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Modified Bipartite Matching for
Multiobjective Optimization: Application to
Antenna Assignments in MIMO Systems

Fanglei Sun, Victor O. K. Li, Fellow, IEEE, and Zhifeng Diao

Abstract—Based on the Hungarian algorithm, the Kuhn-
Munkres algorithm can provide the maximum weight bipartite
matching for assignment problems. However, it can only solve the
single objective optimization problem. In this paper, we formulate
the multi-objective optimization (MO) problem for bipartite
matching, and propose a modified bipartite matching (MBM)
algorithm to approach the Pareto set with a low computational
complexity and to dynamically select proper solutions with given
constraints among the reduced matching set. In addition, our
MBM algorithm is extended to the case of asymmetric bipartite
graphs. Finally, we illustrate the application of MBM to antenna
assignments in wireless multiple-input multiple-output (MIMO)
systems for both symmetric and asymmetric scenarios, where
we consider the multi-objective optimization problem with the
maximization of the system capacity, total traffic priority, and
long-term fairness among all mobile users. The simulation results
show that MBM can effectively reduce the matching set and
dynamically provide the optimized performance with different
quality of service (QoS) requirements.

Index Terms—Multi-objective optimization, bipartite match-
ing, resource allocation.

I. INTRODUCTION

THE Kuhn-Munkres method for the assignment problem
describes an algorithm for constructing a maximum

weight perfect matching in a bipartite graph [1] [2]. It is
proved that the Kuhn-Munkres algorithm can always find
the maximum assignment, i.e., an optimal solution to the
maximum weight sum [2]. Compared with exhaustive search,
the computational complexity is reduced from O(n!) to O(n3),
where n is the cardinality of the node set of a symmetric
bipartite graph. However, the Kuhn-Munkres method only
considers single objective optimization, and is not applicable
to multi-objective optimization. In addition, for asymmetric
bipartite graphs, the Kuhn-Munkres algorithm only considers
the assignments based on the minimum cardinality of the
bipartite node sets. It will cause unnecessary resource wastage
when the redundant resource is reusable.
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In network design, a single global objective, which may be
one of the network performance measures, such as through-
put, is often examined to optimize network performance.
This approach is meaningful in the homogeneous situation,
such as when each user has the same quality of service
(QoS) requirement. In this case, equal performance is the
implied fairness criterion, and global optimality is equivalent
to individual optimization. However, in the heterogeneous
case, individual requirements may be ignored by using a
single overall objective, and sometimes users may have to
sacrifice their individual performance, such as priority, delay
or fairness, for the goodness of the entire network [3]-[5].

In this paper, we take wireless multiple-input multiple-
output (MIMO) communication systems with spatial multi-
plexing as an example. Combined with multiuser diversity [6]
in cellular packet transmission systems, a couple of antenna
assignment schemes have been proposed for packet schedulers
to maximize the system capacity or to provide fairness among
mobile users [7]-[9]. However these scheduling schemes only
consider single objective optimization. None of them considers
multi-objective optimization which accounts for the maximiza-
tion of capacity, total priority, long-term fairness, and so on.

In our proposed modified bipartite matching (MBM) al-
gorithm, a key objective is chosen from all objectives. For
this objective, the Kuhn-Munkres algorithm is applied to each
updated bipartite graph obtained by deleting one edge at a
time till no edge remains in the graph, and MBM chooses the
matching which approaches the optimal solution or satisfies
the system requirements. To decide which edge should be
deleted, we need to identify the edge which has the least
contribution to the other sub-key optimization objectives indi-
vidually. If the edges corresponding to the least contribution
in each of the different sub-key optimization objectives are
the same, then delete this edge in the bipartite graph. But in
general, these edges are different. Then we compare the values
of the key objective if these edges are deleted individually, and
delete the edge which is deduced to have the least contribution
to the optimization of the key objective. For asymmetric
bipartite graphs, i.e. the number of nodes in the two bipartite
sets are different, if the resource to be assigned may be fully
utilized, our MBM is designed to maximize the resource usage
by enhancing the graph and finding updated matchings. As
far as we know, this paper is the first work to address the
multi-objective optimization problem in the bipartite matching
field and MBM is the first algorithm proposed for solving this
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problem.
The paper is organized as follows. Section II presents the

formulation of the MO problem for bipartite matchings. The
details of the MBM algorithm is described in Section III. In
Section IV, an example of MBM for antenna assignments in
wireless MIMO communication systems is given. Section V
concludes this paper.

