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H∞ Fuzzy Filtering of Nonlinear Systems
With Intermittent Measurements

Huijun Gao, Member, IEEE, Yan Zhao, James Lam, Senior Member, IEEE, and Ke Chen

Abstract—This paper is concerned with the problem of H∞
fuzzy filtering of nonlinear systems with intermittent measure-
ments. The nonlinear plant is represented by a Takagi–Sugeno
(T–S) fuzzy model. The measurements transmission from the plant
to the filter is assumed to be imperfect, and a stochastic variable
satisfying the Bernoulli random binary distribution is utilized to
model the phenomenon of the missing measurements. Attention
is focused on the design of an H∞ filter such that the filter er-
ror system is stochastically stable and preserves a guaranteed H∞
performance. A basis-dependent Lyapunov function approach is
developed to design the H∞ filter. By introducing some slack ma-
trix variables, the coupling between the Lyapunov matrix and the
system matrices is eliminated, which greatly facilitates the filter-
design procedure. The developed theoretical results are in the form
of linear matrix inequalities (LMIs). Finally, an illustrative exam-
ple is provided to show the effectiveness of the proposed approach.

Index Terms—Basis-dependent Lyapunov function, H∞ filter
design, intermittent measurements, nonlinear systems, Takagi–
Sugeno (T–S) fuzzy systems.

I. INTRODUCTION

IN RECENT years, there has been a growing interest in the
Takagi–Sugeno (T–S) fuzzy model since it is a powerful so-

lution that bridges the gap between linear control and complex
nonlinear systems [4], [36], [37]. The important advantage of the
T–S fuzzy model is its universal approximation of any smooth
nonlinear function by a “blending” of some local linear system
models. Based on that local linearity, many complex nonlinear
problems can be simplified by employing the Lyapunov function
approach [9]. The earlier approach employs quadratic Lyapunov
functions, which has shown great effectiveness and has been
widely used up until now [5]–[7], [27], [30]. This approach at-
tempts to find a common positive definite matrix to satisfy a set
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of linear matrix inequalities (LMIs), which is recognized to be
conservative, and for some highly nonlinear complex systems,
the common Lyapunov matrix even does not exist [45]. This
has motivated the development of the more recent approach,
which employs basis-dependent Lyapunov functions. Results in
many papers have shown that this approach is less conserva-
tive because the basis-dependent Lyapunov function is also a
“blending” of some piecewise Lyapunov functions [15], [44].

Since the state variables in control systems are not always
available, state estimation is another important problem that
has been attracting attention from researchers around the world,
and a great number of important results have been reported.
To mention a few, the filtering problem has been solved for
linear systems for uncertain systems [35], Markovian jumping
systems [3], [17], [25], [38], sample-data systems [21], [23],
[33], systems with singular perturbation [18], [20], and systems
with time delays [11], [38]. Different norms have been used to
measure the filtering performance (see, for instance, the H∞
norm [12], [16], the L1 norm [1], and the L2–L∞ norm [19]).
There are also some results investigating the filtering problems
for nonlinear systems [10], [20], [24].

Among the aforementioned references, H∞ filtering is one of
the most important strategies [14], [38], [41]. The advantage of
H∞ filtering lies in that no statistical assumption on the noise
signals is needed, and thus, it is more general than classical
Kalman filtering [12]. Due to the powerful approximation prop-
erty of T–S fuzzy model, recently, there have been a number of
results on H∞ filtering for T–S fuzzy systems [8], [39], [45].
A robust H∞ filter design for continuous T–S fuzzy models
based on the notion of quadratic stability proposed in [8], [13],
and [45] are concerned with the H∞ filtering problem for a class
of discrete-time fuzzy systems using basis-dependent Lyapunov
functions with reduced conservatism. It is worth noting that all
these results are based on the implicit assumption that the com-
munication between the physical plant and filter is perfect, that
is, the signals transmitted from the plant will arrive at the filter
simultaneously and perfectly.

On another research front, networked control systems have
drawn much attention due to their great advantages over tra-
ditional systems such as low cost, reduced weight and power
requirements, simple installation and maintenance, and high re-
liability. However, the utilization of networks as communication
channels brings us new challenges, and the analysis and syn-
thesis problems become more difficult and complicated due to
their limited transmission capacity. Among a few other impor-
tant problems, data packet dropout is an important issue to be
addressed. So far, there have been a number of results focusing
on stability analysis of networked systems [29], [43]. Recently,
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increasing attention has been paid to the synthesis problems.
For example, state-feedback control is investigated in [40], and
H∞ control is developed in [22] and [42]. It is noted that most
of these results focus on the control-related problems. More
recently, there have been a few results on the filtering problem
for networked systems: References [31] and [32] consider the
filtering problem for stochastic systems with missing measure-
ments, and [26] investigates the problem of performing Kalman
filtering with intermittent observations, while [11] and [34] dis-
cuss that for stochastic systems with time delays. To the best
of the author’s knowledge, up until now, there has been no re-
search on the filter design for T–S fuzzy systems in the presence
of intermittent measurements, which still remains important and
challenging. This motivates the present study.

In this paper, we investigate the problem of H∞ filter design
for nonlinear systems with intermittent measurements. The non-
linear plant is represented by a T–S fuzzy model. The measure-
ments transmitted between the plant and the filter are assumed to
be imperfect, and the phenomenon of the missing measurements
is assumed to satisfy the Bernoulli random binary distribution.
Given a T–S fuzzy system, our objective is to design an H∞
filter such that the filter error system is stochastically stable and
preserves a guaranteed H∞ performance. A basis-dependent
Lyapunov function approach is developed to design a desired
H∞ filter. The introduction of some slack matrix variables elim-
inates the coupling between the system matrices and Lyapunov
matrix, which simplifies the filter design. The theoretical results
are in the form of LMIs, which can be solved by standard nu-
merical software. An example shows the effectiveness of the
proposed approach.

The rest of this paper is organized as follows. Section II
formulates the problem under consideration. The stability con-
dition and H∞ performance of the filter error system are given
in Section III. The filter design problem is solved in Section IV.
An illustrative example is given in Section V, and we conclude
the paper in Section VI.

The notation used in the paper is standard. The super-
script “T ” stands for matrix transposition; R

n denotes the n-
dimensional Euclidean space, and the notation P > 0 (≥ 0)
means that P is real symmetric and positive definite (semidefi-
nite). l2 [0,∞) is the space of square-integrable vector functions
over [0,∞); the notation | · | refers to the Euclidean vector
norm, and ‖ · ‖2 stands for the usual l2 [0,∞) norm. In sym-
metric block matrices or complex matrix expressions, we use
an asterisk (∗) to represent a term that is induced by symmetry,
and diag{. . .} stands for a block-diagonal matrix. In addition,
E{x} and E{x| y} will, respectively, mean expectation of x
and expectation of x conditional on y. Matrices, if their dimen-
sions are not explicitly stated, are assumed to be compatible for
algebraic operations.

