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ASYMPTOTICS OF INPUT-CONSTRAINED BINARY
SYMMETRIC CHANNEL CAPACITY

BY GUANGYUE HAN1 AND BRIAN MARCUS

University of Hong Kong and University of British Columbia

We study the classical problem of noisy constrained capacity in the case
of the binary symmetric channel (BSC), namely, the capacity of a BSC whose
inputs are sequences chosen from a constrained set. Motivated by a result
of Ordentlich and Weissman [In Proceedings of IEEE Information Theory
Workshop (2004) 117–122], we derive an asymptotic formula (when the noise
parameter is small) for the entropy rate of a hidden Markov chain, observed
when a Markov chain passes through a BSC. Using this result, we establish
an asymptotic formula for the capacity of a BSC with input process supported
on an irreducible finite type constraint, as the noise parameter tends to zero.

1. Introduction and background. Let X,Y be discrete random variables

with alphabet X,Y and joint probability mass function pX,Y (x, y)
�= P(X = x,

Y = y), x ∈ X, y ∈ Y [for notational simplicity, we will write p(x, y) rather than
pX,Y (x, y), similarly p(x),p(y) rather than pX(x),pY (y), resp., when it is clear
from the context]. The entropy H(X) of the discrete random variable X, which
measures the level of uncertainty of X, is defined as (in this paper log is taken to
mean the natural logarithm)

H(X) = − ∑
x∈X

p(x) logp(x).

The conditional entropy H(Y |X), which measures the level of uncertainty of Y

given X, is defined as

H(Y |X) = ∑
x∈X

p(x)H(Y |X = x)

�= − ∑
x∈X

p(x)
∑
y∈Y

p(y|x) logp(y|x) = − ∑
x∈X,y∈Y

p(x, y) logp(y|x).

The definitions above naturally include the case when X,Y are vector-valued vari-

ables, for example, X = X�
k

�= (Xk,Xk+1, . . . ,X�), a sequence of discrete random
variables.
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For a left-infinite discrete stationary stochastic process X = X0−∞
�= {Xi : i =

0,−1,−2, . . . }, the entropy rate of X is defined to be

H(X) = lim
n→∞

1

n + 1
H(X0−n),(1.1)

where H(X0−n) denotes the entropy of the vector-valued random variable X0−n.
Given another stationary process Y = Y 0−∞, we similarly define the conditional
entropy rate

H(Y |X) = lim
n→∞

1

n + 1
H(Y 0−n|X0−n).(1.2)

A simple monotonicity argument in page 64 of [8] shows the existence of the limit
in (1.1). Using the chain rule for entropy (see page 21 of [8]), we obtain

H(Y 0−n|X0−n) = H(X0−n, Y
0−n) − H(X0−n),

and so we can apply the same argument to the processes (X,Y ) and X to obtain
the limit in (1.2).

If Y = Y 0−∞ is a stationary finite-state Markov chain, then H(Y) has a simple
analytic form. Specifically, denoting by � the transition probability matrix of Y ,
we have

H(Y) = H(Y0|Y−1) = −∑
i,j

P (Y0 = i)�(i, j) log�(i, j).(1.3)

A function Z = Z0−∞ of the stationary Markov chain Y with the form Zi = �(Yi)

is called a hidden Markov chain; here � is a function defined on the alphabet of
Yi , taking values in the alphabet of Zi . We often write Z = �(Y). Hidden Markov
chains are typically not Markov.

For a hidden Markov chain Z, the entropy rate H(Z) was studied by Black-
well [6] as early as 1957, where the analysis suggested the intrinsic complexity of
H(Z) as a function of the process parameters. He gave an expression for H(Z)

in terms of a measure Q on a simplex, obtained by solving an integral equation
dependent on the parameters of the process. However, the measure is difficult to
extract from the equation in any explicit way, and the entropy rate is difficult to
compute.

Recently, the problem of computing the entropy rate of a hidden Markov chain
has drawn much interest, and many approaches have been adopted to tackle this
problem. These include asymptotic expansions as Markov chain parameters tend to
extremes [14, 17, 18, 22, 23, 34, 35], analyticity results [13], variations on a classi-
cal bound [9] and efficient Monte Carlo methods [2, 27, 31]; and connections with
the top Lyapunov exponent of a random matrix product have been observed [11,
15–17], relating to earlier work on Lyapunov exponents [4, 25, 26, 28].

Of particular interest are hidden Markov chains which arise as output processes
of noisy channels. For example, the binary symmetric channel with crossover
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probability ε [denoted BSC(ε)] is an object which transforms input processes
to output processes by means of a fixed i.i.d. binary noise process E = {En}
with pEn(0) = 1 − ε and pEn(1) = ε. Specifically, given an arbitrary binary in-
put process X = {Xn}, which is independent of E, define at time n,

Zn(ε) = Xn ⊕ En,

where ⊕ denotes binary addition modulo 2; then Zε = {Zn(ε)} is the output
process corresponding to X.

When the input X is a stationary Markov chain, the output Zε can be viewed
as a hidden Markov chain by appropriately augmenting the state space of X [10];
specifically, in the case that X is a first order binary Markov chain with transition
probability matrix

� =
[
π00 π01
π10 π11

]
,

then Yε = {Yn(ε)} = {(Xn,En)} is jointly Markov with transition probability ma-
trix

� =

⎡
⎢⎢⎢⎢⎢⎣

y (0,0) (0,1) (1,0) (1,1)

(0,0) π00(1 − ε) π00ε π01(1 − ε) π01ε

(0,1) π00(1 − ε) π00ε π01(1 − ε) π01ε

(1,0) π10(1 − ε) π10ε π11(1 − ε) π11ε

(1,1) π10(1 − ε) π10ε π11(1 − ε) π11ε

⎤
⎥⎥⎥⎥⎥⎦

and Zε = {Zn(ε)} is a hidden Markov chain with Zn(ε) = �(Yn(ε)), where �

maps states (0,0) and (1,1) to 0 and maps states (0,1) and (1,0) to 1.
In Section 2 we give asymptotics for the entropy rate of a hidden Markov chain,

obtained by passing a binary Markov chain, of arbitrary order, through BSC(ε) as
the noise ε tends to zero. In Section 2.1 we review, from [18], the result when the
transition probabilities are strictly positive. In Section 2.2 we develop the formula
when some transition probabilities are zero (which is our main focus), thereby
generalizing a specific result from [23].

The remainder of the paper is devoted to asymptotics for noisy constrained
channel capacity. The capacity of the (unconstrained) BSC(ε) is defined

C(ε) = lim
n→∞ sup

X0−n

1

n + 1

(
H(Z0−n(ε)) − H(Z0−n(ε)|X0−n)

);(1.4)

here X0−n is a finite-length input process from time −n to 0 and Z0−n(ε) is the
corresponding output process. Seminal results of information theory, due to Shan-
non [30], include the following: (1) the capacity is the optimal rate of transmission
possible with arbitrarily small probability of error, and (2) the capacity can be ex-
plicitly computed: C(ε) = 1 − H(ε), where H(ε) is the binary entropy function
defined as

H(ε) = ε log 1/ε + (1 − ε) log 1/(1 − ε).
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Generally speaking, it is very difficult to calculate the capacity of a generic
channel. For a discrete memoryless channel without input-constraints, the Blahut–
Arimoto algorithm [1, 7] can be applied to approximate the capacity numerically.
A generalized Blahut–Arimoto algorithm has been proposed to numerically com-
pute the local maximum mutual information rate of a finite state machine channel
[32]. We are interested in input-constrained channel capacity, i.e., the capacity of
BSC(ε), where the possible inputs are constrained, described as follows.

