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Detecting Outlier Samples in Microarray Data
Albert D. Shieh and Yeung Sam Hung

Abstract

In this paper, we address the problem of detecting outlier samples with highly different
expression patterns in microarray data. Although outliers are not common, they appear even in
widely used benchmark data sets and can negatively affect microarray data analysis. It is
important to identify outliers in order to explore underlying experimental or biological problems
and remove erroneous data. We propose an outlier detection method based on principal component
analysis (PCA) and robust estimation of Mahalanobis distances that is fully automatic. We
demonstrate that our outlier detection method identifies biologically significant outliers with high
accuracy and that outlier removal improves the prediction accuracy of classifiers. Our outlier
detection method is closely related to existing robust PCA methods, so we compare our outlier
detection method to a prominent robust PCA method.

Author Notes: The authors would like to thank the anonymous reviewers, whose comments
helped improve the manuscript.
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1 Introduction
Microarray data contains gene expression levels for a number of samples, each of
which is labeled with a biological class, such as a tumor type or an experimental
condition. There is a large body of methods for the analysis and interpretation of
microarray data, particularly for the problems of gene selection and class prediction.
However, an issue that has not been thoroughly studied is how to deal with outlier
samples. We define an outlier as a sample that deviates significantly from the rest
of the samples in its class. The practical consequence of designating a sample
as an outlier is that its class membership must be called into question since the
sample appears to have been generated by a different process. There is an enormous
amount of literature on outlier detection (Barnett and Lewis, 1994), but few outlier
detection methods have been proposed for the noisy, high dimensional, and class
labeled nature of microarray data.

There are two main types of outliers in microarray data. The first type of outlier
is a sample that belongs to a different class present in the data, which are often re-
ferred to as mislabeled samples. These are samples that were incorrectly assigned
to a class, such as a tumor sample that was labeled as a normal sample. These out-
liers are commonly discovered by classification methods, which will consistently
misclassify the outliers to their true class. The second type of outlier is a sample
that does not belong to any class present in the data, which we will refer to as abnor-
mal samples. The source of these outliers is more ambiguous, but they can result
from an undiscovered biological class, poor class definitions, experimental error,
or extreme biological variability. Note that when we say an abnormal sample does
not belong to its class, we are not necessarily contesting the validity of its label.
For example, a sample may truly be a tumor, but have expression levels that differ
greatly from those of other tumor samples. The sample should still be treated as an
outlier since it does not follow the expression pattern of its class. Examples of the
two types of outliers are shown in Figure 1.

It is important to separate outliers in microarray data analysis since they are in-
consistent with the rest of the data and, in the case of mislabeled samples, may even
contain incorrect biological information. Applying models to data in the presence
of outliers can produce skewed parameter estimates and even incorrect inferences.
However, the influence of outliers is rarely considered in standard microarray data
analysis. Outliers are probably ignored in practice because of their low prevalence.
Microarray experiments can be carried out precisely, so many sources of error that
can create outliers are eliminated. Additionally, samples with measurements that
deviate significantly are often screened out as a part of experimental procedure.
However, outliers caused by biological factors that cannot be controlled for do oc-
cur often enough to warrant attention. For example, the colon cancer data set (Alon
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Figure 1: Examples of the two types of outliers.

et. al., 1999), one of the most widely used benchmark data sets, is known to contain
several samples that are either contaminated or mislabeled (Li et. al., 2001) because
of the difficulty of collecting clean tumor samples. These samples are reported to
have an adverse effect on the prediction accuracy of classification methods and are
often removed from the data set.

We believe that a formal method of dealing with outliers is needed as a data
quality check. Most of the methods currently used in microarray data analysis are
not robust to outliers. Although robust methods are being developed, it is practical
to consider the detection of outliers as a separate problem. An outlier detection
method can be used as a preprocessing step before applying current non-robust
methods. Once outliers are identified, they can be examined by the experimenter
and dealt with appropriately depending on the type of outlier and problem under
consideration. If outliers correspond to biological anomalies, then they may be of
further substantive interest to the experimenter. If outliers correspond to mislabeled
samples, then the experimenter may be able to correct the class labels. In problems
such as class prediction, it may be advantageous to remove or weight outliers in
classifiers in order to decrease their influence on the decision boundary (Li et. al.,
2001). However, it is important to emphasize that, in many cases, outliers may
simply be the result of natural variability in the data (Barnett and Lewis, 1994).
Samples that lie in the tails of the data distribution are still valid samples and it
can be particularly easy to identify these samples as outliers with the small sample
sizes of microarray data. We highly discourage against casually discarding samples
on the basis that they are outliers without a more substantive explanation, such as
sample contamination. Outlier detection should be treated as one of many tools for
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the experimenter to evaluate data quality, but should never be treated as definitive
or a substitute for careful examination by the experimenter.