II. PROBLEM FORMULATION

The filtering problem with intermittent measurements is
shown in Fig. 1, where the physical plant is represented by
a T–S fuzzy model, and the data missing phenomenon occurs
intermittently from the plant to the filter. In the following, we
model the whole problem mathematically.

Fig. 1. Filtering problem with intermittent measurements.

A. Physical Plant

The plant under consideration is a nonlinear discrete-time
system that is represented by the T–S fuzzy model as follows:

1) Plant Rule i: IF θ1(k) is Mi1 and θ2(k) is Mi2 and · · ·
and θp(k) is Mip , THEN

xk+1 = Aixk + Biwk

yk = Cixk + Diwk

zk = Lixk

i = 1, . . . , r. (1)

Here, Mij are the fuzzy sets, xk ∈ R
n is the state vector,

wk ∈ R
p is the noise signal that is assumed to be arbitrary sig-

nal in l2 [0,∞), zk ∈ R
q is the signal to be estimated, yk ∈ R

m

is the measurement output, Ai , Bi , Ci , Di , and Li are known
constant matrices with appropriate dimensions, r is the num-
ber of IF–THEN rules, and θ(k) = [ θ1(k), θ2(k), . . . , θp(k) ]
is the premise variable vector and measurable. The fuzzy basis
functions are given by

hi(θ(k)) =

∏p
j=1 Mij (θj (k))∑r

i=1
∏p

j=1 Mij (θj (k))

with Mij (θj (k)) representing the grade of membership of θj (k)
in Mij . In what follows, we will drop the argument of hi(θk )
for brevity. Therefore, for all k, we have

hi ≥ 0, i = 1, 2, . . . , r

r∑
i=1

hi = 1. (2)

Let ρ be a set of basis functions satisfying (2). A more compact
presentation of the T–S discrete-time fuzzy model is given by

xk+1 = A(h)xk + B(h)wk

yk = C(h)xk + D(h)wk

zk = L(h)xk (3)

where

A(h) =
r∑

i=1

hiAi, B(h) =
r∑

i=1

hiBi, C(h) =
r∑

i=1

hiCi

D(h) =
r∑

i=1

hiDi, L(h) =
r∑

i=1

hiLi (4)

and h
�
= (h1 , h2 , . . . , hr ) ∈ ρ.
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B. Filter

In this paper, we consider the following fuzzy filter to estimate
zk .

1) Filter Rule i: IF θ1(k) is Mi1 and θ2(k) is Mi2 and · · ·
and θp(k) is Mip , THEN

x̂k+1 = Af ix̂k + Bf iyf k

ẑk = Lf ix̂k

i = 1, . . . , r. (5)

Here, x̂k ∈ R
n , and ẑk ∈ Rq, and Af i , Bf i , and Lf i are to be

determined. Thus, the filter can be represented by the following
input–output form:

x̂k+1 = Af (h)x̂k + Bf (h)yf k

ẑk = Lf (h)x̂k . (6)

C. Communication Link

It is assumed that measurements are intermittent, that is, the
data may be lost during their transmission. In this case, the input
yf k of the filter is no longer equivalent to the output yk of the
plant (that is, yk �= yf k ). In this paper, the data loss phenomenon
is modeled via a stochastic approach:

yf k = e(k)yk

where {e(k)} is Bernoulli process. {e(k)} models the intermit-
tent nature of the link from the plant to the filter. More specif-
ically, e(k) = 0 when the link fails (that is, data is lost), and
e(k) = 1 means successful transmission. A natural assumption
on {e(k)} can be made as

Prob{e(k) = 1}= E{e(k)}= ē, Prob{e(k) = 0}= 1 − ē.

Based on this, we have

x̂k+1 = Af (h)x̂k + Bf (h)e(k)yk

ẑk = Lf (h)x̂k . (7)

D. Filter Error System

From (3) and (7), the filter error system is given by

x̄k+1 = A1(h)x̄k + ẽ(k)A2(h)x̄k +B1(h)wk + ẽ(k)B2(h)wk

z̄k = L̄(h)x̄k (8)

where

x̄k =
[

xk

x̂k

]
, z̄k = zk − ẑk (9)

A1(h) =
[

A(h) 0

ēBf (h)C(h) Af (h)

]
, B1(h)=

[
B(h)

ēBf (h)D(h)

]

A2(h) =
[

0 0

Bf (h)C(h) 0

]
, B2(h) =

[
0

Bf (h)D(h)

]

L(h) = [L(h) −Lf (h) ] (10)

and ẽ(k) = e(k) − ē. It is clear that E{ẽ(k)} = 0 and that
E{ẽ(k)ẽ(k)} = ē(1 − ē).

Before proceeding further, we first introduce the following
definition.

Definition 1: The filter error system in (8) is said to be stochas-
tically stable in the mean square when w(k) ≡ 0 for any initial
condition x0 if there exists a finite W > 0 such that

E

{ ∞∑
k=0

|xk |2
∣∣∣∣∣x0

}
< xT

0 Wx0 .

Then, the problem to be addressed in this paper is expressed
as follows.

Problem H∞ filtering with intermittent measurements
(HFIM): Consider the filtering problem shown in Fig. 1, and
suppose the intermittent transmission parameter ē is known.
Given a scalar γ > 0, design a fuzzy filter in the form of (7)
such that

1) (stochastic stability) the filter error system in (8) is
stochastically stable in the sense of Definition 1;

2) (H∞ performance) under zero initial condition, the error
output z̄k satisfies

||z̄||E ≤ γ||w||2 (11)

where

||z̄||E
�
= E



√√√√ ∞∑

k=0

z̄T
k z̄k


 .

If the previous two conditions are satisfied, the filter error
system is called stochastically stable with a guaranteed H∞
performance γ.

III. FILTERING PERFORMANCE ANALYSIS

In this section, the filtering analysis problem is concerned.
More specifically, we assume that the filter matrices in (6) are
known, and we will study the condition under which the filter
error system in (8) is stochastically stable in the mean square
with a given H∞ performance γ. The following theorem shows
that the H∞ performance of the filter error system can be guar-
anteed if there exist some fuzzy-basis-dependent matrices and
additional matrices satisfying a certain linear matrix inequality
(LMI).