Let X = {0,1}, X∗ denote all the finite length binary words, and Xn denote
all the binary words with length n. A binary finite type constraint [20, 21] S is a
subset of X∗ defined by a finite set (denoted by F ) of forbidden words; in other
words, any element in S does not contain any element in F as a contiguous subse-
quence. A prominent example is the (d, k)-RLL constraint S(d, k), which forbids
any sequence with fewer than d or more than k consecutive zeros in between two
1’s. For S(d, k) with k < ∞, a forbidden set F is:

F = {1 0 · · ·0︸ ︷︷ ︸
l

1 : 0 ≤ l < d} ∪ {0 · · ·0︸ ︷︷ ︸
k+1

}.

When k = ∞, one can choose F to be

F = {1 0 · · ·0︸ ︷︷ ︸
l

1 : 0 ≤ l < d};

in particular, when d = 1, k = ∞, F can be chosen to be {11}. These constraints
on input sequences arise in magnetic recording in order to eliminate the most dam-
aging error events [21].

We will use Sn to denote the subset of S consisting of words with length n.
A finite type constraint S is irreducible if for any u, v ∈ S, there is a w ∈ S such
that uwv ∈ S.

For a finite binary stochastic (not necessarily stationary) process X = X0−n, de-
fine the set of allowed words with respect to X as

A(X0−n) = {w0−n ∈ Xn+1 :P(X0−n = w0−n) > 0}.
For a left-infinite binary stochastic (again not necessarily stationary) process
X = X0−∞, define the set of allowed words with respect to X as

A(X) = {w0−m ∈ X∗ :m ≥ 0,P (X0−m = w0−m) > 0}.
For a constrained BSC(ε) with input sequences in S, the noisy constrained capac-
ity C(S, ε) is defined as

C(S, ε) = lim
n→∞ sup

A(X0−n)⊆S

1

n + 1

(
H(Z0−n(ε)) − H(Z0−n(ε)|X0−n)

)
,
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where again Z0−n(ε) is the output process corresponding to the input process
X0−n. Let P (resp. Pn) denote the set of all left-infinite (resp. length n) station-
ary processes over the alphabet X. Using the approach in Section 12.4 of [12], one
can show that

C(S, ε) = lim
n→∞ sup

X0−n∈Pn+1,A(X0−n)⊆S

1

n + 1

(
H(Z0−n(ε)) − H(Z0−n(ε)|X0−n)

)
(1.5)

= sup
X∈P, A(X)⊆S

H(Zε) − H(Zε|X),

where Z0−n(ε),Zε are the output process corresponding to the input processes
X0−n,X, respectively.

In Section 3 we apply the results of Section 2 to derive an asymptotic formula
for capacity of the input-constrained BSC(ε) (again as ε tends to zero) for any irre-
ducible finite type input constraint. In Section 4 we consider the special case of the
(d, k)-RLL constraint, and compute the coefficients of the asymptotic formulas.

Regarding prior work on C(S, ε), the best results in the literature have been in
the form of bounds and numerical simulations based on producing random (and,
hopefully, typical) channel output sequences (see, e.g., [3, 29, 33] and references
therein). These methods allow for fairly precise numerical approximations of the
capacity for given constraints and channel parameters.

For a more detailed introduction to entropy, capacity and related concepts in
information theory, we refer to standard textbooks such as [8, 12].

2. Asymptotics of entropy rate. Consider a BSC(ε) and suppose the input
is an mth order irreducible Markov chain X defined by the transition probabilities
P(Xt = a0|Xt−1

t−m = a−1−m), a0−m ∈ Xm+1, here again X = {0,1}, and the output
hidden Markov chain will be denoted by Zε .

2.1. When transition probabilities of X are all positive. This case is treated
in [18]:

THEOREM 2.1 ([18], Theorem 3). If P(Xt = a0|Xt−1
t−m = a−1−m) > 0 for all

a0−m ∈ Xn+1, the entropy rate of Zε for small ε is

H(Zε) = H(X) + g(X)ε + O(ε2),(2.1)

where, denoting by z̄i the Boolean complement of zi , and

ž2m+1 = z1 · · · zmz̄m+1zm+2 · · · z2m+1,

we have

g(X) = ∑
z2m+1

1 ∈X2m+1

PX(z2m+1
1 ) log

PX(z2m+1
1 )

PX(ž2m+1
1 )

.(2.2)
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We remark that the expression here for g(X) is a familiar quantity in informa-
tion theory, known as the Kullback–Liebler divergence; specifically, g(X) is the
divergence between the two distributions PX(z2m+1

1 ) and PX(ž2m+1
1 ).

In [18] a complete proof is given for first-order Markov chains, as well as the
sketch for the generalization to higher order Markov chains. Alternatively, after
appropriately enlarging the state space of X to convert the mth order Markov chain
to a first order Markov chain, we can use Theorem 1.1 of [13] to show H(Zε) is
analytic with respect to ε at ε = 0, and Theorem 2.5 of [14] to show that all the
derivatives of H(Zε) at ε = 0 can be computed explicitly (in principle) without
taking limits. Theorem 2.1 does this explicitly (in fact) for the first derivative.

2.2. When transition probabilities of X are not necessarily all positive. First
consider the case when X is a binary first order Markov chain with the transition
probability matrix [

1 − p p

1 0

]
,(2.3)

where 0 ≤ p ≤ 1. This process generates sequences satisfying the (d, k) = (1,∞)-
RLL constraint, which simply means that the string 11 is forbidden. Sequences
generated by the output process Zε , however, will generally not satisfy the con-
straint. The probability of the constraint-violating sequences at the output of the
channel is polynomial in ε, which will generally contribute a term O(ε log ε) to the
entropy rate H(Zε) when ε is small. This was already observed for the probability
transition matrix (2.3) in [23], where it is shown that

H(Zε) = H(X) + p(2 − p)

1 + p
ε log 1/ε + O(ε)(2.4)

as ε → 0.
In the following we shall generalize formulas (2.1) and (2.4) and derive a for-

mula for entropy rate of any hidden Markov chain Zε , obtained when passing
a Markov chain X of any order m through a BSC(ε). We will apply the Birch
bounds [5], for n ≥ m, which yield

H(Z0(ε)|Z−1−n+m(ε),X−n+m−1−n ,E−n+m−1−n )
(2.5)

≤ H(Zε) ≤ H(Z0(ε)|Z−1−n(ε)).

Note that the lower bound is really just

H(Z0(ε)|Z−1−n+m(ε),X−n+m−1−n ),

since Z0−n+m(ε), if conditioned on X−n+m−1−n , is independent of E−n+m−1−n .
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LEMMA 2.2. For a stationary input process X0−n and the corresponding out-
put process Z0−n(ε) through BSC(ε) and 0 ≤ k ≤ n,

H(Z0(ε)|Z−1
−n+k(ε),X

−n+k−1−n )

= H(X0|X−1−n) + f k
n (X0−n)ε log(1/ε) + gk

n(X
0−n)ε + O(ε2 log ε),

where f k
n (X0−n) and gk

n(X
0−n) are given by (2.8) and (2.9) below, respectively.