Outlier detection in microarray data is complicated by the presence of class in-
formation. Rather than finding outliers with respect to the data, the problem is to
find outliers with respect to each class. A mislabeled sample is not an outlier in the
data, but it is an outlier in its class. It may seem that outlier detection is simply a
classification problem where consistently misclassified samples must be identified.
In this case, any classifier can be applied using cross-validation to find misclassified
samples. Outlier detection has been addressed in a limited context as it relates to
class prediction. Furey et. al. (2000) and Moler et. al. (2000) proposed similar
methods using leave-one-out cross-validation (LOOCV) with a linear support vec-
tor machine (SVM) classifier. Li et. al. (2001) proposed using a genetic algorithm
with a k-nearest neighbor (k-NN) classifier. These methods were all applied to the
colon cancer data set and found outliers consistent with those originally reported
in Alon et. al. (1999). However, classification methods cannot truly solve the out-
lier detection problem because they can only find mislabeled samples that can be
discriminated by the class label, but not abnormal samples that come from an un-
known class. Baty et. al. (2008) proposed a more general method using jackknife
resampling to test the instability of samples in a between-group analysis (BGA).
Samples that are significantly influential towards the positions of other samples
are deemed outliers. Although this method is theoretically capable of identifying
abnormal samples, it relies heavily on a data representation constructed from all
classes. This method was tested against three data sets of varying heterogeneity,
but there were no known outliers to validate the method against. To our knowledge,
these are the only significant methods that have been proposed for outlier detection
in the microarray literature.

Existing outlier detection methods based primarily on using class information
to separate the samples into groups assume that the data are fairly well behaved. If
classes are not separable or the data are highly heterogeneous, it is likely that false
positives, or inlier samples mistaken for outlier samples, will be identified. For
example, outlier detection methods based on cross-validation of a classifier need
perfect prediction accuracy from the classifier in order to avoid producing false
positives. Additionally, existing methods rely on computationally intensive resam-
pling procedures that are costly for a preprocessing task such as outlier detection.
Most importantly, none of the existing methods have been validated extensively.
Existing methods have been tested on individual data sets and the results have been
qualitatively interpreted, but no attempt has been made to estimate the general ac-
curacy of these methods. This is largely due to a difficult methodological issue of
how to obtain known outliers to validate against. However, without knowing the
general accuracy of an outlier detection method, it is dubious to suggest its usage.
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We propose to ignore other classes for outlier detection and instead treat each class
as a separate data set. The goal of outlier detection is to capture the content of each
class and separate it from all other possible classes, which are outliers. Under this
framework, mislabeled and abnormal samples are effectively treated the same way
since they both belong to some unknown class.

In this paper, we propose a simple, automatic outlier detection method suitable
for microarray data that treats each class independently and uses a statistically prin-
cipled threshold for outliers. Our outlier detection method is able to detect both
mislabeled and abnormal samples without reference to other classes. We demon-
strate the performance of our outlier detection method in three ways. First, we apply
our outlier detection method to two widely used data sets in order to validate that
biologically meaningful outliers are identified. Second, we demonstrate that outlier
removal can improve the prediction accuracy of several common classifiers. Finally,
we estimate the accuracy of our outlier detection method by simulating new data
sets where outliers are introduced from unobserved classes. Our outlier detection
method bears many similarities to robust principal component analysis (ROBPCA),
a prominent outlier detection method in the chemometrics literature (Hubert et. al.,
2005), which also frequently deals with high dimensional data, although usually on
a lower scale. Therefore, we evaluate the suitability of ROBPCA for microarray
data in comparison to our outlier detection method.

2 Methods

2.1 Dimension reduction
Microarray data contains a large number of genes p, usually in the thousands to
tens of thousands, compared to the number of experiments n, usually in the tens to
hundreds, making the direct application of standard multivariate analysis methods
impossible. Particularly, most outlier detection methods rely on computing some
type of distance function for each sample. However, in high dimensions, the data
becomes sparse and distances become effectively meaningless. Therefore, the di-
mension of the data must be reduced before outlier detection methods based on
distances can be applied. There are some outlier detection methods based on pro-
jection pursuit that can inherently handle the high dimensionality of microarray
data. These methods try to find projections of the data onto lower dimensional
subspaces where outliers are easy to identify and have been applied successfully
to finding outlier genes, or informative genes (Filzmoser et. al., 2008). However,
we found that these methods did not work well when applied to detecting outlier
samples. Only a small number of the genes in microarray data are informative and
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the rest of the genes are effectively noise. Projecting the data onto a set of genes
that are not informative may produce a subspace that separates samples well, but is
biologically meaningless. In practice, we found that methods based on projection
pursuit are prone to false positives and are highly sensitive to small changes in the
data. Therefore, we will focus on an outlier detection method based on distances
coupled with a dimension reduction method.

Dimension reduction methods for microarray data can be divided in two ways,
gene selection or feature extraction and supervised or unsupervised. Gene selection
finds a subset of genes and is usually supervised, while feature extraction constructs
new components and is either supervised or unsupervised. Since we want to treat
each class independently in our outlier detection method and avoid overfitting our
data representation to the class labels (Khan et. al., 2001), we will only consider
unsupervised dimension reduction methods. The most widely used unsupervised
feature extraction method is principal component analysis (PCA). Consider a data
matrix X with n experiments in rows and p genes in columns. Classical PCA
projects the data onto n principal components, or linear combinations of genes

wi = Xvi (1)

that maximize the variance

vi = arg max
v′v=1

Var(Xv) (2)

subject to the constraint of orthogonality Cov(wi,wj) = 0 for all j < i where
i, j = 1, . . . , n. The principal components are ordered by how much of the variance
in the data that they explain. It is well known that PCA itself is not robust to outliers
(Hubert et. al., 2005). However, we are only using PCA to reduce the dimension of
the data, not to find a robust data representation.

