

CORE

Title	Provenance and tectonic setting of the Neoproterozoic Yanbian Group, western Yangtze Block (SW China)
Author(s)	Sun, WH; Zhou, MF; Yan, DP; Li, JW; Ma, YX
Citation	Precambrian Research, 2008, v. 167 n. 1-2, p. 213-236
Issued Date	2008
URL	http://hdl.handle.net/10722/58670
Rights	Creative Commons: Attribution 3.0 Hong Kong License

1	Provenance and tectonic setting of the Neoproterozoic Yanbian
2	Group, western Yangtze Block (SW China)
3	
4	Wei-Hua Sun ^{a,} *, Mei-Fu Zhou ^a , Dan-Ping Yan ^b , Jian-Wei Li ^c and Yuxiao Ma ^d
5	
6	^a Department of Earth Sciences, University of Hong Kong, Hong Kong, China
7	^b School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083,
8	China
9	^c State Key Laboratory of Geological Processes and Mineral Resources, and Faculty of Earth
10	Resources, China University of Geosciences, Wuhan 430074, China
11	^d Department of Geochemistry, Chengdu University of Science and Technology, Chengdu, China
12	
13	* Corresponding author. Tel.: +852 2859 8913; Fax: +852 2517 6912.
14	E-mail: weihua@hkusua.hku.hk
15	Abstract
16	Tectonic evolution of the Yangtze Block of South China during
17	Neoproterozoic time has been a major focus of debate and is important in the
18	reconstruction of the Rodinian supercontinent. The Yanbian Group in the western
19	margin of the Yangtze Block is a well-preserved Neoproterozoic volcanic-
20	sedimentary sequence and provides a rare opportunity to examine the
21	provenance and tectonic setting. It consists of a lower part composed of ~1500 m
22	thick basaltic lavas and an upper part with ~3500 m thick flysch deposits. The
23	flysch sequence contains typical deep marine turbidites consisting mainly of fine-
24	grained volcaniclastic sandstones and mudstones, indicating a submarine fan
25	depositional system. Detrital zircon dating yields ages ranging from ca. 865 Ma to

26 1000 Ma with two peaks at ca. 900 Ma and 920 Ma, respectively. The Yanbian 27 Group is intruded by the ~860- Ma Guandaoshan dioritic pluton, constraining its 28 depositional age at ca. 870 Ma. The sandstones contain abundant feldspar and 29 lithic fragments with minor amounts of quartz and have an average composition 30 of $Q_{16}F_{35}L_{49}$, suggesting a proximal source and an undissected to transitional arc 31 setting. The lithic fragments in the sandstones point to andesitic and felsic 32 volcanic rock sources. The sandstones and mudstones have intermediate SiO₂/Al₂O₃ (typically 3-6), high Fe₂O₃+MgO contents (5-12 wt%), and moderate 33 34 to high K_2O/Na_2O ratios (generally 0.1-1 and 1-10 for sandstones and mudstones, 35 respectively). In comparison with average upper continental crust, they show strong Nb-Ta anomalies, slight depletion of Zr-Hf, La and Th, but moderate 36 37 enrichment of V, Cr, Ni, and Sc. These rocks show LREE enrichment 38 (La/Yb_N=5.3-7.4) with flat HREE, and pronounced negative Eu anomalies 39 (Eu/Eu*=0.6-0.74) in chondrite-normalized REE patterns, similar to post-Archean 40 shales. Geochemical data for these rocks suggest an arc setting and intermediate-felsic volcanic source, consistent with a back-arc basin scenario for 41 the basaltic lavas in the lower Yanbian Group. Together with regional geological 42 43 evidence, the turbidites of the Yanbian Group strongly support a model in which 44 the western margin of the Yangtze Block was a major magmatic arc, active 45 probably from ~920 Ma to 740 Ma, a period of more than 180 million years.