PROOF. In this proof w = w−1−n, where w−j is a single binary bit, and we let v

denote a single binary bit. And we use the notation for probability:

pXZ(w) = P
(
X−n+k−1−n = w−n+k−1−n ,Z−1

−n+k(ε) = w−1
−n+k

)
,

pXZ(wv) = P
(
X−n+k−1−n = w−n+k−1−n ,Z−1

−n+k(ε) = w−1
−n+k,Z0(ε) = v

)
and

pXZ(v|w) = P
(
Z0(ε) = v|Z−1

−n+k(ε) = w−1
−n+k,X

−n+k−1−n = w−n+k−1−n

)
.

We remark that the definition of pXZ does depend on ε and how we partition w−1−n

according to k, however, we keep the dependence implicit for notational simplicity.
We split H(Z0(ε)|Z−1

−n+k(ε),X
−n+k−1−n ) into five terms:

H(Z0(ε)|Z−1
−n+k(ε),X

−n+k−1−n )

= ∑
wv∈A(X)

−pXZ(wv) log(pXZ(v|w))

+ ∑
w∈A(X),wv/∈A(X)

−pXZ(wv) log(pXZ(v|w))

(2.6)
+ ∑

pXZ(w)=�(ε),pXZ(wv)=�(ε)

−pXZ(wv) log(pXZ(v|w))

+ ∑
pXZ(w)=�(ε),pXZ(wv)=O(ε2)

−pXZ(wv) log(pXZ(v|w))

+ ∑
pXZ(w)=O(ε2)

−pXZ(wv) log(pXZ(v|w)),

here by α = �(β), we mean, as usual, there exist positive constants C1,C2 such
that C1|β| ≤ |α| ≤ C2|β|, while by α = O(β), we mean there exists a positive
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constant C such that |α| ≤ C|β|; note that from

pXZ(w)

= ∑
u−1

−n+k :w−n+k−1−n u−1
−n+k∈A(X−1−n)

(
P(X−n+k−1−n = w−n+k−1−n ,X−1

−n+k = u−1
−n+k)

×
−1∏

j=−n+k

pE(uj ⊕ wj)

)
,

we see that pXZ(w) = �(ε) is equivalent to the statement that w /∈ A(X−1−n), and
by flipping exactly one of the bits in w−1

−n+k , one obtains, from w, a sequence in

A(X−1−n).
For the fourth term, we have∑

pXZ(w)=�(ε),pXZ(wv)=O(ε2)

−pXZ(wv) log(pXZ(v|w)) = O(ε2 log ε).

For the fifth term, we have∑
pXZ(w)=O(ε2)

−pXZ(wv) log(pXZ(v|w))

= ∑
pXZ(w)=O(ε2)

−pXZ(w)
∑
v

pXZ(v|w) log(pXZ(v|w))

≤ (log 2)
∑

pXZ(w)=O(ε2)

pXZ(w) = O(ε2),

where we use the fact that −∑
v pXZ(v|w) log(pXZ(v|w)) ≤ log 2 for any w. We

conclude that the sum of the fourth term and the fifth term is O(ε2 log ε).
For a binary sequence u−1−n, define hk

n(u
−1−n) to be

hk
n(u

−1−n) =
n−k∑
j=1

pX(u
−j−1
−n ū−ju

−1
−j+1) − (n − k)pX(u−1−n).(2.7)

Note that with this notation, hk
n(w) and hk

n+1(wv) can be expressed as derivatives
with respect to ε at ε = 0:

hk
n(w) = p′

XZ(w)|ε=0, hk
n+1(wv) = p′

XZ(wv)|ε=0.

Then for the first term, we have∑
wv∈A(X)

−pXZ(wv) log(pXZ(v|w))

= − ∑
wv∈A(X)

(
pX(wv) + hk

n+1(wv)ε + O(ε2)
)
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× log
(
pX(v|w) + hk

n+1(wv)pX(w) − hk
n(w)pX(wv)

p2
X(w)

ε

+ O(ε2)

)

= H(X0|X−1−n) − ∑
wv∈A(X)

(
hk

n+1(wv) logpX(v|w)

+ hk
n+1(wv)pX(w) − hk

n(w)pX(wv)

pX(w)

)
ε

+ O(ε2).

For the second term, it is easy to check that for w ∈ A(X) and wv /∈ A(X),
pXZ(v|w) = �(ε) and so

pXZ(wv) = hk
n+1(wv)ε + O(ε2);

we then obtain∑
w∈A(X),wv/∈A(X)

−pXZ(wv) log(pXZ(v|w))

= − ∑
w∈A(X),wv/∈A(X)

hk
n+1(wv)ε log

hk
n+1(wv)ε + O(ε2)

pX(w)
+ O(ε2) log�(ε)

= ∑
w∈A(X),wv/∈A(X)

hk
n+1(wv)ε log(1/ε)

−
( ∑

w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)

pX(w)

)
ε + O(ε2 log ε).

For the third term, we have∑
pXZ(w)=�(ε),pXZ(wv)=�(ε)

−pXZ(wv) log(pXZ(v|w))

= − ∑
pXZ(w)=�(ε),pXZ(wv)=�(ε)

(
hk

n+1(wv)ε + O(ε2)
)

× log
(

hk
n+1(wv)

hk
n(w)

+ O(ε)

)

= −
( ∑

pXZ(w)=�(ε),pXZ(wv)=�(ε)

hk
n+1(wv) log

(
hk

n+1(wv)

hk
n(w)

))
ε + O(ε2).
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In summary, H(Z0(ε)|Z−1
−n+k(ε),X

−n+k−1−n ) can be rewritten as

H(Z0(ε)|Z−1
−n+k(ε),X

−n+k−1−n )

= H(X0|X−1−n) + f k
n (X0−n)ε log(1/ε) + gk

n(X
0−n)ε + O(ε2 log ε),

where [see (2.7) for the definition of hk
n(·)]

f k
n (X0−n) = ∑

w∈A(X),wv/∈A(X)

hk
n+1(wv)

(2.8)

= ∑
w∈A(X),wv/∈A(X)

(
n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1−n)

)
,

and

gk
n(X

0−n) = − ∑
wv∈A(X)

(
hk

n+1(wv) logpX(v|w)

+ hk
n+1(wv)pX(w) − hk

n(w)pX(wv)

pX(w)

)
(2.9)

− ∑
w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)

pX(w)

− ∑
pXZ(w)=�(ε),pXZ(wv)=�(ε)

hk
n+1(wv) log

(
hk

n+1(wv)

hk
n(w)

)
. �

REMARK 2.3. For any δ > 0 and fixed n, the constant in O(ε2 log ε) in
Lemma 2.2 can be chosen uniformly on Pn+1,δ , where Pn+1,δ denotes the set of
binary stationary processes X = X0−n, such that, for all w0−n ∈ A(X), we have
pX(w) ≥ δ.

THEOREM 2.4. For an mth order Markov chain X passing through a BSC(ε),
with Zε as the output hidden Markov chain,

H(Zε) = H(X) + f (X)ε log(1/ε) + g(X)ε + O(ε2 log ε),

where f (X) = f 0
2m(X0−2m) = f m

2m(X0−2m) and g(X) = g0
3m(X0−3m) = gm

3m(X0−3m).