Although n principal components are produced, usually only a small number of
m < n principal components are needed to explain most of the variance in the data.
Selecting the optimal number of principal components is difficult since selecting
too many results in unnecessary complexity, while selecting too few results in a
loss of information. One of the most widely used methods in practice is examining
a scree plot of the ordered variances d1, . . . , dn of the principal components and
searching for an elbow point where the amount of additional variance explained
by adding another principal component drops off sharply (Hastie et. al., 2001).
Since examination of the scree plot is difficult and subjective, we use an automatic
selection method based on the scree plot (Zhu and Ghodsi, 2006). The automatic
selection method assumes that the distribution of the variances changes at the elbow
point m and the variances D1,m = (d1, . . . , dm) and D2,m = (dm+1, . . . , dn) are
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normally distributed. The elbow point m can be found by maximizing the profile
log-likelihood function

L(m) =
m∑

i=1

logN (di|θ̂1,m) +
n∑

j=m+1

logN (dj|θ̂2,m) (3)

whereN denotes the normal density and θ̂1,m and θ̂2,m are the maximum likelihood
estimates for D1,m and D2,m with pooled variance. The automatic selection method
is fast and has been shown to perform well on various types of high dimensional
data (Zhu and Ghodsi, 2006).

2.2 Outlier detection
Since each class in a data set has a different underlying distribution, we treat each
class as an independent data set for the purpose of outlier detection. Consider a class
containing n samples xi, i = 1, . . . , n with p principal components, for which we
will assume p < n. Statistical methods of outlier detection compute the distance
of each sample from the center of the data and identify samples above a certain
threshold as outliers. The classical measure of the outlyingness of a sample xi is
the Mahalanobis distance

d(xi) =
√

(xi − t)′C−1(x− t) (4)

where t and C are the sample mean and covariance. However, it is well known
that the sample mean and covariance are highly susceptible to outliers. Although
Mahalanobis distances can detect single outliers, they breakdown in the presence of
multiple outliers due to the masking effect, where multiple outliers will not all have
large Mahalanobis distances (Rousseeuw and Leroy, 1986). Therefore, it is neces-
sary to use a robust version of the Mahalanobis distance, which is often referred
to as the robust distance, using robust estimates of the mean and covariance. The
two problems associated with outlier detection are then obtaining robust estimates
of the mean t and covariance C and determining a threshold for the robust distance
d(xi) above which a sample xi should be identified as an outlier.

First, we address the issue of robust estimation. Robust estimators aim to
achieve a high breakdown point, or proportion of the data that can be outliers before
the estimates become unreliable, while maintaining high efficiency. Additionally,
since PCA is used for dimension reduction, robust estimators must be equivariant
under orthogonal transformations. Many robust estimators with good theoretical
properties have been proposed, but two of the most commonly used robust estima-
tors are the minimum volume ellipsoid (MVE) and minimum covariance determi-
nant (MCD) estimators (Rousseeuw, 1985). The MVE estimator sets the mean t
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and covariance C to the center and ellipsoid of the minimum volume ellipsoid con-
taining h < n samples. The MCD estimator sets the mean t and covariance C to
the sample mean and covariance of h < n samples for which the determinant of the
sample covariance is minimum. When h = b(n + p + 1)/2c, the MVE and MCD
estimators can achieve the optimal breakdown point of b(n − p + 1)/2c/n. How-
ever, the MVE and MCD estimators have low efficiency when h is selected for a
high breakdown point. Additionally, in practice the MVE and MCD estimators are
prone to false positives with small sample sizes, which are common in microarray
data, and the resampling algorithms used to compute the MVE and MCD estimators
can produce unstable results (Ruppert, 1992).

A more powerful class of robust estimators closely related to the MVE and
MCD estimators is the S-estimator (Davies, 1987). The S-estimator finds vector t
and positive definite symmetric matrix C that minimize det(C) subject to

1

n

n∑
i=1

ρ(d(xi)) = b0 (5)

where ρ is a nondecreasing function on [0,∞) and b0 is a constant that controls the
breakdown point. The function ρ is usually also differentiable, but the MVE and
MCD estimators can be seen as special cases of S-estimators where the function ρ
is 0 or 1. The function ρ must be bounded in order to obtain a nonzero breakdown
point. The ratio of the constant b0 to the maximum of the function ρ defines the
breakdown point. The function ρ is usually specified in terms of a base function
ρ0, which obtains its maximum at c0, scaled by a constant c, which varies with the
dimension p. The constraint (5) can then be rewritten as

1

n

n∑
i=1

ρ(d(xi)/c) = b0 (6)

where the constants b0 and c are chosen such that E(ρ(d/c)) = b0 and b0 = rρ(c0)
for a breakdown point of r. We use the optimal breakdown point of r = 0.5 in
our S-estimator. Although some efficiency must be sacrificed in order to obtain
the optimal breakdown point, using a high breakdown point is known to work well
in practice (Rocke, 1996) since it decreases the weight given to outliers. When
specifying the function ρ, it is usually easier to work with ψ = ∂ρ/∂d since ψ has
a root where ρ has a minimum. We use the standard Tukey’s biweight function

(y) =

{
y(1− (y/c0)

2)2 if |y| < c0

0 if |y| > c0
(7)

which is a redescending function with support [−c0, c0]. Tukey’s biweight function
is known to work well because it behaves similarly to the squared error function
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for small to moderate deviations, allowing it to achieve high efficiency, but tapers
off for large deviations, allowing it to decrease the weight given to outliers. It is
worth noting that the S-estimator is highly efficient at multivariate normal models,
an assumption that we will use later (Rocke, 1996).