Theorem 1: Consider the fuzzy system in (3), and suppose
that the filter in (6) is given. The filter error system in (8)
is stochastically stable with a given H∞ performance γ, if
there exist fuzzy-basis-dependent matrices P (h) > 0, Ω(h),

for any h ∈ ρ, h+ �
= (h1(θk+1), h2(θk+1), . . . , hr (θk+1)) ∈ ρ,

satisfying


Θ 0 0 ΩT (h+)A1(h) ΩT (h+)B1(h)

∗ Θ 0 fΩT (h+)A2(h) fΩT (h+)B2(h)

∗ ∗ −I L̄(h) 0

∗ ∗ ∗ −P (h) 0

∗ ∗ ∗ ∗ −γ2I




< 0

(12)
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where

Θ = P (h+) − Ω(h+) − ΩT (h+)

f =
√

ē(1 − ē).
Proof: We first prove the stochastic stability of the filter er-

ror system in (8). To this end, assume wk ≡ 0, and choose a
Lyapunov function as

Vk = x̄T
k [P (h)] x̄k . (13)

When wk ≡ 0, (8) becomes

x̄k+1 = A1(h)x̄k + ẽ(k)A2(h)x̄k

z̄k = L̄(h)x̄k .

Then, we have

∆Vk = E {Vk+1 | x̄k} − Vk

= E
{
x̄T

k

(
AT

1 (h) + ẽ(k)AT
2 (h)

)
P (h+)

× (A1(h) + ẽ(k)A2(h))x̄k |x̄k

}
− x̄T

k P (h)x̄k

= x̄T
k

(
AT

1 (h)P (h+)A1(h) + f 2AT
2 (h)P (h+)A2(h)

− P (h)
)
x̄k .

Note that the inequality

[P (h+) − Ω(h+)]T P−1(h+)[P (h+) − Ω(h+)] ≥ 0

implies that

P (h+) − (Ω(h+) + ΩT (h+)) ≥ −ΩT (h+)P−1(h+)Ω(h+)

which together with (12) yields


Θ̃ 0 0 ΩT (h+)A1(h) ΩT (h+)B1(h)

∗ Θ̃ 0 fΩT (h+)A2(h) fΩT (h+)B2(h)

∗ ∗ −I L̄(h) 0

∗ ∗ ∗ −P (h) 0

∗ ∗ ∗ ∗ −γ2I




< 0

(14)
where Θ̃ = −ΩT (h+)P−1(h+)Ω(h+). Clearly, Ω(h+) is in-
vertible. Diag {Ω−T (h+),Ω−T (h+), I, I, I} and postmultiply-
ing diag {Ω−1(h+),Ω−1(h+), I, I, I} on the left and right sides
of (14), we obtained the following inequality:


−P−1(h+) 0 0 A1(h) B1(h)

∗ −P−1(h+) 0 fA2(h) fB2(h)

∗ ∗ −I L̄(h) 0

∗ ∗ ∗ −P (h) 0

∗ ∗ ∗ ∗ −γ2I




< 0

by Schur complement, which leads to

[
AT

1 (h) fAT
2 (h) L̄T (h)

BT
1 (h) fBT

2 (h) 0

]
P (h+) 0 0

0 P (h+) 0

0 0 I




×




A1(h) B1(h)

fA2(h) fB2(h)

L̄(h) 0


−

[
P (h) 0

0 γ2I

]
< 0. (15)

Here, (15) implies

AT
1 (h)P (h+)A1(h) + f 2AT

2 (h)P (h+)A2(h) − P (h) < 0

and thus, we have

∆Vk < 0.

Define

Φ
�
= AT

1 (h)P (h+)A1(h) + f 2AT
2 (h)P (h+)A2(h) − P (h)

and we get

E {Vk+1 | x̄k} − Vk ≤ −λmin(−Φ)x̄T
k x̄k .

Taking mathematical expectation of both sides, for any T ≥ 1,
and summing up the inequality on both sides from k = 0, . . . , T ,
we have

E {VT +1} − V0 ≤ −λmin(−Φ)E{|x̄k |2}

which implies

E{|x̄k |2} ≤ (λmin(−Φ))−1(V0 − E {VT +1}).

Considering E{V (k)} ≥ 0 for all k ≥ 0, we have

E

{ ∞∑
k=0

|x̄k |2
∣∣∣∣∣ x̄0

}
≤ (λmin(−Φ))−1 x̄T

0 max(P (h))x̄0

= x̄T
0 (λmin(−Φ))−1 max(P (h))x̄0

= x̄T
0 Wx̄0

where x0 is the initial condition, and W
�
= (λmin(−Φ))−1

max(P (h)). According to Definition 1, the filter error system
is stochastically stable in the mean square.

Next, the H∞ performance criteria for the filter error sys-
tem in (8) will be established. To this end, assume zero initial
conditions. An index is introduced as

J̄ = E {Vk+1 | ξk} + z̄T
k z̄k − γ2wT

k wk − x̄T
k P (h)x̄k

where

ξk =
[

x̄k

wk

]
.

Since

E {Vk+1 |ξk}

= E

{
ξT
k

[
AT

1 (h) + ẽ(k)AT
2 (h)

BT
1 (h) + ẽ(k)BT

2 (h)

] [
P (h+) 0

0 P (h+)

]

× [ A1(h) + ẽ(k)A2(h) B1(h) + ẽ(k)B2(h) ] ξk | ξk}

= E

{
ξT
k

([
AT

1 (h)

BT
1 (h)

]
P (h+) [ A1(h) B1(h) ]

+f 2
[

AT
2 (h)

BT
2 (h)

]
P (h+) [ A2(h) B2(h) ]

)
ξk

∣∣∣∣ ξk

}

and

z̄T
k z̄k = ξT

k

[
L̄T (h)

0

]
[ L̄(h) 0 ] ξk
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we have

J̄ = ξT
k

([
AT

1 (h)

BT
1 (h)

]
P (h+) [ A1(h) B1(h) ]

+ f 2
[

AT
2 (h)

BT
2 (h)

]
P (h+) [ A2(h) B2(h) ]

+
[

L̄T (h)

0

]
[ L̄(h) 0 ] −

[
P (h) 0

0 γ2I

])
ξk .

From inequality (15), we know that

J̄ ≤ 0

that is

E {Vk+1 | ξk} + z̄T
k z̄k − γ2wT

k wk − x̄T
k P (h)x̄k ≤ 0.

Take mathematical expectation on both sides, we have

E{Vk+1} − E{Vk} + E
{
z̄T
k z̄k

}
− γ2wT

k wk ≤ 0.

