mc2Þ=ðcpÞ and E2 ¼ c2p2 þm2c4.
For comparison, we recall the results for the nonrelativ-

istic case which is described by the Schrödinger equation

½� @
2

2m
d2

dx2
þ VðxÞ � Ek��ðxÞ ¼ 0, where Ek is nonrelativ-

istic kinetic energy. In this case, we have a relation similar
to Eq. (4), but MD

n is replaced by MS
n which is the transfer

matrix for the nth barrier calculated by the Schrödinger
equation. It is straightforward to derive that the elements of
the matrixMS

n have the same form as Eq. (5), but � and pn

(and �n) are replaced by the nonrelativistic counterparts

pS ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2mEk

p
and pS

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEk � VnÞ

p
, respectively.

We consider an incoming relativistic particle with en-
ergy E (Ek for nonrelativistic kinetic energy) from the left,
then the amplitude of the outgoing at the right side of theN
barriers is related to the amplitude of the incoming by the
relation

Ar

Br

� �
¼ MJ Al

Bl

� �
;

where the total transfer matrix MJ (hereafter we use the
superscripts J ¼ D and S to denote the relativistic and
nonrelativistic cases, respectively) for the N barriers reads

MJ ¼ MJ
ND

JMJ
N�1 � � �DJMJ

2D
JMJ

1 : (6)

Here DJ ¼ diagfexpð�ipJd=@Þ; expðipJd=@Þg represents
the displacement matrix between two nearest neighbor

barriers, with pD ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2=c2 �m2c2

p
.

The transport properties can be extracted from the trans-
fer matrices for both relativistic and nonrelativistic cases.
At zero temperature, the conductance through the N bar-

riers is given by the Landauer formula [25] GJ ¼ e2

h g
J,

where gJ ¼ 1=jðMJÞ11j2 is the dimensionless conduc-
tance. It is noted that the localization length �J or the
Lyapunov exponent �J is defined as �J � 1=�J ¼
�limL!1hlngJi=L, where L is the total length of the chain
L ¼ Nb ¼ N (we choose b ¼ dþ a as the unit of length),
and h� � �i denotes the averaging over the disorders. The �J

is a function of the energy E (Ek) and can be used to
characterize a localized state: a state is a localized state
if �J is finite and is a delocalized (extended) state if �J is
divergent.
It is hard to obtain an analytical expression for the

localization length �J in a general case; however, it has
been shown that limL!1ðhlngSi=LÞ always exists for any
energy of a nonrelativistic particle in an arbitrary weak
one-dimensional disordered system [2]. In a similar way,
we can find that limL!1ðhlngDi=LÞ also exists for relativ-
istic massive particles. The numerical procedure for both
relativistic and nonrelativistic cases is as follows: one can

define �J
N ¼ 1

Nc

PNc

i¼1
1
N lngJi ðNÞ, where gJi ðNÞ is the con-

ductance for a specific configuration of fixed N barriers,
and then �J

N is an averaged quantity for the number of Nc

configurations. We find that, for both nonrelativistic and
relativistic massive particles, a convergent value �J

N can
always be derived for sufficient large N, which could be
considered as the localization length �J of the system. The
result implies that the state for the massive Dirac particles
is also a localized state for arbitrarily weak disorders, as in
the nonrelativistic case. The localization length (Lyapunov
exponent) as a function of the potential width a is plotted in
Fig. 2. It is seen that the localization length of the relativ-
istic particles is always longer than that of the nonrelativ-
istic particles.
We now turn to examine the validity of the single-

parameter scaling equation �J � d lngJ

d lnL in the relativistic

region. The scaling quantities �J as a function of hlngJi for
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m ¼ 2:5� 10�4m0 with m0 the mass of a nuclear in both
relativistic and nonrelativistic cases are plotted in Fig. 2(b).
The nonrelativistic case was studied in Ref. [6], and our
results are essentially the same as those presented there. It
is seen clearly from Fig. 2(b) that the assumption of the
single-parameter scaling theory is still valid for the mas-
sive Dirac particles in the disordered systems.