PROOF. We apply Lemma 2.2 to the Birch upper and lower bounds [equation
(2.5)] of H(Zε). For the upper bound, k = 0, we have, for all n,

H(Z0(ε)|Z−1−n(ε)) = H(X0|X−1−n) + f 0
n (X0−n)ε log(1/ε)

+ g0
n(X

0−n)ε + O(ε2 log ε).
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And for the lower bound, k = m, we have, for n ≥ m,

H(Z0(ε)|Z−1−n+m(ε),X−n+m−1−n )

= H(X0|X−1−n) + f m
n (X0−n)ε log(1/ε) + gm

n (X0−n)ε + O(ε2 log ε).

The first term always coincides for the upper and lower bounds. When n ≥ m,
since X is an mth order Markov chain,

H(X0|X−1−n) = H(X0|X−1−m) = H(X).

Let w = w−1−n, where w−j is a single bit, and v denotes a single bit. If w ∈ A(X)

and wv /∈ A(X), then pX(w−1−mv) = 0. It then follows that for an mth order Markov
chain, when n ≥ 2m,

f m
n (X0−n) = f 0

n (X0−n) = f 0
2m(X0−2m) = f m

2m(X0−2m).(2.10)

Now consider gk
n(X

0−n). When 0 ≤ k ≤ m, we have the following facts [for a
detailed derivation of (2.11)–(2.13), see the Appendix]:

if wv ∈ A(X), pX(v|w) = pX(v|w−1−m) for n ≥ m,(2.11)

if w ∈ A(X), wv /∈ A(X),
(2.12)

hk
n+1(wv)

pX(w)
is constant (as function of n and k) for n ≥ 2m,0 ≤ k ≤ m,

if pXZ(w) = �(ε),pXZ(wv) = �(ε),
(2.13)

hk
n+1(wv)

hk
n(w)

is constant for n ≥ 3m,0 ≤ k ≤ m.

It then follows [see the derivations of (2.14)–(2.16) in the Appendix] that

∑
wv∈A(X)

hk
n+1(wv)pX(w) − hk

n(w)pX(wv)

pX(w)
(2.14)

is constant (as a function of n) for n ≥ 2m,0 ≤ k ≤ m,

∑
w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)

pX(w)
(2.15)

is constant for n ≥ 2m,0 ≤ k ≤ m, and∑
wv∈A(X)

hk
n+1(wv) logpX(v|w)

(2.16)

+ ∑
pXZ(w)=�(ε),pXZ(wv)=�(ε)

hk
n+1(wv) log

hk
n+1(wv)

hk
n(w)
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is constant for n ≥ 3m,0 ≤ k ≤ m.

Consequently, we have

gm
n (X0−n) = g0

n(X
0−n) = g0

3m(X0−3m) = gm
3m(X0−3m).(2.17)

Let f (X) = f 0
2m(X0−2m) and g(X) = g0

3m(X0−3m), then the theorem follows. �

REMARK 2.5. Note that this result applies in particular to the case when
the transition probabilities of X are all positive; thus, in this case the formula
should reduce to that of Theorem 2.1. Indeed, when all transition probabilities
of X are positive, f (X) vanishes since the summation in (2.8) is taken over an
empty set; on the other hand, again from (2.8), if some of the transition prob-
abilities of X are zero, then f (X) does not vanish [to see this, note that when
w ∈ A(X),wv /∈ A(X), necessarily we will have wv̄ ∈ A(X)]. The agreement of
g(X) with expression in Theorem 2.1 is a straightforward, but tedious, computa-
tion.

REMARK 2.6. Together with Remark 2.3, the proof of Theorem 2.4 implies
that for any δ > 0 and fixed m, the constant in O(ε2 log ε) in Theorem 2.4 can be
chosen uniformly on Qm,δ , where Qm,δ denotes the set of all mth order Markov
chains X such that, whenever w = w0−m ∈ A(X), we have pX(w) ≥ δ.

REMARK 2.7. The error term in the formula of Theorem 2.4 cannot be im-
proved, in the sense that, in some cases, the error term is dominated by a strictly
positive constant times ε2 log ε.

As we showed in Theorem 2.4, the Birch upper bound with n = 3m yields

H(Z0(ε)|Z−1−n(ε)) = H(X) + f (X)ε log(1/ε) + g(X)ε + O(ε2 log ε).

Together with (2.6), one checks that the �(ε2 log ε) term in the error term
O(ε2 log ε) is contributed by [see the second term in (2.6) with k = 0]∑

w∈A(X),wv/∈A(X)

−pZ(wv) log(pZ(v|w))

and [see the fourth term in (2.6) with k = 0]∑
pZ(w)=�(ε),pZ(wv)=O(ε2)

−pZ(wv) log(pZ(v|w)),

and this �(ε2 log ε) term does not vanish at least for certain cases. For instance,
consider the input Markov chain X with the following transition probability ma-
trix: [

1 − p p

1 0

]
,
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where 0 < p < 1. Then one checks that for this case, m = 1, n = 3, and the coeffi-
cient of the above-mentioned �(ε2 log ε) term takes the form of

1 − 6p + 7p2 − p3

1 + p
,

which is strictly positive for p is close to 0.

3. Asymptotics of capacity. Consider a binary irreducible finite type con-
straint S defined by F , which consists of forbidden words with length m̂ + 1.
In general, there are many such F ’s corresponding to the same S with different
lengths; here we may choose F to be the one with the smallest length m̂ + 1. And
m̂ = m̂(S) is defined to be the topological order of the constraint S. For example,
the order of S(d, k), discussed in the introduction, is k [20]. The topological order
of a finite type constraint is analogous to the order of a Markov chain.

Recall from (1.5) that for an input-constrained BSC(ε) with input sequences
X0−n in S and with the corresponding output Z0−n(ε), the capacity can be written
as

C(S, ε) = lim
n→∞ sup

X0−n∈Pn+1,A(X0−n)⊆S

(
1/(n + 1)(H(Z0−n(ε)) − H(Z0−n(ε)|X0−n))

)
Since the noise distribution is symmetric and the noise process E is i.i.d. and in-
dependent of X, this can be simplified to

C(S, ε) = lim
n→∞ sup

X0−n∈Pn+1,A(X0−n)⊆S

H(Z0−n(ε))/(n + 1) − H(ε),

which can be rewritten as

C(S, ε) = lim
n→∞ sup

X0−n∈Pn+1,A(X0−n)⊆S

H(Z0(ε)|Z−1−n(ε)) − H(ε),

where we used the chain rule for entropy (see page 21 of [8])

H(Z0−n(ε)) =
n∑

j=0

H(Z0(ε)|Z−1
−j (ε)),

and the fact that (further) conditioning reduces entropy (see page 27 of [8])

H(Z0(ε)|Z−1
−j1

(ε)) ≥ H(Z0(ε)|Z−1
−j2

(ε)) for j1 ≤ j2.

Recall from (1.5) that

C(S, ε) = sup
X∈P,A(X)⊆S

H(Zε) − H(Zε|X).

Now let

Hn(S, ε) = sup
X0−n∈Pn+1,A(X0−n)⊆S

H(Z0(ε)|Z−1−n(ε))
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and

hm(S, ε) = sup
X∈Mm,A(X)⊆S

H(Zε),

where Mm denotes the set of all mth order binary irreducible Markov chains; we
then have the bounds for C(S, ε):

hm(S, ε) − H(ε) ≤ C(S, ε) ≤ Hn(S, ε) − H(ε).(3.1)

Noting that

sup
X0−n∈Pn+1,A(X0−n)�Sn+1

H(X0|X−1−n) < sup
X0−n∈Pn+1,A(X0−n)=Sn+1

H(X0|X−1−n)

(here � means “proper subset of”), and H(Z0(ε)|Z−1−n(ε)) are continuous at ε = 0,
we conclude that, for ε sufficiently small (ε < ε0), one may choose δ > 0 (here,
δ depends on n and m) such that

Hn(S, ε) = sup
X0−n∈Pn+1,δ,A(X0−n)=Sn+1,

H(Z0(ε)|Z−1−n(ε)).