Solving the minimization problem for the S-estimator exactly involves a large
combinatorial search that is computationally intractable. Therefore, a resampling
algorithm that reduces the number of times the objective function is evaluated must
be used. We use a modification of the fast-S algorithm (Salibian-Barrera and Yohai,
2006), an improvement on the SURREAL algorithm (Ruppert, 1992), originally
intended for S-estimators of regression. We use the implementation of the fast-S
algorithm in the R package rrcov. It is important to note that robust estimators
become unreliable for small sample sizes, especially when n < 2p, because the
weighting of each sample becomes highly influential towards the estimates. Sample
sizes this small do occur occasionally in microarray data sets, usually when there are
many classes present. We propose using the sample mean and covariance instead
of the S-estimator when the sample size approaches n < 2p.

Now, we address the issue of explicitly identifying outliers. The distribution of
the robust distances must be known in order to determine a threshold at which to
reject samples as outliers, which usually entails making an assumption about the
distribution of the data. If the data follows a multivariate normal distribution, then
the squared robust distances d2(xi) will approximately follow a χ2 distribution with
p degrees of freedom (Rousseeuw, 1987). Under this assumption, an appropriate
cutoff value for outliers is the standard 97.5% quantile of the χ2 distribution with p
degrees of freedom, which we will denote as χ2

p,0.975. There are more sophisticated
methods for determining a threshold using other distributions (Hardin and Rocke,
2005), but the simple χ2

p,0.975 threshold is known to perform well in practice (Hubert
et. al., 2005). It is worth noting that there is a 2.5% chance that the χ2

p,0.975 threshold
will identify a sample as an outlier, even if there are no outliers. However, we prefer
to identify all of the outliers at the risk of accidentally identifying a small number
of inliers as outliers.

Our outlier detection method can be thought of as fitting an ellipsoid to the good
part of the data and excluding all samples outside of the ellipsoid as outliers. The
shape of the ellipsoid is determined by the robust estimates and threshold. Our
outlier detection method contains three hyperparameters, the number of principal
components, the breakdown point, and the distance threshold. However, none of the
hyperparameters need to be specified by the experimenter. The number of principal
components is determined using an automatic selection method to find the elbow
point of the scree plot, while both the breakdown point and the distance threshold
are fixed in accordance with widely used values in the outlier detection literature
(Rocke, 1996; Rousseeuw, 1987).
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It may seem that the normality assumption is too strong for microarray data,
which is thought to be extremely complex. However, many commonly used para-
metric methods, such as the t-statistic for gene selection and linear discriminant
analysis (LDA) for class prediction, also make a normality assumption and have
been shown to have good performance empirically (Dudoit, 2002). We found that
the normality assumption is reasonable for the purpose of outlier detection when
proper preprocessing is performed. In raw microarray data, the variance of the ex-
pression levels usually increases linearly with the mean of the expression levels,
resulting in an asymmetric distribution with a long tail towards high expression lev-
els. Therefore, a variance stabilizing transformation is necessary in order to make
the variance more constant and the distribution more symmetric. We use a base-2
logarithm transformation and quantile normalization, as recommended by Bolstad
et. al. (2003). A graphical method of testing the normality assumption is to con-
struct a quantile-quantile plot of the observed squared robust distances against the
theoretical χ2 quantiles. If the normality assumption is correct, then the data should
follow a straight line, except for the outliers. If the data deviates significantly from
a straight line, then our outlier detection method will become unreliable.

2.3 ROBPCA
Our outlier detection method is similar to a number of robust PCA methods in the
chemometrics literature (Egan and Morgan, 1998; Hubert et. al., 2002) that can be
used to identify outliers in high dimensional data, the most promiment of which is
ROBPCA (Hubert et. al., 2005). ROBPCA has also been applied to some types
of biological data with fewer dimensions than microarray data, such as nuclear
magnetic resonance (NMR) spectroscopy data and reverse transcription polymerase
chain reaction (RT-PCR) data (Hubert and Engelen, 2004). However, microarray
data is different from other high dimensional data because a large number of the
genes are not informative, so many of the dimensions are effectively meaningless.
Therefore, as we discussed earlier, most of the subspaces in microarray data cannot
be used for methods such as projection pursuit.

ROBPCA fits a robust PCA space to the data using a combination of projection
pursuit and robust estimation methods. First, a projection pursuit step is used to
find a subset of the least outlying samples to construct a preliminary robust PCA
space. Then, a robust estimation step is used on the preliminary robust PCA space
to construct a refined robust PCA space. Two types of distances are used to identify
outliers in the robust PCA space. A score distance, which is identical to our robust
distance, is used to measure how far a sample is from the center of the data in the
robust PCA space and an orthogonal distance is used to measure how far a sample
is from the robust PCA space in the original data space. An orthogonal distance
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is needed to incorporate outliers that were excluded in the projection pursuit step
from constructing the robust PCA space. Our outlier detection method does not
use an orthogonal distance since a classical PCA space including outliers is used.
The score distance threshold uses a χ2 distribution, which is identical to our robust
distance threshold, and the orthogonal distance threshold uses an adaptively scaled
χ2 distribution.

ROBPCA can be applied to data with class labels in two ways. The simplest
method is to disregard the class labels and apply ROBPCA to fit a single robust
PCA space to all of the classes (Hubert et. al., 2004). A more flexible method is
to treat each class independently and apply ROBPCA to fit a different robust PCA
space to each class (Vanden Branden and Hubert, 2005). On the other hand, our
outlier detection method fits a single classical PCA space to all of the classes, but
uses robust estimation on each class independently. Our outlier detection method is
able to compromise between incorporating information from all classes and treating
each class independently because classical PCA and robust estimation are separate
steps. The main differences between ROBPCA and our outlier detection method are
that ROBPCA uses projection pursuit and robust estimation in robust PCA for both
dimension reduction and outlier detection, while our outlier detection method uses
classical PCA for dimension reduction and robust estimation for outlier detection.