46

Key words: turbidite, detrital zircon dating, geochemistry, provenance, Yanbian
Group, Yangtze Block

49 **1. Introduction**

50 Siliciclastic rocks are useful for investigating provenance and tectonic setting 51 of sedimentary basins (Dickinson, 1970, 1985; Bhatia, 1983, 1985; Roser and 52 Korsch, 1986, 1988; Floyd and Leveridge, 1987). Provenance regions, especially 53 those at destructive plate margins, are rarely well preserved because of 54 subsequent erosion and destruction. In such circumstances, studies of related 55 sedimentary rocks have considerable potential for determining the source rocks 56 and the history of ancient continental margins. A combination of traditional 57 mineralogical (especially for sandstones) and geochemical methods and detrital zircon U-Pb analysis has greatly contributed to our understanding of the 58 59 provenance, tectonic setting and tectonomagmatic evolution of sedimentary 60 basins and their siliciclastic deposits (McLennan et al., 1990, 1995; Maas and 61 McCulloch, 1991; Taylor and McLennan, 1995; Dickinson and Gehrels, 2000; DeGraaff-Surpless et al, 2002; Cope et al., 2005; She et al., 2006). 62

63 The tectonic evolution of the Yangtze Block of South China is of importance 64 for the reconstruction of the supercontinent Rodinia and has been a matter of hot 65 debate (Li Z.X. et al., 1999, 2003; Li X.H. et al., 2003, 2006; Zhou et al., 2002a, b, 2006a, b). Previous work has focused mainly on the Neoproterozoic igneous 66 67 rocks, and studies of the associated sedimentary sequences are sparse. The 68 Neoproterozoic Yanbian Group in the western margin of the Yangtze Block has been a subject of several recent studies (Du et al., 2005; Zhou et al., 2006a; Li 69 X.H. et al., 2006; Sun et al., 2007), because it is not only one of the best-70 71 preserved volcano-sedimentary sequences in South China, but is spatially

72 associated with several contemporaneous intermediate to mafic plutons, making 73 it ideal for investigating the tectonic affinities of the Yangtze Block. Previous 74 studies on the volcanic rocks in the lower part of the Yanbian Group and the 75 related intrusive rocks have interpreted the Yanbian Group as a relict ophiolite 76 (Sun and Vuagnat, 1992) or a back-arc basin sequence (Du et al., 2005; Zhou et 77 al., 2006a; Li X.H. et al., 2006, Sun et al., 2007). So far, there is no agreement 78 about the depositional age of the Yanbian Group (Du et al., 2005; Zhou et al., 79 2006a; Li X.H. et al., 2006), causing additional ambiguity in its tectonic 80 interpretation. In particular, no studies are available regarding the chemical 81 composition and petrology of the sedimentary rocks, which are crucial to better 82 understanding the source rocks and tectonic setting.

In this paper, we present petrographic, detrital zircon U-Pb geochronological and geochemical data for the upper siliciclastic rocks of the Yanbian Group, in an attempt to constrain the age of the sediments and to infer their provenance and tectonic setting. The results also provide insights into the tectonic evolution of the Yangtze Block during Neoproterozoic time.

88

89 **2. Geological background**

South China consists of the Yangtze Block in the northwest and the Cathaysia Block in the southeast (Fig. 1). The Yangtze Block is separated from the North China Craton by the Qinling-Dabie orogenic belt and is bounded to the west by the Songpan-Ganze Terrane of the Tibetan Plateau. The Songpan-Ganze Terrane is a prominent triangular region filled with Triassic deep-marine

95 flysch deposits (Zhou and Graham, 1996). The Yangtze Block comprises 96 metamorphic basement complexes and Neoproterozoic to Cenozoic cover 97 sequences (Yan D.P. et al., 2003). The basement complexes contain gneiss, 98 mica schist, amphibolite, marble and quartzite, whereas the cover sequences are 99 mainly composed of carbonate, clastic and volcanic rocks (SBGMR, 1991).

100 Along the western margin of the Yangtze Block, a ~1000-km-long, NS-101 trending, Neoproterozoic igneous and metamorphic belt crops out from Kangding 102 in Sichuan Province to Yuanjiang in Yunnan Province (Fig. 1). This belt has been 103 recently interpreted as a major Neoproterozoic continental arc, named the 104 Hannan-Panxi arc, in which the igneous rocks have ages mostly ranging from 105 860 to 740 Ma (Zhou et al., 2002a, b, 2006a, b; Zhao and Zhou, 2007; Sun and 106 Zhou, 2008). The occurrence of this huge continental arc indicates an Andean-107 type continental margin with oceanic crust being subducted eastward beneath 108 the western margin of the Yangtze Block during that time (Zhou et al., 2002b; 109 Sun and Zhou, 2008).