So from now on we only consider stationary processes X = X0−n with A(X0−n) =
Sn+1.

Now for a stationary process X = X0−n, define pn as the following probability
vector indexed by all the elements in Sn+1:

pn = pn(X
0−n) = (

P(X0−n = w0−n) :w0−n ∈ Sn+1
)
.

To emphasize the dependence of X0−n on pn, in the following, we shall rewrite
X0−n as X0−n( pn). For an mth order binary irreducible Markov chain X = X0−∞,
slightly abusing the notation, define pm as the following probability vector indexed
by all the elements in Sm+1,

pm = pm(X0−∞) = (
P(X0−m = w0−m) :w0−m ∈ Sm+1

)
.

Similarly, to emphasize the dependence of X = X0−∞ on pm, in the following, we
shall rewrite X as X pm

. And we shall use Z0−n( pn, ε) to denote the output process
obtained by passing X0−n( pn) through BSC(ε), and use Z pm,ε to denote the output
process obtained by passing X pm

through BSC(ε).

LEMMA 3.1. For any stationary process X0−n( pn) with A(X0−n( pn)) = Sn+1,
H(X0( pn)|X−1−n( pn)), as a function of pn, has a negative definite Hessian matrix.

PROOF. Note that

H(X0( pn)|X−1−n( pn)) = − ∑
x0−n∈S

p(x0−n) logp(x0|x−1−n).
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For two different probability vectors pn and qn, consider the convex combination

rn(t) = t pn + (1 − t)qn,

where 0 ≤ t ≤ 1. It suffices to prove that H(X0(rn(t))|X−1−n(rn(t))) has a strictly
negative second derivative with respect to t . Now consider a single term in
H(X0( pn)|X−1−n( pn)):

−(
t pn(x

0−n) + (1 − t)qn(x
0−n)

)
log

t pn(x
0−n) + (1 − t)qn(x

0−n)

t pn(x
−1−n) + (1 − t)qn(x

−1−n)
.

Note that for two formal symbols α and β , if we assume α′′ = 0 and β ′′ = 0, the
second order formal derivative of α log α

β
can be computed as

(
α log

α

β

)′′
=

(
α′
√

α
− √

α
β ′

β

)2

.

It then follows that the second derivative of this term (with respect to t) can be
calculated as

−
( pn(x

0−n) − qn(x
0−n)√

t pn(x
0−n) + (1 − t)qn(x

0−n)

−
√

t pn(x
0−n) + (1 − t)qn(x

0−n)
pn(x

0−(n−1)) − qn(x
0−(n−1))

t pn(x
0−(n−1)) + (1 − t)qn(x

0−(n−1))

)2

.

That is, the expression above is always nonpositive, and is equal to 0 only if

pn(x
0−n) − qn(x

0−n)

t pn(x
0−n) + (1 − t)qn(x

0−n)
= pn(x

0−(n−1)) − qn(x
0−(n−1))

t pn(x
0−(n−1)) + (1 − t)qn(x

0−(n−1))
,

which is equivalent to

P
(
X0( pn) = x0|X−1−n( pn) = x−1−n

)
(3.2)

= P
(
X0(qn) = x0|X−1−n(qn) = x−1−n

)
.

Since S is an irreducible finite type constraint and A(X0−n( pn)) = A(X0−n(qn)) =
Sn+1, the expression (3.2) cannot be true for every x0−n unless pn = qn. So we
conclude that the second derivative of H(X0(rn(t))|X−1−n(rn(t))) (with respect to t)
is strictly negative. Thus, H(X0( pn)|X−1−n( pn)), as a function of pn, has a strictly
negative definite Hessian. �

For m ≥ m̂, over all mth order Markov chains X pm
with A(X pm

) = S, H(X pm
)

is maximized at some unique Markov chain X pmax
m

(see [20, 24]). Moreover, X pmax
m

does not depend on m and is an m̂th order Markov chain, so we will drop the
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subscript m and use X pmax instead to denote X pmax
m

for any m ≥ m̂. The same idea
shows that over all stationary distributions X0−n( pn) (n ≥ m̂) with A(X0−n( pn)) =
Sn+1, H(X0( pn)|X−1−n( pn)) is maximized at pmax

n , which corresponds to the above
unique X pmax as well.

Note that C(S) = C(S,0) is equal to the noiseless capacity of the constraint S.
This quantity has been extensively studied, and several interpretations and methods
for its explicit derivation are known (see, e.g., [21] and the extensive bibliography
therein). It is well known that C(S) = H(X pmax) (see [20, 24]).

THEOREM 3.2. 1. If n ≥ 3m̂(S),

Hn(S, ε) = C(S) + f (X pmax)ε log(1/ε) + g(X pmax)ε + O(ε2 log2 ε).

2. If m ≥ m̂(S),

hm(S, ε) = C(S) + f (X pmax)ε log(1/ε) + g(X pmax)ε + O(ε2 log2 ε).

Here, as defined in Theorem 2.4, f (X pmax) = f 0
2m̂

(X0
−2m̂

( pmax)) and g(X pmax) =
g0

3m̂
(X0

−3m̂
( pmax)).

PROOF. We first prove the statement for Hn(S, ε). As mentioned before, for
ε sufficiently small (ε < ε0), Hn(S, ε) is achieved by X0−n with A(X0−n) = Sn+1;
and one may choose δ such that

Hn(S, ε) = sup
p:X0−n( pn)∈Pn+1,δ,A(X0−n( pn))=Sn+1

H(Z0( pn, ε)|Z−1−n( pn, ε)).

Below, we assume ε < ε0, X0−n( pn) ∈ Pn+1,δ , A(X0−n( pn)) = Sn+1; and for nota-
tional convenience, we rewrite f 0

n (X0−n( pn)) as fn( pn), g0
n(X

0−n( pn)) as gn( pn).
In Lemma 2.2 we have proved that

H(Z0( pn, ε)|Z−1−n( pn, ε))

= H(X0( pn)|X−1−n( pn)) + fn( pn)ε log(1/ε) + gn( pn)ε + O(ε2 log ε).

Moreover, by Remark 2.3, for any δ > 0, O(ε2 log ε) is uniform on Pn+1,δ , that is,
there is a constant C (depending on n) such that, for all X0−n with X0−n( p) ∈ Pn+1,δ

and A(X0−n) = Sn+1,

|H(Z0( pn, ε)|Z−1−n( pn, ε))

− H(X0( pn)|X−1−n( pn)) − fn( pn)ε log(1/ε) − gn( pn)ε|
≤ Cε2 log ε.