3 Results

3.1 Data sets
We tested our outlier detection method on two widely used benchmark data sets:

• The colon cancer data set (Alon et. al., 1999) contains 62 samples, of which
22 samples are from normal tissue and 40 samples are from tumor tissue.
Expression levels for more than 6,500 genes were measured using Affymetrix
oligonucleotide arrays. The data set was filtered down to the 2,000 genes with
the highest minimal intensity across all of the samples.

• The small, round blue cell tumor (SRBCT) data set (Khan et. al., 2001)
contains 63 samples, of which 23 samples are from the Ewing family of tu-
mors (EWS), 20 samples are from rhabdomyosarcoma (RMS), 12 samples are
from neuroblastoma (NB), and 8 samples are from Burkitt lymphoma (BL).
Expression levels for 6,567 genes were measured using glass slide cDNA mi-
croarrays. The data set was filtered down to the 2,308 genes with sufficient
red intensity across all of the samples.

10

Statistical Applications in Genetics and Molecular Biology, Vol. 8 [2009], Iss. 1, Art. 13

DOI: 10.2202/1544-6115.1426

Brought to you by | University of Hong Kong Libraries
Authenticated | 10.248.254.158
Download Date | 9/4/14 9:40 AM



We applied a base-2 logarithm transformation and quantile normalization to both
data sets. No scaling was applied to the genes or the samples since we do not
want to treat inliner and outlier samples or informative and non-informative genes
equally. We chose one data set with two classes and one data set with multiple
classes in order to demonstrate that our outlier detection method performs well
regardless of the number of classes present in the data set. Additionally, we chose
two data sets with heterogeneity in order to demonstrate that our outlier detection
method performs well on classes with complex structure. The colon cancer data
set is heterogeneous because the tissue samples contain a mixture of cell types.
The SRBCT data set is heterogeneous because the samples came from both tumor
biopsy material and cell lines. The colon cancer and SRBCT data sets are amongst
the more difficult benchmark data sets to achieve good prediction accuracy on (Lee
et. al., 2005), so they should be challenging for outlier detection.

3.2 Detection of known outliers
We applied our outlier detection method to the colon cancer and SRBCT data sets,
treating each class independently. Four principal components were chosen for the
colon cancer data set and five principal components were chosen for the SRBCT
data set using the automatic selection method. Scree plots for each data set are
shown in Figure 2. The black bars denote the selected principal components and
the grey bars denote the remaining principal components. Since the NB and BL
classes had small sample sizes, the sample mean and covariance were used instead
of the S-estimator for computing the robust distances. The normality assumption
held well on both the colon cancer and SRBCT data sets. Quantile-quantile plots
for each class are shown in Figure 3. The blue, dotted lines denote the χ2

5,0.975

threshold for outliers and the red points above the threshold denote the identified
outliers. The solid line with unit slope denotes the expected pattern for the samples
if the normality assumption holds. The linear fit was generally good, especially
for the tumor, normal, EWS, and RMS classes. The NB and BL classes did not fit
the line as well, but their deviation can likely be attributed to their small sample
sizes. For sufficiently large sample sizes, the quantile-quantile plots indicate that
the normality assumption works well, even on highly heterogeneous data.

First, we address the colon cancer data set. Several classification methods have
been applied to the colon cancer data set and have found consistently misclassified
samples, which have been declared to be outliers in the literature. Misclassified
samples are not always outliers since they can result from problems in the classifier
used rather than inherent properties of samples. However, examination of the tissue
composition of the misclassified samples has revealed substantial differences that
support their identification as outliers. We will validate our outlier detection method
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Figure 2: Scree plots for the colon cancer and SRBCT data sets.

against these known outliers. In the original analysis of the colon cancer data set,
Alon et. al. (1999) used a two-way clustering algorithm based on deterministic
annealing and found that eight samples were misclassified (T2, T30, T33, T36,
T37, N8, N12, and N34). Furey et. al. (2000) and Moler et. al. (2001) used similar
linear SVM classifiers with LOOCV and found that six samples were misclassified
(T30, T33, T36, N8, N34, and N36). In two separate analyses, Li et. al. (2001)
used a genetic algorithm with a k-NN classifier and found that six samples were
misclassified (T30, T33, T36, N8, N34, and N36). Overall, there are nine samples
that have been reported as outliers (T2, T30, T33, T36, T37, N8, N12, N34, and
N36).

The outliers in the colon cancer data set are suspected to be caused by high
heterogeneity in the tissue composition. Alon et. al. (1999) computed a muscle
index, a measure of the muscle content of a sample based on genes relevant to
smooth muscle, for each sample. Normal samples consist of a mixture of cell types,
while tumor samples consist of mostly cancerous epithelial cells. Therefore, normal
samples should have high muscle index and tumor samples should have low muscle
index. However, the outlier tumor samples (T2, T30, T33, T36, and T37) have high
muscle index and the outlier normal samples (N8, N12, N34, and N36) have low
muscle index, suggesting that the tissues in the outlier samples are contaminated
with other cell types. Li et. al. (2001) confirmed in communications that the outlier
samples have a different tissue composition, particularly in the ratio of epithelial
cells, from the rest of the samples in their respective classes. It is interesting that
the outliers resemble samples from the opposite class. The outlier tumor samples
have muscle index consistent with normal samples and the outlier normal samples
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Figure 3: Quantile-quantile plots for the colon cancer and SRBCT data sets.
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have muscle index consistent with tumor samples. It is unlikely that the outliers
are mislabeled samples since they were closely examined in Alon et. al. (1999).
However, we found that the primary reason that the outliers could be identified by
classification methods was that the outliers were located on the opposite side of the
decision boundary separating the classes.