110 In the belt, the igneous plutons intrude high-grade (granitic gneisses and 111 amphibolite) and low-grade metamorphic rocks (Pan et al., 1987; Li F.H. et al., 112 1988). The high-grade metamorphic rocks, including the Kangding and 113 Dahongshan complexes, were traditionally considered to be late Archean to 114 Paleoproterozoic crystalline basement; the low-grade metamorphic rocks, such 115 as the Kunyang, Huili, Yanbian and Bikou Groups, were interpreted to be 116 Mesoproterozoic and to constitute the folded basement in this region (Chen and 117 Chen, 1987).

The Yanbian Group is unconformably overlain by Sinian (latest 118 119 Neoproterozoic) strata known as the Lieguliu Formation (Sun et al., 2007), which 120 is composed of glacial deposits, comparable to those of similar age on other 121 continents (Elsbacher, 1985). The Yanbian Group is intruded by a magmatic 122 association that consists of the ~860-Ma Guandaoshan dioritic pluton (Li X.H. et al., 2003; Sun and Zhou, 2008), 810-820-Ma Tongde dioritic-gabbroic pluton (Li 123 124 Z.X. et al., 2003) and ~810-Ma Gaojiacun and Lengshuiging mafic plutons (Zhou 125 et al., 2006a) (Fig. 1). These, together with the ~740 Ma Dadukou gabbroic 126 intrusion south of Tongde Town (Zhao and Zhou, 2007), have been interpreted as part of the Hannan-Panxi arc along the western margin of the Yangtze Block 127 (Sun and Zhou, 2008). 128

129

3. Stratigraphy and depositional environment

131 Cropping out over an area of approximately 500 km², the Yanbian Group is 132 composed of two principal units: a lower volcanic sequence ca. 1500 m thick, 133 known as the Fangtian Formation, and an upper flysch more than 5000 m thick, 134 comprising the Yumen, Xiaoping and Zagu Formations (Fig. 2)

The Fangtian Formation is composed of massive basalt, pillow basalt and volcanic breccias with subordinate interbeds of chert, and pelitic and siliceous slate. It is conformably overlain by the ca.1700-m-thick Yumen Formation, which consists primarily of thin- to medium-bedded, dark-gray, carbonaceous and siliceous slates with interbeds of fine- to coarse-grained sandstone (Fig. 3a). Lenses of limestone are locally present. An ~5-cm-thick layer of black chert

marks the base of the Yumen Formation where it overlies the basaltic breccias of
the Fangtian Formation (Fig. 3a). The slates and sandstones have regular
parallel bedding, typical of distal turbidites. In this formation, turbidites generally
display T_{bce} of the Bouma sequences.

145 The ~2200-m-thick Xiaoping Formation comprises dark gray slates, 146 carbonaceous slates, fine- to coarse-grained sandstones and siltstones, representing turbidites and associated mudstones. The basal and top parts of the 147 148 succession are dominated by sandstones in beds up to 1.5 m thick, suggesting 149 small-scale channel-fill deposits. The sandstone channels usually display an 150 eroded base and a concave-upward morphology, with the grain size fining 151 upward. Conglomerates are locally present as thin, discontinuous lag beds at 152 the base of the coarse sandstone layers. The sandstones have lenticular or flat 153 beds with thicknesses of 10-20 cm, but ranging from 2 to 50 cm. Sedimentary 154 structure, such as scours, slumps, and load and flame structure, are locally well 155 developed (Figs. 3b, c). Most sandstone beds are normally graded and follow the 156 Bouma sequence. Partial Bouma sequences are more common than complete 157 ones, with the T_{abc} sequence being the most common, followed in abundance by T_{ae} (Fig. 3d). Thin limestone lenses and stromatolithic limestones are also 158 159 observed locally. Pyrite is common in the slates and siltstones, especially along 160 some layer boundaries.

161 The ~1300-m-thick Zagu Formation is composed of dark gray slates, black 162 dolomitic slates and dolomitic limestones. There is a thin (10-15 m) layer of 163 conglomerate and pebbly sandstone at the base, representing a medium-scale

channel-fill deposit. The conglomerate clasts are typically subangular to subrounded, generally 2-4 cm in diameter, and consist mainly of intermediatefelsic volcanic rocks (50-60%), chert (20-25%), fragments of carbonaceous rock (10-15%) and siltstone (~10%). The conglomerates and sandstones are also well graded. The Zagu Formation is unconformably overlain by the Sinian Lieguliu Formation (Sun et al., 2007).