II. FORMULATION OF MO PROBLEM FOR BIPARTITE

MATCHINGS

A. Multiobjective Optimization (MO)

For most multi-objective optimization problems, there exists
a set of non-dominated solutions that have a trade-off rela-
tionship with each other, and one of the multiple objectives
of each solution cannot be improved without sacrificing the
others [10]. This concept is known as the Pareto optimality
[11].

Definition: Consider, without loss of generality, the max-
imization of the n components fk, k = 1, ... , n, of a vector
function f of a vector variable x in a universe X , where

f(x) = (f1(x), ..., fn(x)).
Then a decision vector xu ∈ X is said to be Pareto optimal

if and only if there is no xv for which v = f (xv) =
(v1, ..., vn) dominates u = f (xu) = (u1, ..., un), that is,
there is no xv such that vi ≥ ui, ∀ i ∈ {1, ..., n} and vi >
ui, ∃ i ∈ {1, ..., n}.

The set of all Pareto-optimal decision vectors is called
the Pareto optimal set or the Pareto frontier of the problem.
The corresponding set of objective vectors is called the non-
dominated set. In practice, however, it is not unusual for these
two terms to be used interchangeably to describe solutions of
a multi-objective optimization problem. The notion of Pareto
optimality is only the first step towards the practical solution of
a multi-objective problem, which usually involves the choice
of a single compromise solution from the non-dominated set
according to some preference information. Therefore, the first
task of multi-objective optimization is to find the Pareto set,
from which a proper solution is selected in the second step.

Based on the Pareto principle, the algorithm NSGA-II (Non-
dominated Sorting in Genetic Algorithm) proposed by Deb in
[12] and the Jensen’s algorithm [13] are the two key methods
to get the Pareto set. Their computational complexities are
O(rN2) and O(Nlog(r−1)N), where r is the number of
objectives and N is the population size. The pseudo-code of
NSGA-II can be found in [12].

B. MO Problem for Bipartite Matchings

A graph is denoted by G(V, E), where V is the vertex set
and E is the edge set of the graph. If V = X ∪ Y with
X ∩ Y = Φ, and each edge in E has one endpoint in X and
the other in Y , the graph G(V, E) is a bipartite graph, which
can also be denoted as G(X, Y, E). The bipartite graph is very
useful for some applications, such as an assignment problem
which can be depicted as follows: Given a weighted complete
bipartite graph G = (X, Y, E), find a matching m from X to
Y with the maximum sum of weights, where the cardinality

of X and Y are n1 and n2, each x in X is connected to n2

vertices in Y and edge (x, y) has weight w(x, y). A matching
is a set of edges such that no two edges have a common vertex.
In a job assignment application, X could be a set of workers,
Y a set of jobs, and w(x, y) is the earnings made by assigning
worker x to job y. The essence of the assignment problem is
to find the optimal matching. Traditionally, bipartite matching
problems only focus on a single objective. However in many
cases, the system may have multiple objectives to optimize.
To solve this problem, we firstly formulate the MO problem
for bipartite matchings. Considering a symmetric bipartite
graph (asymmetric cases will be discussed in the next section),
by exhaustive searching, there are n! matchings, denoted as
{m1, m2, ..., mn!} ∈ M , where n is the cardinality of X or Y
and M is the set of all possible matchings. By the definition of
MO in the above subsection, assuming there are l optimization
objectives, namely fi(m), i = 1, ..., l, the MO problem for
the bipartite matching is formulated as the maximization of
the l components fi, i = 1, ..., l, of a vector function f of
a vector variable m in M , where

f(m) = (f1(m), ..., fl(m)).

For the functions fi(m), i = 1, ..., l, we further classify
them into two types according to the application requirements.

(1) Type 1: the variation of f1
i (m), denoted as �f1

i (m),
only depends on the changed edge weights, such as a
sum-performance criterion. As mentioned before, the weight
w(x, y) may be the earnings, time, or efficiency to assign
worker x to job y.

(2) Type 2: the variation of f2
i (m) not only depends on the

changed edge weights, but also on the unchanged ones when
the matching m is updated to m′, such as a fairness index
proposed in [14].