For k = 0, 1, 2, . . . , summing up both sides, considering
E{V (k)} ≥ 0 for all k ≥ 0, under zero initial condition, we
obtain

E

{ ∞∑
k=0

z̄T
k z̄k

}
−

∞∑
k=0

γ2wT
k wk ≤ 0

which is equivalent to (11). The proof is completed. �
Remark 1: If there is no data dropout in the channel between

the physical plant and the filter, that is, perfect communication
links exist between the plant and the filter, then we have the
following corollary, which can be proved by following similar
arguments, as in the proof of Theorem 1.

Corollary 1: Consider the fuzzy system in (3) and suppose
that the filter in (6) is given. When ē = 1, the filter error system
in (8) is stochastically stable with a given H∞ performance γ,
if there exist fuzzy-basis-dependent matrices P (h) > 0, Ω(h),
for any h, h+ ∈ ρ, satisfying


Θ 0 ΩT (h+)A1(h) ΩT (h+)B1(h)

∗ −I L̄(h) 0

∗ ∗ −P (h) 0

∗ ∗ ∗ −γ2I


 < 0 (16)

where h+ and Θ are defined in (12).

IV. FILTER DESIGN

In this section, we will design a fuzzy filter in the form of (6)
based on Theorem 1, that is, to determine the filter matrices in
(6) such that the filter error system in (8) is stochastically stable
with a guaranteed H∞ performance. Since the condition in (12)
cannot be utilized to obtain the filter directly, we introduce some
slack matrices, which will simplify the filter design procedure.

Theorem 2: Consider the fuzzy system in (3). For a given pos-
itive constant γ, if there exist fuzzy-basis-dependent matrices

Q(h) =
[

Q1(h) Q2(h)

QT
2 (h) Q3(h)

]
> 0

and R,S,W, Āf (h), B̄f (h), L̄f (h), for any h, h+ ∈ ρ satisfying[
ϕ11 ϕ12

∗ ϕ22

]
< 0 (17)

where

Ξ =
[

Q1(h+) Q2(h+)

QT
2 (h+) Q3(h+)

]
−
[

R + RT S + W

WT + ST W + WT

]

(18)

ϕ11 =




Ξ 0 0

∗ Ξ 0

∗ ∗ −I


 , ϕ12 =




ϕ
(11)
12 ϕ

(12)
12

ϕ
(21)
12 ϕ

(22)
12

ϕ
(31)
12 0




ϕ22 =



[ −Q1(h) −Q2(h)

−QT
2 (h) −Q3(h)

]
0

0 −γ2I


 (19)

and

ϕ
(11)
12 =

[
RT A(h) + ēB̄f (h)C(h) Āf (h)

ST A(h) + ēB̄f (h)C(h) Āf (h)

]

ϕ
(12)
12 =

[
RT B(h) + ēB̄f (h)D(h)

ST B(h) + ēB̄f (h)D(h)

]

ϕ
(21)
12 = f

[
B̄f (h)C(h) 0

B̄f (h)C(h) 0

]
, ϕ

(22)
12 = f

[
B̄f (h)D(h)

B̄f (h)D(h)

]

ϕ
(31)
12 = [L(h) −L̄f (h) ] (20)

then there exists a fuzzy filter in the form of (6) such that
the filtering error system in (8) is stochastically stable with a
prescribed H∞ norm bound γ. Moreover, if the aforementioned
condition is satisfied, the matrices for the filter in (6) are given
by [

Af (h) Bf (h)

Lf (h) 0

]
=
[

Ω−T
4 0

0 I

] [
Āf (h) B̄f (h)

L̄f (h) 0

]

×
[

Ω−1
4 Ω3 0

0 I

]
(21)

where Ω3 and Ω4 can be obtained by the decomposition on W .
Proof: Suppose that there exist matrices Q(h) > 0, R, S,

W, Āf (h), B̄f (h), and L̄f (h) satisfying (17). From (17), we
know that W > 0. One can always find square and nonsingular
matrices Ω3 and Ω4 that W = ΩT

4 Ω−1
3 Ω4 . Let

R = Ω1 , S = Ω2Ω−1
3 Ω4

Ω =
[

Ω1 Ω2

Ω4 Ω3

]
, T =

[
I 0

0 Ω−1
3 Ω4

]
(22)

and

T−T

[
Q1(h+) Q2(h+)

QT
2 (h+) Q3(h+)

]
T−1 =

[
P1(h+) P2(h+)

PT
2 (h+) P3(h+)

]
[

Af (h) Bf (h)

Lf (h) 0

]
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=
[

Ω−T
4 0

0 I

] [
Āf (h) B̄f (h)

L̄f (h) 0

] [
Ω−1

4 Ω3 0

0 I

]
. (23)

By (22) and (23), one has

T−T ΞT−1 =
[

P1(h+) P2(h+)

PT
2 (h+) P3(h+)

]
− Ω − ΩT . (24)

With the support of (10), (22), and (23), it can be verified that

TT ΩT A1(h)T

=
[

ΩT
1 A(h)+ ēΩT

4 Bf (h)C(h) ΩT
4 Af (h)Ω−1

3 Ω4

ΩT
4 Ω−T

3 ΩT
2 A(h)+ ēΩT

4 Bf (h)C(h) ΩT
4 Af (h)Ω−1

3 Ω4

]

=
[

RT A(h) + ēB̄f (h)C(h) Āf (h)

ST A(h) + ēB̄f (h)C(h) Āf (h)

]

fTT ΩT A2(h)T

= f

[
ΩT

4 Bf (h)C(h) 0

ΩT
4 Bf (h)C(h) 0

]
= f

[
B̄f (h)C(h) 0

B̄f (h)C(h) 0

]

TT ΩT B1(h)

=
[

ΩT
1 B(h) + ēΩT

4 Bf (h)D(h)

ΩT
4 Ω−T

3 ΩT
2 B(h) + ēΩT

4 Bf (h)D(h)

]

=
[

RT B(h) + ēB̄f (h)D(h)

ST B(h) + ēB̄f (h)D(h)

]

fTT ΩT B2(h)

= f

[
ΩT

4 Bf (h)D(h)

ΩT
4 Bf (h)D(h)

]
= f

[
B̄f (h)D(h)

B̄f (h)D(h)

]

L̄(h)T

= [L(h) −Lf (h)Ω−1
3 Ω4 ] = [L(h) −L̄f (h) ] . (25)

Letting

Ω(h) = Ω, P (h) = T−T

[
Q1(h) Q2(h)

QT
2 (h) Q3(h)

]
T−1 (26)

one can readily obtain from (24)–(26) that (17) is equivalent to




TT 0 0 0 0

0 TT 0 0 0

0 0 I 0 0

0 0 0 TT 0

0 0 0 0 I




×




Θ 0 0 ΩT (h+)A1(h) ΩT (h+)B1(h)

∗ Θ 0 fΩT (h+)A2(h) fΩT (h+)B2(h)

∗ ∗ −I L̄(h) 0

∗ ∗ ∗ −P (h) 0

∗ ∗ ∗ ∗ −γ2I




×




T 0 0 0 0

0 T 0 0 0

0 0 I 0 0

0 0 0 T 0

0 0 0 0 I




< 0

where Θ is defined in (12), which together with (17) implies
that, for any h, h+ ∈ ρ, (12) holds.