170 The Yanbian Group consists mainly of thin- to medium-bedded, fine-grained, 171 turbiditic volcaniclastic sandstones and mudstones with little variation in 172 sedimentary facies and minor input of coarse clastic material. These sedimentary 173 rocks most likely represent submarine fan deposits, especially mid-fan deposits. 174 This thick turbidite package lacking shallow-water deposits indicates a marine 175 environment below wave base. The presence of limestones throughout the 176 section indicates that the seafloor was above the carbonate compensation depth 177 and suggests a low-latitude, warm-water environment.

178

179 **4. Sandstone petrography**

The sandstones are mostly fine- to medium-grained, poorly sorted and contain angular to subangular grains of low to moderate sphericity. They are mainly composed of quartz, feldspar and lithic fragments. Quartz is relatively minor in volume and is generally subangular to angular, mostly being monocrystalline and lacking inclusions and undulatory extinction (Fig. 4a). Subrounded feldspar is the dominant mineral and is partly altered to saussurite and sericite. Plagioclase is much more common than alkali feldspar (Fig. 4b).

Lithic fragments are dominantly rhyolite and andesite with felsitic and microlitic
textures, although sedimentary and metamorphic varieties are also present (Figs.
4c,d,e).

Biotite and muscovite occur as elongate laths or short plates and are locally accompanied by chlorite and glauconite. Sparse heavy minerals include magnetite, zircon, apatite, titanite, pyrite, rutile and tourmaline. Most of these grains are angular to subangular, although some are well-rounded. Amphibole and pyroxene grains are locally present but extremely rare (Fig. 4f).

The matrix of the sandstones consists of clay minerals, comminuted and altered lithic and feldspathic fragments, fine-grained quartz, micas, opaque minerals, carbonate and some aphanitic material. Matrix is commonly between 10 to 15%, but may be overestimated due to the pseudomatrix problem (Dickinson, 1970). Silica is the dominant cement in these rocks but calcite is also common.

201 Thirty-one medium-grained sandstones were selected for petrographic study 202 using the Gazzi-Dickinson method (Ingersoll et al., 1984). About five to six 203 hundred framework grains were counted from each sample. Matrix (<~0.03 mm) 204 and cement were not counted. The Gazzi-Dickinson method divides volcanic 205 lithic clasts into various textural types (Dickinson, 1970), which is especially 206 significant in magmatic-arc settings, where volcaniclastic components may 207 constitute as much as 100% of the sand fraction (Marsaglia and Ingersoll, 1992). Point-count categories and recalculated parameters are defined in Table 1. 208

209 The modal point-count data are shown in Table 2 and Figure 5. In general, 210 the sandstones are characterized by low quartz (Q), moderate feldspar (F) and 211 high lithic (L) abundances, with L/F ratios of 1-3, indicating that the sandstones 212 were derived almost exclusively from volcanic sources (Dickinson, 1970). The 213 Yumen, Xiaoping and Zagu Formations have average compositions of $Q_{22}F_{30}L_{48}$, 214 $Q_{15}F_{36}L_{49}$, and $Q_{14}F_{34}L_{52}$, respectively. In the discrimination diagrams (Fig. 5), 215 they plot in the magmatic-arc field, indicating an undissected-transitional arc 216 provenance.

217

5. Geochronology and geochemistry

219 **5.1. Detrital zircon geochronology**

220 Single-grain U-Pb dating were performed using the laser ablation ICP-MS 221 technique at China University of Geosciences (Wuhan). The detailed analytical 222 procedures follow Yuan et al. (2004). A GeoLas 2005M laser-ablation system 223 equipped with a 193 nm ArF-excimer laser was used in connection with an 224 Agilent 7500 ICP-MS. Helium was used as the carrier gas to enhance the 225 transport efficiency of the ablated material. The spot diameter was 32 µm. Raw 226 data were processed using the Glitter program (Jackson et al., 2004). All 227 measurements were normalized relative to standard zircon 91500. Standard 228 silicate glass NIST SRM610 was used to calculate U and Th concentrations. The 229 data were processed using the ISOPLOT program (Ludwig, 1999).