III. MBM ALGORITHM

A. Symmetric Bipartite Matching

With the single objective optimization, it has been proved
that the Kuhn-Munkres algorithm can always find the max-
imum weight matching for a bipartite graph. The Kuhn-
Munkres algorithm is based on the procedure of the Hungarian
algorithm. The details of these two algorithms can be found
in [8] and [15].

Among multiple objectives, MBM firstly choose a key
objective, and the others are the sub-key objectives. In this
section, based on the job assignment system, MBM is il-
lustrated with three objectives to be maximized, which are
the earnings, working efficiency and earning fairness for all
workers, denoted as f1(mi), f2(mi), and f3(mi), mi ∈ M .
Let w(x, y) and s(x, y) be the weights associated with the
earnings and working efficiency. These two objectives are to
maximize the sum of all weights, so they belong to Type
1 objectives. However, the fairness evaluation is based on
the more complicated computation of weights w(x, y), and
it is a Type 2 objective. Among these three objectives, the
earnings objective is set as the key objective. Under exhaustive
enumeration, the number of elements in M is n!, where n
is the total number of workers. To reduce the size of the
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matching set M , MBM tries to update the bipartite graph
G by deleting an edge in each iteration. In each iteration,
MBM firstly applies the Kuhn-Munkres algorithm for the
key objective maximization for the updated bipartite graph
G′, whose initial state is G. Then a perfect matching m in
this iteration is achieved, and w(xj , yj), j = 1, ..., n, are
the weights of the edges in this matching m. The key idea
of MBM is to delete an edge at a time among the edges
in m, namely setting the corresponding weight to zero, to
balance the performance of the key and sub-key objectives.
The deleting operation is repeated until no edges are left in
the bipartite graph G′. After each implementation of the Kuhn-
Munkres algorithm, the perfect matching is collected to the
matching set M , and its corresponding performance results
of all optimization objectives are recorded for later solution
comparisons. Since for a complete bipartite graph, there are
edges between each pair of nodes in the two separated node
sets, the number of all edges is n2, the upper bound of the
number of iterations is O(n2), that is the maximum size of the
matching set M is reduced to n2. In each iteration, a perfect
matching m with n edges is obtained by the Kuhn-Munkres
algorithm. The remaining issue to be addressed is to decide
which edge to delete in this matching m. In MBM, since
the Kuhn-Munkres algorithm is applied to optimize the key
objective, for the edge deleting operation in m, we consider the
performance of the sub-key objectives. The detailed processing
is shown as follows:

(1) For each sub-key objective, choose the edge which has
the least contribution to the optimization of this objective.
For the two types of objectives we have different evaluation
schemes:

i) For Type 1 objectives: Since the values of these objectives
are obtained as simple summation of the given weights, we can
easily update the values of fi(m′) by comparing the changed
weights, where m′ is the matching without the edge to be
deleted. Obviously, the corresponding deleted edge is the edge
which has the least weight contribution for this objective.

ii) For Type 2 objectives: The variation of fi(m′) can not
be easily obtained only by the changed weights. To simplify
the computation, in MBM, we try to find some simple ways to
decide which edges have the least contribution to these objec-
tives. For example, suppose we consider the earning fairness.
For a given matching m with weights wj , j = 1, ..., n,
MBM calculates ηj of the different edges by

ηj = |wj − (
n∑

i=1

wi)/n|2, j = 1, ..., n. (1)

Then we choose the edge q as the edge which has the least
contribution to the system fairness performance by

{q} = argmaxj{ηj}, j = 1, ..., n. (2)

After choosing the edges which have least contribution
for the sub-key objectives, if these edges are identical, the
final edge to be deleted for this iteration is found. Otherwise,
perform the following processing.

(2) Generally speaking, edges which have the least contri-
bution to the performance of different sub-key objectives are
not identical. For these cases, MBM will resort to the key
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Fig. 1. Asymmetric bipartite matching (1).

objective to make the final deletion decision. It will identify
the edge with the least contribution to the key objective and
delete it.

MBM try to gradually increase the performance of the sub-
key objectives, while maximizing the performance of the key
objective for each updated G′. Note that since there is no back-
tracking in our algorithm to allow us to add back previously
deleted edges, our solution does not guarantee strict monotone
decrease of the maximum weighted matching. However, in
our test cases, the loss of performance of the key objective
improves the performance of the sub-key objectives, thus
balancing the performance of the whole system.