The proof is completed. �
The condition in (17) cannot be directly employed for filter

design. One way to facilitate Theorem 2 for the construction of a
fuzzy filter is to convert (17) into a finite set of LMI constraints.
To this end, one must further restrict the choice of the fuzzy-
basis-dependent Lyapunov functions. The following theorem
gives a possible way to achieve this.

Theorem 3: Consider the fuzzy system in (3). For a given

positive constant γ, if there exist matrices Qi =
[

Q1i Q2i

QT
2i Q3i

]
>

0, and R, S, W, Āf i , B̄f i , L̄f i , for all i, j, l ∈ {1, . . . , r}
satisfying

[
ψ11 ψ12
∗ ψ22

]
< 0 (27)

where

Ξ̄ =
[

Q1l Q2l

QT
2l Q3l

]
−
[

R + RT S + W

WT + ST W + WT

]
(28)

ψ11 =




Ξ̄ 0 0

∗ Ξ̄ 0

∗ ∗ −I


 ,

ψ22 =



[−Q1i −Q2i

−QT
2i −Q3i

]
0

0 −γ2I




ψ12 =




[
RT Ai + ēB̄f iCj Āf i

ST Ai + ēB̄f iCj Āf i

] [
RT Bi + ēB̄f iDj

ST Bi + ēB̄f iDj

]

f

[
B̄f iCj 0

B̄f iCj 0

]
f

[
B̄f iDj

B̄f iDj

]
[ Li −L̄f i ] 0




(29)

then there exists a fuzzy filter in (6) such that the filter er-
ror system in (8) is stochastically stable with a prescribed H∞
norm bound γ. Moreover, if the earlier condition is satisfied, the
matrices for the filter in (6) are given by

[
Af (h) Bf (h)

Lf (h) 0

]
=

r∑
i=1

hi

[
Ω−T

4 0

0 I

] [
Āf i B̄f i

L̄f i 0

]

×
[

Ω−1
4 Ω3 0

0 I

]
(30)

where Ω3 and Ω4 can be obtained by the decomposition on W .



GAO et al.: H∞ FUZZY FILTERING OF NONLINEAR SYSTEMS WITH INTERMITTENT MEASUREMENTS 297

Proof: Suppose that there exist matrices R, S, W, Āf i , B̄f i ,

L̄f i , and Qi =
[

Q1i Q2i

QT
2i Q3i

]
> 0, for all i, j, l ∈ {1, . . . , r}

satisfying (17). Then, we use these matrices and the fuzzy basis
function h ∈ ρ to define the following functions:

Q(h) =
r∑

l=1

{
hl

[
Q1l Q2l

QT
2l Q3l

]}
, Āf (h) =

r∑
i=1

hiĀf i

B̄f (h) =
r∑

i=1

hiB̄f i , L̄f (h) =
r∑

i=1

hiL̄f i

which together with (4) imply that[
ϕ11 ∗
ϕ21 ϕ22

]
=

r∑
i=1

r∑
j=1

r∑
l=1

hihjh
+
l

[
ψ11 ∗
ψ21 ψ22

]

and (17) is clearly verified, where h+
l is hl(θk+1), as is defined

in (12), and ϕ11 , ϕ21 , ϕ22 , ψ11 , ψ21 , and ψ22 are defined as in
(17), (19), (27), and (29). �

Corollary 2: Consider the fuzzy system in (3). When ē = 1,
for a given positive constant γ, if there exist matrices Qi =[

Q1i Q2i

QT
2i Q3i

]
> 0, and R, S, W, Āf i , B̄f i , and L̄f i, for all i, j,

l ∈ {1, . . . , r} satisfying[
Π11 Π12

∗ Π22

]
< 0 (31)

where

Π11 =
[

Ξ̄ 0

0 −I

]
, Π22 =



[−Q1i −Q2i

−QT
2i −Q3i

]
0

0 −γ2I




Π12 =



[

RT Ai + B̄f iCj Āf i

ST Ai + B̄f iCj Āf i

] [
RT Bi + B̄f iDj

ST Bi + B̄f iDj

]
[ Li −L̄f i ] 0




(32)

and Ξ̄ is defined in (28), then there exists a fuzzy filter in the
form of (6), and the filter error system in (8) is stochastically
stable with a prescribed H∞ norm bound γ. Moreover, if the
previous condition is satisfied, the matrices for the filter in (6)
are given by (30).

Remark 2: Theorem 3 is obtained by using the basis-
dependent Lyapunov function. It is clear that when Qi = Q
for any i ∈ {1, . . . , r}, (13) becomes the quadratic Lyapunov
function that has been widely used in the literature. Then,
the following corollary based on the quadratic approach is
obtained.

Corollary 3: Consider the fuzzy system in (3). For a given

positive constant γ, if there exist matrices Q =
[

Q1 Q2
QT

2 Q3

]
>

0, R, S,W, Āf i , B̄f i , and L̄f i , for all i, j ∈ {1, . . . , r} satisfying[
ψ̃11 ψ12
∗ ψ̃22

]
< 0 (33)

Fig. 2. Tunnel diode circuit.

where

Ξ̃ =
[

Q1 Q2

QT
2 Q3

]
−
[

R + RT S + W

WT + ST W + WT

]

ψ̃11 =


 Ξ̃ 0 0

∗ Ξ̃ 0
∗ ∗ −I


 , ψ̃22 =



[ −Q1 −Q2

−QT
2 −Q3

]
0

0 −γ2I




and ψ12 is defined in (29), then there exists a fuzzy filter in the
form of (6) such that the filter error system in (8) is stochastically
stable with a prescribed H∞ norm bound γ. Moreover, if the
earlier condition is satisfied, the matrices for the filter in (6) are
given by (30).