Let qn = pn − pmax
n . Since H(X0( pn)|X−1−n( pn)) is maximized at pmax

n , we can
expand H(X0( pn)|X−1−n( pn)) around pmax

n :

H(X0( pn)|X−1−n( pn)) = H(X0( pmax
n )|X−1−n( pmax

n )) + qn
tK1 qn + O(|qn|3)

= H(X pmax) + qt
nK1 qn + O(|qn|3),
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where K1 is a negative definite matrix by Lemma 3.1 (the second equality follows
from the fact that X pmax is an m̂th order Markov chain). So for |qn| sufficiently
small, we have

H(X0( pn)|X−1−n( pn)) < H(X pmax) + (1/2)qt
nK1 qn.

Now we expand fn( pn) and gn( pn) around pmax
n :

fn( pn) = fn( pmax
n ) + K2 · qn + O(|qn|2),

gn( pn) = gn( pmax
n ) + K3 · qn + O(|qn|2)

(here, K2 and K3 are vectors of first order partial derivatives). Then, for |qn| suffi-
ciently small, we have

fn( pn) ≤ fn( pmax
n ) + 2

∑
j

|K2,j ||qn,j |,

gn( p) ≤ gn( pmax
n ) + 2

∑
j

|K3,j ||qn,j |,

where K2,j ,K3,j , qn,j are the j th coordinates of K2,K3, qn, respectively.
With a change of coordinates, if necessary, we may assume K1 is a di-

agonal matrix with strictly negative diagonal elements K1,j . In the following
we assume 0 < ε < ε0. And we may further assume that for some � ≥ 1,
|qn,j | > 4|K2,j /K1,j |ε log(1/ε) + 4|K3,j /K1,j |ε for j ≤ � − 1, and |qn,j | ≤
4|K2,j /K1,j |ε log(1/ε) + 4|K3,j /K1,j |ε for j ≥ �. Then for each j ≤ l − 1, we
have (1/2)K1,j q

2
n,j + 2|K2,j ||qn,j |ε log(1/ε) + 2|K3,j ||qn,j |ε < 0. Thus,

H(Z0( pn, ε)|Z−1−n( pn, ε))

< H(X pmax
n

) + fn( pmax
n )ε log(1/ε) + gn( pmax

n )ε

+ ∑
j

(
(1/2)K1,j q

2
n,j + 2|K2,j ||qn,j |ε log(1/ε) + 2|K3,j ||qn,j |ε)

+ Cε2 log ε

< H(X pmax) + fn( pmax
n )ε log(1/ε)

+ gn( pmax
n )ε + ∑

j≥l

(1/2)K1,j

(
4|K2,j /K1,j |ε log(1/ε) + 4|K3,j /K1,j |ε)2

+ ∑
j≥l

2|K2,j |(4|K2,j /K1,j |ε log(1/ε) + 4|K3,j /K1,j |ε)
ε log(1/ε)

+ ∑
j≥l

2|K3,j |(4|K2,j /K1,j |ε log(1/ε) + 4|K3,j /K1,j |ε)
ε + Cε2 log ε.
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Collecting terms, we eventually reach

H(Z0( pn, ε)|Z−1−n( pn, ε))

< H(X pmax) + fn( pmax
n )ε log(1/ε) + gn( pmax

n )ε + O(ε2 log2 ε),

and since Hn(S, ε) is the sup of the left-hand side expression, together with
H(X pmax) = C(S), we have

Hn(S, ε) ≤ C(S) + fn( pmax
n )ε log(1/ε) + gn( pmax

n )ε + O(ε2 log2 ε).

As discussed in Theorem 2.4, we have

fn( pmax
n ) = f (X pmax), n ≥ 2m̂,(3.3)

and

gn( pmax
n ) = g(X pmax), n ≥ 3m̂.(3.4)

So eventually we reach

Hn(S, ε) ≤ C(S) + f (X pmax)ε log(1/ε) + g(X pmax)ε + O(ε2 log2 ε).

The reverse inequality follows trivially from the definition of Hn(ε).
We now prove the statement for hm(S, ε). First, observe that

H3m(S, ε) ≥ hm(S, ε) ≥ hm̂(S, ε) ≥ H(Z pmax,ε),

where Z pmax,ε is the output process corresponding to input process X pmax . By
part 1, H3m(S, ε) is of the form C(S) + f (X pmax)ε log(1/ε) + g(X pmax)ε +
O(ε2 log2 ε). By Theorem 2.4, H(Z pmax,ε) is of the same form. Thus, hm(S, ε)

is also of the same form, as desired. �

COROLLARY 3.3.

C(S, ε) = C(S) + (
f (X pmax) − 1

)
ε log(1/ε) + (

g(X pmax) − 1
)
ε + O(ε2 log2 ε).

In fact, for each m ≥ m̂(S), hm(S, ε) − H(ε) is of this form.

PROOF. This follows from Theorem 3.2, inequality (3.1) and the fact that

H(ε) = ε log 1/ε + (1 − ε) log 1/(1 − ε) = ε log 1/ε + ε + O(ε2). �

REMARK 3.4. Note that the error term here for noisy constrained capacity is
O(ε2 log2 ε), which is larger than the error term, O(ε2 log ε), for entropy rate in
Theorem 2.4. At least in some cases, this cannot be improved, as we show at the
end of the next section.
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4. Binary symmetric channel with (d,k)-RLL constrained input. We now
apply the results of the preceding section to compute asypmtotics for the the
noisy constrained BSC channel with inputs restricted to the (d, k)-RLL constraint
S(d, k). Expressions (2.8) and (2.9) allow us to explicitly compute f (X pmax) and
g(X pmax). In this section, as an example, we derive the explicit expression for
f (X pmax), omitting the computation of g(X pmax) due to tedious derivation. We re-
mark that for a BSC(ε) for some cases, the (d, k)-RLL constrained input, similar
expressions have been independently obtained in [19].

It is first shown in [19] that in the case k ≤ 2d , for any binary stationary Markov
chain X, of any order, with A(X) ⊆ S(d, k), f (X) = 1, and so, in this case,
C(S(d, k), ε) = C(S(d, k),0) + O(ε), that is, the noisy constrained capacity dif-
fers from the noiseless capacity by O(ε), rather than O(ε log ε). In the following
we take a look at this using a different approach. For this, first note that for any
d, k, f (X) takes the form

f (X) = ∑
l1+l2≤k−1,0≤l2≤d−1,l1≥d

pX(10l1+l2+11)

(4.1)
+ ∑

l1+l2=k,l1≥d

pX(10l110l2) + ∑
1≤l≤d

pX(10l).

Now, when k ≤ 2d ,∑
l1+l2=k,l1≥d

pX(10l110l2) = ∑
d≤l1≤k

pX(10l11) = p(1)

and ∑
l1+l2≤k−1,0≤l2≤d−1,l1≥d

pX(10l1+l2+11)

= pX(10d+1) + pX(10d+2) + · · · + pX(10k).

So

f (X) = pX(1) + pX(10) + · · · + pX(10d) + pX(10d+1) + · · · + pX(10k) = 1,

as desired.
Now we consider the general RLL constraint S(d, k). By Corollary 3.3, we have

C(S(d, k), ε) = C(S(d, k)) + (
f (X pmax) − 1

)
ε log 1/ε

(4.2)
+ (

g(X pmax) − 1
)
ε + O(ε2 log2 ε).