Our outlier detection method found eight outlier samples (T2, T30, T33, T36,
T37, N8, N34, and N36) corresponding to all of the reported outliers except for the
sample N12. We examined the sample N12 and found that it may not be an outlier.
Since the outlier samples are contaminated, they should be distinguished by their
inconsistent muscle index. The muscle index for the normal samples excluding the
outliers range from 0.3 to 1.0, while the muscle index for the outliers N8, N34,
and N36 is below 0.2. However, the sample N12 has muscle index 0.4, which
falls well within the range for normal samples. Additionally, we found that using
a muscle index of 0.2 to 0.3 as a threshold to separate the classes identified all of
the outliers except for the sample N12. Therefore, the sample N12 does not appear
to be contaminated and it is reasonable to conclude that it is not an outlier. The
sample N12 was only reported to be an outlier once in Alon et. al. (1999) and may
have been misclassified because the classifier used was not optimal. Excluding the
sample N12, our outlier detection method identified all of the outliers suspected to
be contaminated.

Now, we address the SRBCT data set. There are no samples strictly known to
be outliers in the SRBCT data set. However, in the original analysis of the SRBCT
data set, Khan et. al. (2001) used a linear artificial neural network (ANN) classifier
with resubstitution and found that all but one sample (EWS-T13) could be classified
confidently. Although the sample EWS-T13 was assigned to the correct class, it fell
below the confidence threshold proposed for accurate diagnosis. The confidence
threshold is based on the distance of a sample from the ideal location of its class
in the feature space, suggesting that the sample EWS-T13 lies far away from most
of the samples in its class. Manually examining the samples in the EWS class
using two standard data representation methods, multidimensional scaling (MDS)
analysis as proposed in Khan, et. al. (2001) and BGA as proposed in Culhane et.
al. (2002), confirmed that the sample EWS-T13 is highly distant from the rest of
the samples in its class. Therefore, it is reasonable to identify the sample EWS-
T13 as a outlier. The sample EWS-T13 seems to be an example of an abnormal
sample that deviates from its class due to natural biological variability. We found
that classification methods did not misclassify the sample EWS-T13 because it was
located within the decision boundary for its class. Our outlier detection method
identified the sample EWS-T13 as an outlier, demonstrating how it can identify all
types of outliers.
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3.3 Comparison to ROBPCA
We applied ROBPCA to the colon cancer and SRBCT data sets in order to evaluate
the performance of ROBPCA on microarray data. We used the known outliers in
the colon cancer and SRBCT data sets as a basis for comparison. We used the im-
plementation of ROBPCA in the R package rrcov with default parameters. Fitting
different robust PCA spaces to each class performed much better than fitting a sin-
gle robust PCA space to all of the classes, so we treated each class independently.
Diagnostic plots of the orthogonal and score distances for each class are shown in
Figure 4. The blue, dotted lines denote the orthogonal and score distance thresh-
olds, the red points denote true positives, and the filled points denote false positives.
ROBPCA identifies at least a few outliers for each class, indicating that ROBPCA
may be prone to identify too many outliers.

On the colon cancer data set, ROBPCA identified one false negative (T30) and
12 false positives (T5, T6, T9, T12, T19, T25, T29, T39, T40, N4, N8, N29). On
the SRBCT data set, ROBPCA identified 17 false positives (EWS-T4, EWS-T6,
EWS-T9, EWS-T19, EWS-C4, RMS-T1, RMS-T5, RMS-T7, RMS-T10, RMS-
T11, RMS-C8, NB-C5, NB-C8, NB-C10, NB-C12, BL-C2, BL-C5). Although
ROBPCA was able to identify almost all of the true positives, it also identified a
large number of false positives. ROBPCA identified 19.4% of the samples in the
colon cancer data set and 27.0% of the samples in the SRBCT data set as out-
liers. The orthogonal distance appears to perform better than the score distance at
identifying true positives, suggesting that many of the outliers are identified by the
projection pursuit step in ROBPCA. However, both the orthogonal and score dis-
tances identified true positives, so neither distance can always be ignored in order
to reduce the number of false positives. Even ignoring the outliers identified by the
score distance, ROBPCA still identifies many false positives.

The large number of false positives identified by ROBPCA makes it difficult to
use in practice since the experimenter is forced to find the true positives amongst the
false positives. It is important to note that the true positives did not always have the
highest orthogonal and score distances, so the true positives are not trivial to sepa-
rate from the false positives and even better distance thresholds would not necessar-
ily reduce the number of false positives. The performance of ROBPCA on microar-
ray data, considering its success on other types of high dimensional data, can likely
be attributed to the difficulty of applying projection pursuit methods when a large
number of subspaces are not informative. One of the main differences between our
outlier detection method and ROBPCA is that our outlier detection method does not
use a projection pursuit step. Our outlier detection method performs significantly
better than ROBPCA on the colon cancer and SRBCT data sets, identifying all of
the true positives and no false positives.
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Figure 4: ROBPCA diagnostic plots for the colon cancer and SRBCT data sets.
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3.4 Effect of outlier removal on prediction accuracy
Since we have defined outliers in a way that is independent of their significance in
the data, it is important to evalaute the effect of outliers on microarray data analysis.
One of the most important problems in microarray data analysis is class prediction,
where classifiers are trained to predict the class of an unknown sample. It is well
known that the presence of outliers can have a negative effect on class prediction
since outliers are samples inconsistent with their class and should not be used to
train classifiers. Therefore, we propose to remove outliers for the purpose of class
prediction. Although there is no general consensus on how to treat outliers, outlier
removal is commonly performed in practice for class prediction and has been found
to improve the prediction accuracy of classifiers (Li et. al., 2001). We tested the
effect of outlier removal on prediction accuracy for the colon cancer data set using
the eight outliers identified by our outlier detection method.