For a general MO problem, current solutions, such as
NSGA-II, focus on giving the Pareto set or the optimal set
as solutions. However, for an MO problem which requires
a specific solution, as we mentioned in Section II-A, even
given the Pareto set, how to select a proper solution from the
found Pareto set is still a problem. In this work, enlightened
by ε-constraint method in [16] [17], we also transform an
MO problem to a single objective optimization problem by
changing the (l − 1) sub-key objectives as the constraints of
the key objective. By setting different constraints, this method
can be used to get an optimal set. However in our work, it
is used to get a specific solution at the second step in MBM.
The problem is further modified to the following formulation:

⎧⎪⎪⎨
⎪⎪⎩

maxf1(m),
s.t. f2(m) ≤ ε1,

......
fl(m) ≤ ε(l−1), m ∈ M,

(3)

where εi (i = 1, ..., (l− 1)) are the parameters given by the
system to represent the optimization targets of the sub-key
objectives. With these constraints, MBM will find a proper
matching from our reduced matching set M , such that these
constraints are met as much as possible.

B. Asymmetric Bipartite Matching

In MBM, our key idea is to enhance an asymmetric graph
to a symmetric one, and then deal with the MO problem
by the same processing introduced for symmetric bipartite
matchings. Firstly, in the case when n1 < n2, as shown in
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the left subfigure of Fig. 1, our MBM appends (n2 − n1) all-
zero rows to the original weight matrix Wn1×n2 to form a
square weight matrix Wn2×n2 ..

Secondly, when n1 > n2, if the redundant worker resource
is ignored, as presented above, MBM algorithm will append
(n1 − n2) all-zeros columns to construct a square weight
matrix, as shown in the right subfigure of Fig. 1. However,
this method will cause wastage of worker resource. If the
redundant worker resource is reusable, and the could help
other workers to finish the jobs, then the working efficiency
of the system is improved by the processing in Fig. 2.

C. Analysis of the Computational Complexities

In this subsection we compare the computational complex-
ities of the exhaustive search, Pareto set solution, and our
proposed MBM algorithms. A summary of the comparison is
shown in Table I.

For single objective optimization, assuming the weight
matrix of a bipartite graph is Wn1×n2 , the computational
complexity of the Hungarian algorithm is O(n|E|), where |E|
is the number of edges in G, and n is the cardinality of the
vertex set of the symmetric bipartite graph. The computational

TABLE I
COMPUTATIONAL COMPLEXITIES

Assignment scheme Computational complexity

Exhaustive search (Whole matching set) O((r + 1)( t!
(t−s)!

))

NSGA-II (Pareto set) O(r(( t!
(t−s)!

)2 + NPareto))

MBM (Reduced optimal set) O(n1n2(t3 + r(s + 1)))

complexity of the Kuhn-Munkres algorithm is O(t3) [2],
where t = max(n1, n2). For multi-objective optimization
problems, the general algorithms are divided into two steps:
the first step is to obtain an optimal set, and the second
step is to select a proper solution from it. For the first step,
we compared the computational complexities of exhaustive
search, Pareto set solution and our MBM algorithm to get
different optimal sets.

It is obvious that the computational complexity of the
exhaustive search to obtain the whole matching set is

O(Cs
t Ps) = O(

t!
(t − s)!

) , (4)

where t = max(n1, n2) and s = min(n1, n2). Cs
t is the

number of ways of selecting a subset of s elements from a set
of t elements. It is an un-ordered collection of unique sizes.
Ps is the permutation of a set of s elements. A permutation
is an ordered sequence of elements selected from a given
finite set, without repetitions. If the NSGA-II algorithm [12] is
considered, the computational complexity to obtain the Pareto
set is O(rN2), where r is the number of objectives and N is
the population size. As deduced before, the size of the whole
matching set is

NExhaustive search =
t!

(t − s)!
. (5)

Therefore, the total computational complexity to obtain the
Pareto set is O(r( t!

(t−s)! )
2). However for our MBM search,

since there are at most n1×n2 edges in G, by the edge deletion
process, the size of the matching set could be reduced to

NMBM = n1 × n2. (6)

In addition, for each iteration, the Kuhn-Munkres algorithm is
applied to obtain the perfect matching of the updated bipartite
graph and the computational complexity of the deletion oper-
ation is O(rs), so the computational complexity of MBM at
the first step to obtain our optimal set is O(t3 + rs).