Remark 3: Theorem 3 is obtained by restricting the fuzzy-
basis-dependent Lyapunov functions. The expression of fuzzy-
basis-dependent Lyapunov functions adopted here is consistent
with the compact presentation of system matrices in (3), which is
adopted by mostc of the literature. This fuzzy-basis-dependent
Lyapunov approach has been recognized to be less conservative.
However, in this basis-dependent framework, the restriction on
the Lyapunov function still introduces some overdesign. How to
further reduce this conservatism still needs further investigation.

Remark 4: The number of inequalities in Theorem 3 will
increase with the number of fuzzy rules of the model, thus;
a computational problem might arise for high-order nonlinear
systems. One effective way to solve this problem is to try to
reduce the number of fuzzy rules when modeling the nonlinear
system based on fuzzy logic, which can be found in [28].

V. ILLUSTRATIVE EXAMPLE

In this section, we use an example to illustrate the effective-
ness of the theoretical results developed before.

Consider a tunnel diode circuit shown in Fig. 2, whose fuzzy
modeling was done in [2], where x1(t) = vC (t), x2(t) = iL (t),
w(t) is the disturbance noise input, y(t) is the measurement
output, and z(t) is the controlled output. With a sampling time
T = 0.02, the discrete-time model is obtained as

xk+1 = A(h)xk + B(h)wk

yk = C(h)xk + D(h)wk

zk = L(h)xk (34)
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where

A1 =
[

0.9887 0.9024

−0.0180 0.8100

]
, B1 =

[
0.0093

0.0181

]

A2 =
[

0.90337 0.8617

−0.0172 0.8103

]
, B2 =

[
0.0091

0.0181

]

C1 = [ 1 0 ] , C2 = [ 1 0 ]

D1 = 1, D2 = 1, L1 = [ 1 0 ] , L2 = [ 1 0 ] .

To show the effectiveness of the obtained results, we assume the
membership function to be

h1 =




x
(1)
k + 3

3
, −3 ≤ x

(1)
k ≤ 0

0, x
(1)
k < −3

3 − x
(1)
k

3
, 0 ≤ x

(1)
k ≤ 3

0, x
(1)
k > 3

h2 = 1 − h1 . (35)

The purpose here is to design a filter in the form of (5) such that
the system in (34) is stochastically stable with a guaranteed H∞
norm bound γ.

Suppose ē = 0.8. By solving LMI (27), the minimum H∞
performance γ∗ = 0.1463 is obtained, and the filter matrices
are obtained:

Āf 1 =
[

4.9722 14.2575

9.1080 69.4648

]
, B̄f 1 =

[−0.3451

−1.4883

]

Āf 2 =
[

4.6054 13.9920

8.4237 67.9560

]
, B̄f 2 =

[−0.2005

−0.8318

]
(36)

L̄f 1 = [−1.0000 −0.0002 ] (37)

L̄f 2 = [−0.9955 0.0152 ] (38)

W =
[

5.5335 11.5195

11.5162 71.9180

]
. (39)

By (30), we have

Af 1 =
[

0.9524 0.8488

−0.0259 0.8300

]
, Bf 1 =

[−0.0289

−0.0161

]

Af 2 =
[

0.8827 0.8423

−0.0242 0.8100

]
, Bf 2 =

[−0.0182

−0.0086

]

Lf 1 = [−1.0000 −0.0002 ]

Lf 2 = [−0.9955 0.0152 ] .

First, we assume that wk ≡ 0 and the that initial condition
x0 = [ 0.2 −0.8 ] , x̂0 = [ 0 0 ] . Fig. 3 shows that the esti-
mation error response converges to zero.

Fig. 3. Estimation error when wk ≡ 0.

Fig. 4. Data packet dropout.

To illustrate the performance of the designed filter, we assume
the initial conditions and the external disturbance w(k) to be

w(k) =




2, 30 ≤ k ≤ 50

−2, 70 ≤ k ≤ 100

0, elsewhere.

(40)

In the simulation, the data packet dropouts are generated ran-
domly according to ē = 0.8, which is shown in Fig. 4. Fig. 5
shows the response of signal z̄(k). Fig. 6 shows the simu-
lation results of zk and ẑk . By calculation, we obtain that
||z̄||22 = 1.0881 and ||w||22 = 208, which yields γ = 0.0723 (be-
low the minimum γ∗ = 0.1463), showing the effectiveness of
the filter design.
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Fig. 5. Estimation error.

Fig. 6. Estimation signals.

VI. CONCLUDING REMARKS

In this paper, the problem of H∞ fuzzy filtering of non-
linear systems under unreliable communication links has been
investigated. The T–S fuzzy system is utilized to model the
nonlinear plant, and the communication link failure is modeled
via a stochastic variable satisfying the Bernoulli random binary
distribution. The basis-dependent Lyapunov function has been
used to design an H∞ filter such that the filter error system
is stochastically stable and preserves a guaranteed H∞ perfor-
mance. Some slack matrices have been introduced to facilitate
the H∞ filter design. An example has been given to illustrate
the effectiveness of the proposed approach.

It should be noted that in practical networked control systems,
in addition to data missing, the phenomenon of transmission
delay often occurs. It can also degrade the performance of the
systems and even cause system instability. In this paper, we
have only considered data missing, but the study of networked

control of fuzzy systems with simultaneous consideration of
packet dropout and signal delay deserves further investigation.

REFERENCES

[1] J. Abedor, K. Nagpal, and K. Poolla, “A linear matrix inequality approach
to peak-to-peak gain minimization,” Int. J. Robust Nonlinear Control,
vol. 6, pp. 899–927, 1996.

[2] W. Assawinchaichote and S. K. Nguang, “H∞ filtering for fuzzy dynamic
systems with D stability constraints,” IEEE Trans. Circuits Syst. I, vol. 50,
no. 11, pp. 1503–1508, Nov. 2003.

[3] W. Assawinchaichote and S. K. Nguang, “H∞ filtering for fuzzy singularly
perturbed systems with pole placement constraints: An LMI approach,”
IEEE Trans. Signal Process., vol. 52, no. 6, pp. 1659–1667, Jun. 2004.

[4] X. Ban, X. Gao, X. Huang, and H. Yin, “Stability analysis of the sim-
plest Takagi–Sugeno fuzzy control system using popov criterion,” Int. J.
Innovative Comput., Inform. Control, vol. 3, no. 5, pp. 1087–1096, 2007.

[5] S. G. Cao, N. W. Rees, and G. Feng, “Analysis and desgign of a class of
continuous time fuzzy control systems,” Int. J. Control, vol. 64, no. 64,
pp. 1069–1087, 1996.

[6] Y. Y. Cao and P. M. Frank, “Robust H∞ disturbance attenuation for a
class of uncertain discrete-time fuzzy systems,” IEEE Trans. Fuzzy Syst.,
vol. 8, no. 4, pp. 406–415, Aug. 2000.