We tested four widely used classifiers:

• The k-nearest neighbor (k-NN) classifier assigns a sample to the class most
common among its k nearest neighbors. We used the implementation of the
k-NN classifier in the R package sam with k = 3.

• The diagonal linear discriminant analysis (DLDA) classifier is the maximum
likelihood discriminant rule for multivariate normal class densities with the
same diagonal covariance matrix. We used the implementation of the DLDA
classifier in the R package sam with default parameters.

• The support vector machine (SVM) classifier finds a hyperplane that sepa-
rates the classes with maximum margin in a higher dimensional space. We
used the implementation of the SVM classifier in the R package e1071 with
a linear kernel and default parameters.

• The random forest (RF) classifier combines the outputs of a collection of
decision trees built using randomness. We use the implementation of the RF
classifier in the R package randomForest with default parameters.

We followed common practice in our classifier evaluation. The prediction accuracy
was measured by the proportion of misclassified samples using leave-one-out cross
validation (LOOCV), where each sample is used once as the validation data set
and the remaining samples are used as the training data set. All four classifiers are
known to require gene selection in order to obtain good performance (Lee et. al.,
2005). We selected the top 50 genes ranked by the t-statistic. The gene selection
was embedded in the LOOCV such that gene selection was performed for each
partition into validation data set and training data set. All four classifiers have been
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Prediction accuracy
Original Random Full Partial

k-NN 0.806 0.800 1.000 0.926
DLDA 0.871 0.856 1.000 0.981
SVM 0.855 0.844 1.000 0.963
RF 0.871 0.841 1.000 0.963

Table 1: Prediction accuracy of four classifiers using LOOCV on the colon cancer
data set. The original data set, the data sets after removal of random samples, and
the data sets after partial and full removal of outliers are compared.

shown to be amongst the best performing classifiers on microarray data (Dudoit et.
al., 2002; Lee et. al., 2005).

We compared the original data set, the data sets after removal of random sam-
ples, and the data sets after full and partial removal of outliers. The data sets after
random removal of samples were included to demonstrate that simply removing
samples does not improve prediction accuracy and were constructed by drawing
five sets of eight samples, or the number of outliers, uniformly without replacement
from the original data set and removing them. The prediction accuracy was aver-
aged over the five resulting data sets. The data set after full removal of outliers was
included to demonstrate the overall effect of outliers on prediction accuracy and
was constructed by removing the outliers from the original data set. The data set
after partial removal of outliers was included to isolate the effect of outliers on the
classification of other samples and was constructed by including the outliers in the
training data sets, but removing the outliers from the validation data sets.

The results of the comparison are shown in Table 1. The prediction accuracy of
the classifiers on the original data set was between 80% and 90%, which is consis-
tent with the results of an extensive comparison of classifiers in Lee et. al. (2005).
The classifiers performed similarly after randomly removing samples, suggesting
that simply removing samples does not affect prediction accuracy. Surprisingly, all
four classifiers were able to achieve perfect prediction accuracy after full outlier
removal, suggesting that the outliers were the main cause of errors in the clas-
sifiers. The outliers seemed to be impossible to classify rather than difficult to
classify since the outliers were misclassified by all four classifiers, which are di-
verse in their theoretical approach. It is important to note that the outliers were
not the only misclassified samples. If only the outliers were misclassified, then
the improved prediction accuracy would only show the trivial effect of removing
misclassified samples. However, the classifiers also performed better after partial
outlier removal, suggesting that the outliers had a negative effect on the training of
the classifiers and caused other inlier samples to be misclassified. The difference
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in the prediction accuracy between full outlier removal and partial outlier removal
indicates how adversely the classifiers were affected by the outliers. The significant
performance improvement of the classifiers after outlier removal validates the out-
liers identified by our outlier detection method and demonstrates the importance of
outlier removal for accurate class prediction.

3.5 Estimation of outlier detection accuracy
Evaluating an outlier detection method on selected data sets demonstrates an ability
to identify substantively meaningful outliers, but it does not demonstrate a general
ability to identify outliers accurately. It is important to evaluate the performance of
an outlier detection method over a large number of data sets. However, estimating
the accuracy of an outlier detection method is difficult because there are usually no
known outliers in microarray data. Therefore, in order to generate multiple test data
sets with different outliers for validation, outliers must be simulated. It is preferable
to avoid simulating outliers from a generative model since it is not clear that any
generative model is appropriate for microarray data. Rather than directly simulating
outliers, we can take advantage of the fact that each class is treated independently
for outlier detection. Since an outlier can come from any class that is not observed,
we can change the class labels of samples in order to simulate outliers.

We propose a simple method for estimating outlier detection accuracy based on
resampling. Consider a data set D containing n samples partitioned into k classes
Di each containing ni samples, where i = 1, . . . , k. First, one class N = Di

containing nN = ni samples must be selected to serve as the set of inlier samples,
which we will refer to as the inlier class. The sample size nN must be large since
the inlier class will form the basis for each test data set. Then the other k−1 classes
O = D\N containing the n−nN remaining samples will serve as the set of outlier
samples, which we will refer to as the outlier class. Samples from the outlier class
O are outliers in the inlier class N since they come from different classes in the
data set. Therefore, we can draw m sets of h outliers Hi from the outlier class O
uniformly without replacement and merge them with the inlier class N in order to
generate m test data sets Tj = N ∪ Hj , where j = 1, . . . ,m. Since the outliers in
the test data sets are known, they can be used for validation.