For the second steps of different algorithms, we assume the
same ε-constraint method is adopted to pick one objective as
the key objective; the other objectives are used as constraints
of the key objective, as shown in (3). The computational
complexity at the second stage depends on the size of the
solution set obtained in the first stage. If the cardinality of
the solution set is N , the computational complexity of the
second step is O(rN). Therefore, the total computational
complexity of the exhaustive search is O((r + 1)( t!

(t−s)! )),
and that of MBM is O(n1n2(t3 + r(s + 1))). However, for
the Pareto set method, the cardinality of the Pareto set is
dynamically changed in different cases, and we assume it is
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NPareto which is generally between n1n2 and t!
(t−s)! , so the

total computational complexity is O(r(( t!
(t−s)! )

2 + NPareto)).

IV. EXAMPLE

A. System Model

We illustrate the application of MBM to an antenna assign-
ment problem. The system model is shown in Fig. 3, where
the base station has NT antennas and each mobile user has
NR (≥ NT ) antennas. The number of mobile users is K .
The transmit power is equally divided among the transmit
antennas. Based on the post-detection signal-to-noise ratio
(SNR), the scheduler selects a group of users and assigns the
antennas to them to transmit in the time-slot. The channel
matrix Hk(t) between the base station and user k at time-slot
t is [6]

Hk(t) =
√

SNR0 · (lk/L)−β · 10Sk/10 · Gk(t), (7)

where SNR0 is the median SNR, L is the cell radius, Gk(t)
is an independent complex Gaussian random variable with
zero mean and unit variance, β is the path loss exponent, and
Sk(t) is a real Gaussian random variable with zero mean and
variance σ2

S . In addition, lk is the distance between the base
station and user k. The distance of each user from the base
station is uniformly distributed between zero and L. The post-
detection SNR [8] is defined as the SNR of a transmit symbol
after minimum mean-squared error (MMSE) detection, and
the corresponding value for the transmit antenna n to user k
can be calculated as (8).

In (8), PR is the total received signal power and σ2
N is

the noise power per receive antenna. The weight matrix for
MMSE is given as

Wk(t) = HH
k (t)(Hk(t)HH

k (t) + (σ2
NNT /PR)INR)−1, (9)

where (·)H denotes the conjugate transpose and INR is the
NR × NR identity matrix. Therefore, the system capacity for
time slot t can be expressed as

C(t) =
NT∑
n=1

log2(1 + γk,n(t)). (10)

B. Problem Formulation

In spatial multiplexing, multiple streams are transmitted
through different transmit antennas. To exploit multiuser diver-
sity, the scheduler can simultaneously choose as many multiple
users as transmit antennas and allocate each user one or more
antennas. In this wireless MIMO system, we consider the MO
problem with the following three objectives to be optimized:

(1) Capacity: We denote by C(k1, ... , kNT ) the capacity
achieved by allocating transmit antenna i to user ki for i =
1, ... , NT . Consequently, our proposed MBM aims to search
k1, ... , kNT , ∀i, j(
= i); ki 
= kj to

max C(k1, ... , kNT ) = max

NT∑
i=1

log2(1 + γki,i). (11)

(2) Long-term fairness: In a wireless communication sys-
tem, the fairness index is widely used to evaluate the fairness
performance [18]. It takes values between 0 and 1. In the
simulations, we consider the long-term fairness performance
and define the corresponding fairness index as follows:

f =
(
∑NT

i=1 Cki,i)2

NT (
∑NT

i=1 Cki,i
2
)
, (12)

where Cki,i is the average transmit rate achieved in the
past slots. The larger the long-term fairness index, the better
the system fairness performance. So our MBM also tries to
maximize the long-term fairness index.

(3) Priority: To support the QoS for multimedia transmis-
sions, we assume there are Pt types of traffics supported in
a MIMO system. In addition, we further classify the users’
service priorities into Pu levels, for example by their service
charge. The user who pays more for service will enjoy higher
transmission priority. In our simulations, we set both Pt and
Pu to 8. We assume all types of traffic flows for different
users arrive randomly, so we randomly generate the priority
weights sk,n from antenna n to user k with a random integer
in the range [1, ..., Pt ×Pu]. Then the optimization objective
is to meet more transmission requirements which enjoy higher
service priorities, namely,

max

NT∑
i=1

sk,n, sk,n ∈ [1, ..., Pt × Pu]. (13)

Among these three objectives, capacity is selected as the
key objective, while fairness and priority are considered as
sub-key objectives.