It is interesting to note that an analytical result for a
massless particle (m ¼ 0) can be derived, from which one
is able to find unexpectedly that the particle is entirely
delocalized for arbitrary energy. For massless particles, the

transfer matrix of total N barriers is obtained as M ¼
diagfei’=@; e�i’=@g with ’ ¼ �NpbþPN

n¼1 pna. The

transmission amplitude t ¼ expði’=@Þ is a pure phase
factor, and the dimensionless conductance gD � 1. In
this case, the localization length �D for the massless par-
ticles approaches infinity, and thus breaks down the famous
conclusion that the particles are always localized for any
weak disorder in one-dimensional systems.

The inherent physics is simply the chiral symmetry. The
time-independent Hamiltonian for the Dirac particles is
given byHD ¼ �i@c�x

d
dx þmc2�z þ VðxÞ, and the chiral

operator for a Dirac spinor is the matrix �5 ¼ �x in one-
dimensional cases. Under the discrete chiral transforma-
tion the spinor is transformed as c c ¼ �5c and the trans-
formed Hamiltonian

Hc ¼ �5HD�
5 ¼ �i@c�x

d

dx
�mc2�z þ VðxÞ: (7)

Then the chirality is conserved for a massless particle.
Noting that �5�� ¼ ��� with

�� ¼ 1
��

� �
;

the general solution of the massless Dirac equation de-

scribed in Eq. (3) can be rewritten as c ðxÞ ¼

A�þeði=@Þpx þ B��e�ði=@Þpx; i.e., the first (second) term
is actually the eigenstate of the chiral operator with posi-
tive (negative) chirality. Assuming that the incoming wave

function is c inðxÞ ¼ A�þeði=@Þpx, the outgoing wave func-
tion c outðxÞ ¼ A0�þeði=@Þpx þ B0��e�ði=@Þpx has the same
positive chirality; i.e., the reflection rate B0 must be zero for
massless particles because of the conservation of the chi-
rality. However, the chirality is not conserved for a massive
particle, so the reflection B0 in principle cannot be always
zero. In this case the massive particle should be localized
for any weak disorders. Alternatively, an intuitive picture
of localization of relativistic particles may be understood
with the Klein paradox. For massive particles, when the
height of the potential barrier reaches the order of mc2, the
barrier becomes nearly transparent. Since some of the
barriers are transparent, the localization length increases.
For the massless particles mc2 is zero and thus every
barrier is transparent. Therefore, massless particles are
always delocalized.
We now turn to address how to simulate the relativistic

particles with cold atoms. We consider the adiabatic mo-
tion of atoms having a tripod-level configuration in the
field of three laser beams, as shown in Figs. 1(b) and 1(c)
[12–14]. The ground states j1i, j2i, and j3i are coupled to
an excited state j0i through spatially varying laser fields,
with the corresponding Rabi frequencies �1, �2, and �3,
respectively. The full quantum state of the atoms �ðrÞ can
be described as �ðrÞ ¼ P

3
j¼0 �jðrÞjji, where r is the

atomic position. The original Hamiltonian of the atom

with the mass ma takes the form H ¼ P2

2ma
þ VHðrÞ þ

VLðrÞ þHint, where VHðrÞ � P3
j¼0 V

H
j ðrÞjjihjj repre-

sents an external harmonic trapping potential, and VLðrÞ
denotes a state-independent random potential. Hint

is the laser-atom interaction Hamiltonian given by Hint ¼
�@

P3
j¼1ð�jj0ihjj þ H:c:Þ, where the Rabi frequencies are

chosen as �1 ¼ �sin	e�ikx=
ffiffiffi
2

p
, �2 ¼ �sin	eikx=

ffiffiffi
2

p
,

and �3¼�cos	e�iky. Here �¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij�1j2þj�2j2þj�3j2
p

,
k is the laser wave vector, and the angle 	 defines the
relative intensity [12–14]. Following Ref. [12], one is
able to obtain an effective one-dimensional Dirac-type
Hamiltonian as