We estimated the outlier detection accuracy on the colon cancer and SRBCT
data sets, using the tumor and normal classes in the colon cancer data set and the
EWS and RMS classes in the SRBCT data set as the inlier classes. For each inlier
class, m = 1000, 2000, 3000, 4000, 5000 test data sets containing h = 1, 2, 3, 4, 5
outliers respectively were generated and our outlier detection method was applied.
Five principal components were selected for each test data set for the sake of sim-
plicity. The NB and BL classes in the SRBCT data set were not used as inlier classes
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Number of outliers
1 2 3 4 5

Colon cancer Tumor Sensitivity 0.910 0.806 0.741 0.677 0.593
Specificity 1.000 1.000 1.000 1.000 1.000

Normal Sensitivity 1.000 1.000 1.000 1.000 0.996
Specificity 1.000 1.000 1.000 1.000 1.000

SRBCT EWS Sensitivity 1.000 0.999 0.998 0.961 0.914
Specificity 1.000 1.000 1.000 1.000 1.000

RMS Sensitivity 1.000 0.941 0.911 0.842 0.785
Specificity 1.000 0.998 0.997 0.998 0.998

Table 2: Sensitivity and specificity of our outlier detection method using resampling
on the colon cancer and SRBCT data sets.

because of their small sample sizes. The outlier detection accuracy was measured
by sensitivity, the proportion of true positives to true positives and false negatives,
and specificity, the proportion of true negatives to true negatives and false positives,
where a positive is an outlier and a negative is a inlier. Since outliers are usually
removed, it is important that outliers be identified confidently so that good data is
not accidentally thrown away. Therefore, specificity is valued over sensitivity for
outlier detection.

The results of the estimation are shown in Table 2. The specificity of our outlier
detection method was almost always perfect regardless of the number of outliers
and the inlier class used, suggesting that our outlier detection method can be used
confidently in general. In fact, our outlier detection method only identified false
positives for test data sets where the inlier class used was the RMS class and sev-
eral outliers were drawn from the NB class. The NB and RMS classes are located
closely in the feature space and it seems that introducing certain samples from the
NB class into the RMS class changed the structure of the data significantly. There-
fore, the few false positives were likely caused by a problem with our method of
simulating outliers rather than a problem with our outlier detection method. The
sensitivity of our outlier detection method varied depending on the number of out-
liers and the inlier class used. For low numbers of outliers, the sensitivity of our
outlier detection method was almost always perfect. As the number of outliers in-
creased, the sensitivity of our outlier detection method decreased as expected since
the outliers were more influential on the structure of the data. Nevertheless, the sen-
sitivity of our outlier detection method was still high with as many as five outliers.
Since there are usually few outliers in microarray data, our outlier detection method
can be expected to perform well in general.
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4 Conclusion
In this paper, we proposed a simple, automatic outlier detection method for microar-
ray data based on PCA and robust estimation. Existing outlier detection methods
for microarray data rely heavily on class information and are not able to identify
all types of outliers. Our outlier detection method treats each class independently
and can identify outliers with respect to a single class. Additionally, our outlier
detection method is fast and can be easily used as a preprocessing step. The im-
plementation of our outlier detection method in R had typical runtimes of a few
seconds on standard personal computers. Our outlier detection method uses well
established methods in the outlier detection literature and is closely related to ro-
bust PCA methods from the chemometrics literature such as ROBPCA that also
deal with high dimensional data.

We demonstrated the effectiveness of our outlier detection in two ways. First,
we showed that our outlier detection method can identify biologically meaningful
outliers by validating against known outliers in two benchmark data sets. Then, we
showed that our outlier detection method has good general accuracy by simulating a
large number of test data sets with known outliers to validate against. Moreover, we
showed the importance of outlier detection by demonstrating that outlier removal
can improve the prediction accuracy of several classifiers. Finally, we evaluated the
performance of ROBPCA on microarray data and found that ROBPCA produced a
large number of false positives and fewer true positives than our outlier detection
method. Therefore, our outlier detection method appears to be more suitable for
microarray data than ROBPCA.

Some theoretical issues with our outlier detection method remain. We proposed
to treat each class independently for outlier detection. By ignoring other classes, our
outlier detection method seems to obtain robustness to all types of outliers. How-
ever, it may actually be beneficial to incorporate more class information into our
outlier detection method. Particularly, using class information in dimension reduc-
tion may produce better class separation and clearer class definitions. A supervised
dimension reduction method like partial least squares (PLS) could be used instead
of PCA. It has been argued that supervised dimension reduction methods produce
biased data representations (Khan et. al., 2001). However, it has also been shown
that PLS outperforms PCA significantly for class prediction (Nguyen and Rocke,
2002). Therefore, using PLS instead of PCA should be explored. Additionally, our
outlier detection relies on a normality assumption in order to determine a thresh-
old for outliers. Although we found that the normality assumption worked well
in practice, it may not hold as well on other, more complex microarray data sets.
Therefore, other methods of determining a threshold for outliers based on weaker
assumptions should be explored.
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Availability
An R script implementing our outlier detection has been made available at the first
author’s web page: http://people.fas.harvard.edu/˜shieh/
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