C. Simulation Results

The above three objectives for optimizing MIMO systems
are now evaluated through simulations, for both symmetric and
asymmetric bipartite matching. We assume SNR0 = 10 dB,
the path loss exponent β = 3.7 dB, the log standard deviation
of shadow fading σS = 8 dB, the cell radius L = 1 Km, and
PR/σ2

N = 10 dB. In this model, the distance of the four users
from the base station is uniformly distributed between 0 and
L. Simulation time is 2× 103 time slots (Ts). Our simulation
tool is Matlab V7.01.
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γk,n(t) =
|[Wk(t)Hk(t)]nn|2

(σ2
N/PR)NT

∑NT

m=1 |[Wk(t)]nm|2 +
∑NT

m=1,m �=n |[Wk(t)Hk(t)]nm|2 , (8)
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We fix the number of antennas to 4, and vary the number
of active users from 3 to 5 for symmetric and asymmetric
matchings. Fig. 4 shows the throughput performance com-
parisons for the symmetric bipartite matching case. For the
generated network scenario, the Kuhn-Munkres algorithm
could be applied to maximize the system capacity and the
total priority. For the throughput maximization, the simulation
results show the system capacity is around 33.7 bps/Hz,
while the long-term fairness index is around 0.79 and the
total priority is around 129. In this subsection, all values
of the throughput, total priority and long-term fairness index
are the average values obtained over the whole simulation
period. For priority maximization, the total priority is over
190, while the fairness index is lower than 0.77, and the
system capacity is just around 28.5 bps/Hz. If we assume
the system fairness optimization target is to have a fairness
index above 0.8, the Kuhn-Munkres algorithm is inadequate.
By exhaustive search, the pure fairness maximization scheme
gives the best long-term fairness index over 0.9, but it sac-
rifices the system capacity and priority. MBM can optimize
the throughput for the given constraints of the long-term
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Fig. 6. Throughput comparisons for K < NT (1).
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Fig. 7. Throughput comparisons for K < NT (2).

fairness index and priority, denoted as f and p in the figures.
We show the MBM throughputs for different fairness index
thresholds f = 0.8, 0.85, and 0.90, and different priority
thresholds p = 100, 120, and 140. For the same fairness
index and priority constraints, We also give the best throughput
performance under different constraints by exhaustive search
from the whole matching set, as shown by the dotted lines in
the Fig. 4. It is observed that our MBM solutions approach
the optimal solutions.

For the asymmetric bipartite matching, Fig. 5 shows the
throughput performance comparisons when K = 5 (K >
NT ). The result is similar to the symmetric case. Fig. 6 and
Fig. 7 show the throughput performance when K = 3 (K <
NT ). In Fig. 6, we do not consider the utilization of the
redundant antenna resource. Since only 3 users are involved
in the performance evaluation of the total priority, we change
the value of p to 70, 90 and 110. The performance of MBM is
also very close to that of the exhaustive search with the same
fairness index and priority constraints. In Fig. 7, if NT = 4
and K = 3, as illustrated in Fig. 2 for asymmetric cases, we
consider to reuse the remaining NT −K = 1 antenna resource,
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and assign one user with two antennas in the MIMO system,
the capacity achieved for that user is greatly increased. There-
fore, the system throughput performance is also improved and
is much higher than the throughput performance shown in Fig.
6 when only min(NT , K) = 3 antennas are used.

In MBM, the deletion operations try to gradually increase
the performance of the sub-key objectives, while maximizing
the performance of the key objective for each updated G′.
MBM is a type of heuristics. However, by the deletion
operation, MBM tries to keep the more crucial matchings,
and balance the performance of the multiple objectives. MBM
fixes the size of the optimal solution set to n2 with a low com-
putational complexity. It is a trade-off between computational
complexity and optimization performance.

V. CONCLUSIONS

In this paper, the multi-objective optimization problem for
bipartite matchings is formulated. To give an efficient solution
of this problem, based on the Kuhn-Munkres algorithm, a
modified bipartite matching (MBM) algorithm is proposed. We
illustrate the application of MBM to antenna assignments in
wireless MIMO systems for both symmetric and asymmetric
scenarios. The simulation results show that MBM can effec-
tively reduce the matching set and dynamically provide the
maximum values of the key objective, while satisfying the
requirements of the other sub-key objectives.
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