For any irreducible finite type constraint, the noiseless capacity and Markov
process of maximal entropy rate can be computed in various ways (which all go
back to Shannon; see [21] or [20], page 444). Let A denote the adjacency matrix
of the standard graph presentation, with k + 1 states, of S(d, k). Let ρ denote the
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reciprocal of the largest eigenvalue. One can write C(S(d, k)) = − logρ0, and in
this case ρ0 is the real root of

k∑
�=d

ρ�+1
0 = 1.(4.3)

In the following we compute f (X pmax) explicitly in terms of ρ0. Let w =
(w0,w1, . . . ,wk) and v = (v0, v1, . . . , vk) denote the left and right eigenvectors
of A. Assume that w and v are scaled such that w · v = 1. Then one checks that,
with X = X pmax ,

pX(1) = w0v0 = 1

(k + 1) − ∑k
j=d+1

∑j−d−1
l=0 1/ρ

l−j
0

,

pX(10l1+l2+11) = pX(1)ρ
l1+l2+2
0 , pX(10k1) = pX(1)ρk+1

0 ,

pX(10l110l2) = pX(10l110l21) + pX(10l110l2+11) + · · · + pX(10l110k1)

= pX(1)ρ
l1+l2+2
0 (1 + ρ0 + · · · + ρ

k−l2
0 )

= pX(1)ρ
l1+l2+2
0

1 − ρ
k−l2+1
0

1 − ρ0

and

pX(10l) = pX(10l1) + pX(10l+11) + · · · + pX(10k1)

= pX(1)ρl+1
0 (1 + ρ0 + · · · + ρk−l

0 ) = pX(1)ρl+1
0

1 − ρk−l+1
0

1 − ρ0
.

So we obtain an explicit expression:

f (X pmax) = ∑
l1+l2≤k−1,0≤l2≤d−1,l1≥d

pX(10l1+l2+11)

+
( ∑

l1=k,l2=0

+ ∑
l1+l2=k,k−1≥l1≥d

)
pX(10l110l2) + ∑

1≤l≤d

pX(10l)

= pX(1)ρk+1
0 + ∑

l1+l2≤k−1,0≤l2≤d−1,l1≥d

pX(1)ρ
l1+l2+2
0

+ ∑
l1+l2=k,k−1≥l1≥d

pX(1)ρ
l1+l2+2
0

1 − ρ
k−l2+1
0

1 − ρ0

+ ∑
1≤l≤d

pX(1)ρl+1
0

1 − ρk−l+1
0

1 − ρ0
.

The coefficient g can also be computed explicitly but takes a more complicated
form.
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EXAMPLE 4.1. Consider a first order stationary Markov chain X with
A(X) ⊆ S(1,∞), transmitted over BSC(ε) with the corresponding output Z,
a hidden Markov chain. In this case, X can be characterized by the following
probability vector:

p1 = (pX(00),pX(01),pX(10)).

Note that m̂(S) = 1, and the only sequence w−2w−1v, which satisfies the require-
ment that w−2w−1 is in S and w−2w−1v is not allowable in S, is 011. It then
follows that

f (X p1) = p(011̄) + p(01̄1) + p(0̄11) = π01(2 − π01)/(1 + π01),(4.4)

where π01 denotes the transition probability from 0 to 1 in X. Straightforward, but
tedious, computation also leads to

g(X p1) = (1 + π01)
−1(

2π01 − π2
01 − 2π3

01 + 3π4
01 − π5

01

+ (−2π01 + 4π3
01 − 2π4

01) log(2)

+ (−1 + 3π01 − π2
01 − 2π3

01 + 5π4
01 − 3π5

01) log(π01)

+ (2 − 6π01 + 7π3
01 − 8π4

01 + 3π5
01) log(1 − π01)

+ (2π01 + π2
01 − 3π3

01 + π4
01) log(2 − π01)

)
.

Thus,

H(Z p1,ε) = H(X p1) + (
π01(2 − π01)/(1 + π01)

)
ε log(1/ε)

+ (
g(X p1) − 1

)
ε + O(ε2 log ε).

This asymptotic formula was originally proven in [23], with the less precise result
that replaces (g(X p1) − 1)ε + O(ε2 log2(1/ε)) by O(ε).

The maximum entropy Markov chain X pmax on S(1,∞) is defined by the tran-
sition probability matrix [

1/λ 1/λ2

1 0

]
and

C(S) = H(X pmax) = logλ,

where λ is the golden mean. Thus, in this case π01 = 1/λ2 and so by Corollary 3.3,
we obtain

C(S, ε) = logλ − (
(2λ + 2)/(4λ + 3)

)
ε log(1/ε)

+ (
g(X p1)|π01=1/λ2 − 1

)
ε + O

(
ε2 log2(1/ε)

)
.
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We now show that the error term in the above formula cannot be improved, in
the sense that the error term is of size at least a positive constant times ε2 log2(1/ε).
First observe that if we parameterize p1 = p1(ε) in any way, we obtain

C(S, ε) ≥ H
(
Z p1(ε),ε

) − H(ε).(4.5)

Since p1 is uniquely determined by the transition probability π01, we shall re-write
p1(ε) as π01(ε). We shall also rewrite the value of π01 = 1/λ2 at the maximum
entropy Markov chain as pmax.

Choose the parametrization π01(ε) = pmax + αε log(1/ε), where α is selected
as follows. Let K1 denote the value of the second derivative of H(Xπ01) at π01 =
pmax (the first derivative at π01 = pmax is 0). Let K2 denote the value of the first
derivative of f (Xπ01) at π01 = pmax. These values can be computed explicitly:
K1 from the formula for entropy rate of a first order Markov chain (1.3) and K2
from (4.4) above. A computation shows that K1 ≈ −3.065 and K2 ≈ 0.571 (all
that really matters is that neither constant is 0). Let α be any number such that
0 < α < K2/|K1|.

From Theorem 2.4 and Remark 2.6, we have

H
(
Zπ01(ε),ε

) ≥ H
(
Xπ01(ε)

) + f
(
Xπ01(ε)

)
ε log(1/ε)

(4.6)
+ g

(
Xπ01(ε)

)
ε + C1ε

2 log ε,

for some constant C1 (independent of ε sufficiently small). We also have

H
(
Xπ01(ε)

) ≥ H(Xpmax) + K1
(
αε log(1/ε)

)2 + C2
(
αε log(1/ε)

)3(4.7)

for some constant C2. And

f
(
Xπ01(ε)

) ≥ f (Xpmax) + K2
(
αε log(1/ε)

) + C3
(
αε log(1/ε)

)2
,(4.8)

g
(
Xπ01(ε)

) ≥ g(Xpmax) + C4
(
αε log(1/ε)

)
(4.9)

for constants C3,C4. And recall that

H(ε) = ε log 1/ε + (1 − ε) log 1/(1 − ε) = ε log 1/ε + ε + C5ε
2(4.10)

for some constant C5.
Recalling that H(Xpmax) = C(S) and combining (4.5)–(4.10), we see that

C(S, ε) ≥ C(S) + (
f (Xpmax) − 1

)
ε log(1/ε) + (

g(Xpmax) − 1
)
ε

+ K1
(
αε log(1/ε)

)2 + K2
(
αε2 log2(1/ε)

)
plus “error terms” which add up to

C1ε
2 log ε + C2

(
αε log(1/ε)

)3 + C3α
2(

ε log(1/ε)
)3

+ C4
(
αε2 log(1/ε)

) + C5ε
2,
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which is lower bounded by a constant M times ε2 log(1/ε). Thus, we see that the
difference between C(S, ε) and C(S) + (f (Xpmax) − 1)ε log(1/ε) + (g(Xpmax) −
1)ε is lower bounded by

α(K1α + K2)ε
2 log2(1/ε) + Mε2 log(1/ε).(4.11)

Since α > 0 and K1α + K2 > 0, for sufficiently small ε, (4.11) is lower bounded
by a positive constant times ε2 log2(1/ε), as desired.