Hk 	 c?�xpx þ �z�z þ VH
1 ðxÞ þ VLðxÞ; (8)

up to an irrelevant constant, provided that the wave vector

of the atoms px=@ 
 k cos	 [26]. Here �z � @
2k2

2ma
sin4	,

c? ¼ @k
ma

cos	 is the effective ‘‘speed of light.’’ In the

derivation, we have assumed that the trapping potential
VHðrÞ is independent of the internal states. Comparing the
original Dirac Eq. (2) with the Dirac-like Eq. (8) achieved
in cold atoms, the effective speed of light in cold atoms is
c? and the effective mass m ¼ ma

2 tan2	sin2	. Note that the

mass m of the simulated Dirac particle is not the mass ma

of the cold atom itself and it is a remarkable feature that the
mass m in the simulated Dirac-like equation can be con-

FIG. 2. (a) The localization length �J as a function of the
potential width a. The inset is the corresponding Lyapunov
exponent �J . (b) The scaling quantity �D (�S in the inset) as
a function of hlngDi. hlngJi is the average of 1000 configurations.
The other parameters are E ¼ 1:05mc2 and � 2 ½�2; 2� with the
units of mc2.
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trolled by the laser beams. Thus both the massive and
massless Dirac equations can be realized with cold atoms
[27].

Finally, we discuss briefly the detection of the localiza-
tion length. For concreteness, we assume that the tripod-
level configuration in Fig. 1(b) is provided by the atoms of
87Rb, where the ground states fj1i; j2i; j3ig are the hyper-
fine states 52S1=2ðF ¼ 1; mF ¼ �1; 0; 1Þ and the excited

state j0i is given by either the state of 52P3=2ðF ¼ 0Þ or
52P3=2ðF ¼ 2; mF ¼ 0Þ. In this case, the harmonic poten-

tial VHðrÞ has been experimentally realized by the far-off
resonant laser beams in the implementation of the spinor
condensates of 87Rb [24]. In addition, a feasible approach
to detect the localization length of the relativistic particles
can follow the case in nonrelativistic particles imple-
mented in Ref. [20], except that three additional laser
beams represented by �j are required. The experiment

starts with an elongated cluster of ultracold 87Rb atoms
trapped by a harmonic potential VH. A far-off-resonance
laser beam (such as wavelength 1:06 
m used in Ref. [20])
creates an optical waveguide along the horizontal x axis,
and a loose longitudinal trap is also realized by such laser
beam. Three laser beams with the resonant wavelength of
rubidium (wavelength 0:78 
m, near the resonant also
works) but different polarizations, as shown in Fig. 1(c),
are shined on the atoms to create an atomic gas that could
be described by the Dirac equation. The longitudinal con-
finement is switched off at time t ¼ 0, and the atomic gas
starts to expand in the guide along the x direction. A
disordered potential VL is applied to the expanding atomic
gas using an optical speckle field produced by passing a
laser beam (with the wavelength about 0:514 
m [20])
through a diffusing plate. One then detects the spatial
distribution of the atoms at increasing evolution time using
absorption imaging. As in the experiments [19,20], one can
directly measure the localization length of the particles by
the density profiles. Therefore, the comparison of
Anderson localization between relativistic and nonrelativ-
istic cases can be made for the conditions with and without
the additional laser beams �j. Considering that the two

main ingredients to observe (de)localization of Dirac par-
ticles, the disordered potentials [20] and light-induced
gauge field [23], have been achieved in the recent experi-
ments on the atoms of 87Rb, it is expected that the cold
atoms may offer a novel platform for the study of Anderson
localization in the relativistic region.

In summary, we have found that the relativistic particles
tend to delocalization and revealed that the massless ones
are entirely delocalized in disordered one-dimensional
systems. The predicted features may be tested by future
experiments with ultracold atoms. On the other hand, the
(de)localization of the relativistic particles may also be
observed in a disordered graphene, where Dirac electrons
are confined to move in one dimension and the impurities
are small enough such that the scattering does not occur
between the two Dirac points.

We thank L.-M. Duan for many fruitful discussions. This
work was supported by the RGC of Hong Kong, the NSFC
(No. 10674049), and the SKPBRC (No. 2006CB921800
and No. 2007CB925204).
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