[7] W. Chang, C. Ku, and P. Huang, “Passive fuzzy control with relaxed con-
ditions for discrete affine T–S fuzzy systems,” Int. J. Innovative Comput.
Inform. Control, vol. 3, no. 4, pp. 853–871, 2007.

[8] G. Feng, “Robust H∞ filtering of fuzzy dynamic systems,” IEEE Trans.
Aerosp. Electron. Syst., vol. 41, no. 2, pp. 658–671, Apr. 2005.

[9] G. Feng, “A survey on analysis and design of model-based fuzzy control
systems,” IEEE Trans. Fuzzy Syst., vol. 14, no. 5, pp. 676–697, Oct. 2006.

[10] H. Gao and C. Wang, “Delay-dependent robust H∞ and L2 –L∞ filtering
for a class of uncertain nonlinear time-delay systems,” IEEE Trans.
Automat. Control, vol. 48, no. 9, pp. 1661–1666, Sep. 2003.

[11] H. Gao and C. Wang, “Robust L2 – L∞ filtering for uncertain systems
with multiple time-varying state delays,” IEEE Trans. Circuits Syst. I,
vol. 50, no. 4, pp. 594–599, Apr. 2003.

[12] H. Gao and C. Wang, “A delay-dependent approach to robust H∞ filtering
for uncertain discrete-time state-delayed systems,” IEEE Trans. Signal
Process., vol. 52, no. 6, pp. 1631–1640, Jun. 2004.

[13] H. Gao, Z. Wang, and C. Wang, “Improved H∞ control of discrete-time
fuzzy systems: A cone complementarity linearization approach,” Inform.
Sci., vol. 175, no. 1–2, pp. 57–77, 2005.

[14] Y. He, Q. G. Wang, and C. Lin, “An improved H∞ filter design for systems
with time-varying interval delay,” IEEE Trans. Circuits Syst. II, vol. 53,
no. 11, pp. 1235–1239, Nov. 2006.

[15] J. Lam and S. S. Zhou, “Dynamic output feedback H∞ control of discrete-
time fuzzy systems: A fuzzy-basis-dependent Lyapunov function ap-
proach,” Int. J. Syst. Sci., vol. 38, no. 1, pp. 25–37, 2007.

[16] C. Lin, Q. G. Wang, T. H. Lee, and Y. He, “Fuzzy weighting-dependent
approach to H∞ filter design for time-delay fuzzy systems,” IEEE Trans.
Signal Process., vol. 55, no. 6, pp. 2746–2751, Jun. 2007.

[17] H. Liu, F. Sun, K. He, and Z. Sun, “Design of reduced-order H∞ filter for
Markovian jumping systems with time delay,” IEEE Trans. Circuits Syst.
II, vol. 51, no. 11, pp. 607–612, Nov. 2004.

[18] H. Liu, F. Sun, and Y. N. Hu, “H∞ control for fuzzy singularly perturbed
systems,” Fuzzy Sets Syst., vol. 155, pp. 272–291, 2005.

[19] H. Liu, F. Sun, and Z. Sun, “Reduced-order filtering with energy-to-peak
performance for discrete-time Markovian jumping systems,” IMA J. Math.
Control Inform., vol. 21, no. 2, pp. 143–158, 2004.

[20] H. Liu, F. Sun, and Z. Sun, “Stability analysis and synthesis of fuzzy
singularly perturbed systems,” IEEE Trans. Fuzzy Syst., vol. 13, no. 2,
pp. 273–284, Apr. 2005.

[21] Y. G. Niu and D. W. C. Ho, “Robust observer design for lto stochastic
time-delay systems via sliding mode control,” Syst. Control Lett., vol. 55,
no. 10, pp. 781–793, 2006.

[22] P. Seiler and R. Sengupta, “An H∞ approach to networked control,” IEEE
Trans. Autom. Control, vol. 50, no. 3, pp. 356–364, Mar. 2005.

[23] P. Shi, “Filtering on sampled-data systems with parametric uncertainty,”
IEEE Trans. Autom. Control, vol. 43, no. 7, pp. 1022–1027, Jul. 1998.

[24] P. Shi, “Filtering for interconnected nonlinear sampled-data systems with
parametric uncertainties,” J. Vib. Control, vol. 5, no. 4, pp. 591–618,
1999.

[25] P. Shi, E. K. Boukas, and R. K. Agarwal, “Kalman filtering for continuous-
time uncertain systems with Markovian jumping parameters,” IEEE
Trans. Autom. Control, vol. 44, no. 8, pp. 1592–1597, Aug. 1999.



300 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 17, NO. 2, APRIL 2009

[26] B. Sinopoli, L. Schenato, and M. Franceschetti, “Kalman filtering with
intermittent observations,” IEEE Trans. Autom. Control, vol. 49, no. 9,
pp. 1453–1464, Sep. 2004.

[27] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy sys-
tems,” Fuzzy Sets Syst., vol. 45, no. 2, pp. 135–156, 1992.

[28] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis:
A Linear Matrix Inequality Approach. New York: Wiley, 2001.

[29] G. C. Walsh, H. Ye, and L. Bushnell, “Stability analysis of networked
control systems,” IEEE Trans. Control Syst. Technol., vol. 10, no. 3,
pp. 438–446, May 2002.

[30] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control
of nonlinear systems: Stability and design issues,” IEEE Trans. Fuzzy
Syst., vol. 4, no. 2, pp. 14–23, Feb. 1996.

[31] Z. Wang, D. W. C. Ho, and X. Liu, “Variance-constrained filtering for
uncertain stochastic systems with missing measurements,” IEEE Trans.
Autom. Control, vol. 48, no. 7, pp. 1254–1258, Jul. 2003.

[32] Z. Wang, D. W. C. Ho, and X. Liu, “Variance-constrained control for
uncertain stochastic systems with missing measurement,” IEEE Trans.
Syst., Man Cybern.—Part A, vol. 35, no. 5, pp. 746–753, Sep. 2005.

[33] Z. Wang, B. Huang, and P. Huo, “Sampled-data filtering with error covari-
ance assignment,” IEEE Trans. Signal Process., vol. 49, no. 3, pp. 666–
670, Mar. 2001.

[34] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust H∞ filtering for
stochastic time-delay systems with missing measurements,” IEEE Trans.
Signal Process., vol. 54, no. 7, pp. 2579–2587, Jul. 2006.

[35] Z. Wang, J. H. Zhu, and H. Unbehauen, “Robust filter design with time-
varying parameter uncertainty and error variance constraints,” Int. J.
Control, vol. 72, no. 1, pp. 30–38, 1999.