APPENDIX

We first prove (2.11)–(2.13).

• (2.11) follows trivially from the fact that X is an mth order Markov chain.
• Now consider (2.12). For w ∈ A(X) and wv /∈ A(X),

hk
n+1(wv) =

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1−nv̄)

=
m∑

j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1−nv̄).

So

hk
n+1(wv)

pX(w)
=

∑m
j=1 pX(w

−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1−nv̄)

pX(w−1−n)

=
(

m∑
j=1

pX(w
−j−1
−m w̄−jw

−1
−j+1v|w−m−1

−2m )

+ pX(w−1−mv̄|w−m−1
−2m )

)

×pX(w−m−1−n )
(
pX(w−1−m|w−m−1

−2m )pX(w−m−1−n )
)−1

=
∑m

j=1 pX(w
−j−1
−2m w̄−jw

−1
−j+1v) + pX(w−1

−2mv̄)

pX(w−1
−2m)

.

• For (2.13), there are two cases. If pX(w−m−1−n ) = 0,

hk
n+1(wv)

hk
n(w)

=
∑n−k

j=1 pX(w
−j−1
−n w̄−jw

−1
−j+1v)∑n−k

j=1 pX(w
−j−1
−n w̄−jw

−1
−j+1)

=
∑n−k

j=m+1 pX(w
−j−1
−n w̄−jw

−1
−j+1v)∑n−k

j=m+1 pX(w
−j−1
−n w̄−jw

−1
−j+1)

= pX(v|w−1−m).
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If pX(w−m−1−n ) > 0,

hk
n+1(wv)

hk
n(w)

=
∑n−k

j=1 pX(w
−j−1
−n w̄−jw

−1
−j+1v)∑n−k

j=1 pX(w
−j−1
−n w̄−jw

−1
−j+1)

=
∑2m

j=1 pX(w
−j−1
−n w̄−jw

−1
−j+1v)∑2m

j=1 pX(w
−j−1
−n w̄−jw

−1
−j+1)

=
∑2m

j=1 pX(w
−j−1
−3m w̄−jw

−1
−j+1v)∑2m

j=1 pX(w
−j−1
−3m w̄−jw

−1
−j+1)

.

Using (2.11)–(2.13), we now proceed to prove (2.14)–(2.16).

• For (2.14), we have

∑
wv∈A(X)

hk
n+1(wv)pX(w) − hk

n(w)pX(wv)

pX(w)

= ∑
wv∈A(X)

hk
n+1(wv) − ∑

wv∈A(X)

hk
n(w)pX(v|w−1−m)

= ∑
wv∈A(X)

(
n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1−nv̄)

)

− (n + 1 − k)
∑

wv∈A(X)

pX(wv)

− ∑
wv∈A(X)

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1)pX(v|w−1−m)

+ (n − k)
∑

wv∈A(X)

pX(wv)

= ∑
wv∈A(X)

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v)

− ∑
w∈A(X)

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1) + ∑

wv∈A(X)

pX(w−1−nv̄) − 1

= ∑
wv∈A(X)

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v)
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− ∑
w∈A(X)

(
n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+10)

+
n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+11)

)

+ ∑
w−1−mv∈A(X)

pX(w−1−mv̄) − 1

= ∑
wv∈A(X)

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v)

− ∑
wv∈A(X)

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v)

− ∑
w∈A(X),wv/∈A(X)

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v)

+ ∑
w−1−mv∈A(X)

pX(w−1−mv̄) − 1

= − ∑
w−1

−2m∈A(X),w−1
−2mv/∈A(X)

m∑
j=1

pX(w
−j−1
−2m w̄−jw

−1
−j+1v)

+ ∑
w−1−mv∈A(X)

pX(w−1−mv̄) − 1.

• For (2.15), we have

∑
w∈A(X),wv/∈A(X)

hk
n+1(wv) log

hk
n+1(wv)

pX(w)

= ∑
w∈A(X),wv/∈A(X)

hk
n+1(wv) log

h0
2m+1(w

−1
−2mv)

pX(w−1
−2m)

= ∑
w∈A(X),wv/∈A(X)

n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v) log

h0
2m+1(w

−1
−2mv)

pX(w−1
−2m)

= ∑
w−1

−2m∈A(X),w−1
−2mv/∈A(X)

m∑
j=1

pX(w
−j−1
−2m w̄−jw

−1
−j+1v)

× log
h0

2m+1(w
−1
−2mv)

pX(w−1
−2m)

.
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• For (2.16), we have∑
wv∈A(X)

hk
n+1(wv) logpX(v|w)

+ ∑
pXZ(w)=�(ε),pXZ(wv)=�(ε)

hk
n+1(wv) log

h0
n+1(wv)

h0
n(w)

= ∑
wv∈A(X)

(
n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v)

+ pX(w−1−nv̄) − (n + 1 − k)pX(wv)

)
logpX(v|w−1−m)

+ ∑
pXZ(w)=�(ε),pXZ(wv)=�(ε),pX(w−m−1−n )=0

hk
n+1(wv) log

hk
n+1(wv)

hk
n(w)

+ ∑
pXZ(w)=�(ε),pXZ(wv)=�(ε),pX(w−m−1−n )>0

hk
n+1(wv) log

hk
n+1(wv)

hk
n(w)

=
( ∑

wv∈A(X)

+ ∑
pXZ(w)=�(ε),pXZ(wv)=�(ε),pX(w−m−1−n )=0

)

(
n−k∑
j=1

pX(w
−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1−nv̄)

)
logpX(v|w−1−m)

− (n + 1 − k)
∑

w−1−mv∈A(X)

pX(w−1−mv) logpX(v|w−1−m)

+ ∑
pXZ(w−1

−3m)=�(ε),pXZ(w−1
−3mv)=�(ε),pX(w−m−1

−3m )>0

h0
3m+1(wv)

× log
h0

3m+1(wv)

h0
3m(w)

= (n − k − m)
∑

w−1−mv∈A(X)

pX(w−1−mv) logpX(v|w−1−m)

+ ∑
wv∈A(X)

(
m∑

j=1

p(w
−j−1
−n w̄−jw

−1
−j+1v) + pX(w−1−nv̄)

)
logpX(v|w−1−m)

− (n + 1 − k)
∑

w−1−mv∈A(X)

pX(w−1−mv) logpX(v|w−1−m)
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+ ∑
pXZ(w−1

−3m)=�(ε),pXZ(w−1
−3mv)=�(ε),pX(w−m−1

−3m )>0

h0
3m+1(wv)

× log
h0

3m+1(wv)

h0
3m(w)

= (−m − 1)
∑

w−1−mv∈A(X)

pX(w−1−mv) logpX(v|w−1−m)

+ ∑
w−1

−2mv∈A(X)

(
m∑

j=1

pX(w
−j−1
−2m w̄−jw

−1
−j+1v) + pX(w−1

−2mv̄)

)

× logpX(v|w−1−m)

+ ∑
pXZ(w−1

−3m)=�(ε),pXZ(w−1
−3mv)=�(ε),pX(w−m−1

−3m )>0

h0
3m+1(wv)

× log
h0

3m+1(wv)

h0
3m(w)

.
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