[36] H. Wu, “Reliable LQ fuzzy control for continuous-time nonlinear systems
with actuator faults,” IEEE Trans. Syst., Man Cybern.—Part B, vol. 34,
no. 4, pp. 1743–1752, Aug. 2004.

[37] H. Wu and K. Y. Cai, “Mode-independent robust stability for uncertain
Markovian jump nonlinear systems in fuzzy control,” IEEE Trans. Syst.,
Man Cybern.—Part B, vol. 36, no. 3, pp. 509–519, Jun. 2006.

[38] S. Xu, T. Chen, and J. Lam, “Robust H∞ filtering for uncertain Markovian
jump systems with mode-dependent time-delays,” IEEE Trans. Autom.
Control, vol. 48, no. 5, pp. 900–907, May 2003.

[39] S. Xu and J. Lam, “Exponential H∞ filter design for uncertain Takagi–
Sugeno fuzzy systems with time delay,” Eng. Appl. Artif. Intell., vol. 17,
pp. 645–659, 2004.

[40] M. Yu, L. Wang, and T. Chu, “Sampled-data stabilization of networked
control systems with nonlinearity,” Proc. Inst. Elec. Eng. D, Control
Theory Appl., vol. 152, no. 6, pp. 609–614, 2005.

[41] D. Yue and Q.-L. Han, “Robust H∞ filter design of uncertain descrip-
tor systems with discrete and distributed delays,” IEEE Trans. Signal
Process., vol. 52, no. 11, pp. 3200–3212, Nov. 2004.

[42] D. Yue, Q.-L. Han, and J. Lam, “Network-based robust H∞ control of
systems with uncertainty,” Automatica, vol. 41, no. 6, pp. 999–1007,
2005.

[43] W. Zhang, M. Branicky, and S. Phillips, “Stability of networked control
systems,” IEEE Control Syst. Mag., vol. 21, no. 1, pp. 84–99, Feb. 2001.

[44] S. Zhou, G. Feng, and J. Lam, “Fuzzy robust H∞ control for discrete-
time fuzzy systems via basis-dependent Lyapunov functions,” Inform.
Sci., vol. 174, pp. 197–217, 2004.

[45] S. Zhou, J. Lam, and A. K. Xue, “H∞ filtering of discrete-time fuzzy
systems via basis-dependent Lyapunov function approach,” Fuzzy Sets
Syst., vol. 158, pp. 180–193, 2007.

Huijun Gao (M’06) was born in Heilongjiang,
China, in 1976. He received the M.S. degree in elec-
trical engineering from Shenyang University of Tech-
nology, Shenyang, China, in 2001, and the Ph.D. de-
gree in control science and engineering from Harbin
Institute of Technology, Harbin, China, in 2005.

From November 2003 to August 2004, he was
a Research Associate in the Department of Mechan-
ical Engineering, University of Hong Kong, Hong
Kong. In November 2004, he joined Harbin Insti-
tute of Technology, where he is currently a Professor.

From October 2005 to October 2007, he was a Postdoctoral Researcher in the
Department of Electrical and Computer Engineering, University of Alberta,
Edmonton, AB, Canada. He is an Associate Editor of the Journal of Intelligent

and Robotics Systems, Circuits, System and Signal Processing, etc. He was an
outstanding reviewer for the Automica in 2007. His current research interests
include network-based control, robust control, and time-delay systems and their
industrial applications.

Prof. Gao is an Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS,
MAN AND CYBERNETICS PART B: CYBERNETICS and the IEEE TRANSACTIONS

ON INDUSTRIAL ELECTRONICS. He was an outstanding reviewer for the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL in 2008, and an appreciated reviewer
for the IEEE TRANSACTIONS ON SIGNAL PROCESSING in 2006. He was the re-
cipient of the University of Alberta Dorothy J. Killam Memorial Postdoctoral
Fellow Prize in 2005, the National Outstanding Youth Science Fund in 2008,
and the National Outstanding Doctoral Thesis Award in 2007. He was the core-
cipient of the National Natural Science Award of China in 2008.

Yan Zhao received the B.S. degree in chemical engi-
neering and equipment control and the M.S. degree
in mechanical engineering from the Inner Mongolia
University of Technology, Hohhot, China, in 2002
and 2005, respectively. She is currently working to-
ward the Ph.D. degree in control science and engi-
neering with Harbin Institute of Technology, Harbin,
China.

Her current research interests include fuzzy con-
trol systems, robust control, and networked control
systems.

James Lam (S’86–M’87–SM’99) received the B.Sc.
degree (with first class) in mechanical engineer-
ing from the University of Manchester, Manchester,
U.K., in 1983, and the M.Phil. and Ph.D. degrees
in control engineering from the University of Cam-
bridge, Cambridge, U.K., in 1985 and 1988, respec-
tively. He received the Ashbury Scholarship, the A.H.
Gibson Prize, and the H. Wright Baker Prize for his
academic performance.

He is currently a Professor in the Department of
Mechanical Engineering, University of Hong Kong,

Hong Kong. He is an Associate Editor of the Asian Journal of Control, Interna-
tional Journal of Systems Science, Journal of Sound and Vibration, International
Journal of Applied Mathematics and Computer Science, Journal of the Franklin
Institute, Dynamics of Continuous, Discrete and Impulsive Systems (Series B:
Applications and Algorithms), and Automatica. He is also a member of the
Editorial Board of the Institute of Engineering and Technology (IET) Control
Theory and Applications, Open Electrical and Electronic Engineering Journal,
Research Letters in Signal Processing, International Journal of Systems, Control
and Communications, and Journal of Electrical and Computer Engineering. His
current research interests include reduced-order modeling, delay systems, de-
scriptor systems, stochastic systems, multidimensional systems, robust control,
and filtering. He was an Editor-in-Chief of the Institute of Electrical Engineers
(IEE) Proceedings Control Theory and Applications.

Prof. Lam is a Chartered Mathematician and a Chartered Scientist. He is a
Fellow of the Institute of Mathematics and Its Applications, and the IET. He is
a Scholar and a Fellow of the Croucher Foundation. He is an Associate Editor
of the IEEE TRANSACTIONS ON SIGNAL PROCESSING.

Ke Chen received the B.S. degree in mathematics in
2002 and the M.S. degree in bioinformatics in 2005
from Nankai University, Tianjin, China. He is cur-
rently working toward the Ph.D. degree in electrical
and computer engineering with the University of Al-
berta, Edmonton, AB, Canada.

His current research interests include the applica-
tion of mathematical models in biological sciences.