Zircons from these rocks are commonly transparent to orange in color, 100200 µm in size and subrounded to subangular. A total of two hundred and ninety-

232 eight analyses were performed on zircon grains from five samples (Table 3). Of 233 those, 40 analyses with a degree of discordance >3% were discarded. However, 234 only a very few of these discordant analyses yield ages outside the range defined by the remaining relatively concordant analyses. ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U ages 235 236 were applied for zircons older and younger than 1000 Ma, respectively. The 237 dataset yields ages mainly of ~900-920 Ma with only a very minor, statistically 238 insignificant, component of older continental-derived zircons in the Yumen and 239 Xiaoping Formations. The Zagu Formation, on the other hand, has a relatively 240 high content of older continental material (Fig. 6).

5.1.1. Yumen Formation

Sample F38, a coarse-grained sandstone specimen, was collected near the base of the Yumen Formation (N26.53.39, E101.30.80) for zircon dating. Of the 60 grains analyzed, 4 were highly discordant and thus were discarded. The remaining forty-six grains yielded 206 Pb/ 238 U apparent ages ranging from 865 to 975 Ma, with a single peak at 917±6 Ma (Fig. 6).

Sample F3, consisting of coarse-grained, feldspar-lithic sandstone, was collected from the upper part of the Yumen Formation (N26.54.47, E101.28.89). Of 58 spot analyses, 41 have concordant ages ranging from 860 to 990 Ma with a weighted mean of 918±8 Ma. Only one concordant grain has a significantly older age of ~2000 Ma (Fig. 6). The remaining 16 analyses are highly discordant but have ages within the younger age population. Thus, the age distribution of zircons from the Yumen Formation suggests uniform source rocks.

254

255 **5.1.2. Xiaoping Formation**

256 A medium- to coarse-grained, feldspar-lithic sandstone, sample F4, was 257 collected from the middle part of the Xiaoping Formation (N26.55.96, 258 E101.27.45). Of the 60 grains analyzed, 45 concordant grains yielded apparent 206 Pb/ 238 U ages between 850 and 960 Ma, with a prominent peak at ~920 Ma. 259 Three concordant grains gave much older ages from ~2200 to 2600 Ma (Fig. 6). 260 261 This age spectrum is very similar to that of samples F38 and F3 of the Yumen 262 Formation. However, half of the remaining 12 analyses with varying degrees of discordance (>3%) yield older ages of around 2200-2600, suggesting a 263 264 somewhat greater input of older material input relative to the Yumen Formation. Several concordant ages are as young as ~850 Ma (Fig. 6). 265

Sample F26 (N26.58.76, E101.32.17) was collected near the top of the Xiaoping Formation. 42 of 60 spot analyses have concordant ages ranging from 860 to 970 Ma, with two peaks of 897±6 Ma and 934±5 Ma, respectively (Fig. 6). The remaining 18 discordant analyses also show similar age ranges.

270 **5.1.3. Zagu Formation**

A pebbly sandstone, sample F23 (N26.58.96, E101.32.17), was collected from the base of the Zagu Formation. Of 60 grains analyzed, 46 are concordant. This sample yields an age distribution mainly between~ 870 Ma and 930 Ma, but it is characterized by sharp increase of older zircons with several minor peaks at 1800, 2000, 2600 and 3000 Ma (Fig. 6). Coupled with a rapid coarsening in the stratigraphic section, this suggests increased uplift and erosion in the source terrane.

5.2. Whole rock geochemistry

279 Major oxides and selected trace elements of whole-rock samples were determined by X-ray fluorescence (XRF) on fused glass beads at the University 280 281 of Hong Kong. Trace elements were analyzed with a VG PQ Excell ICP-MS, 282 also at the University of Hong Kong. The samples for ICP-MS analysis were 283 prepared in closed beakers in high-pressure bombs to ensure complete digestion 284 (Qi et al., 2000). We used pure elemental standards for external calibration, and 285 BHVO-1 (basalt) and SY-4 (syenite) as reference materials for all analyses. 286 Accuracies of the XRF analyses are estimated to be better than 1% for SiO₂, 287 better than 2% for major oxides present in concentrations greater than 0.5 wt% 288 and 5% for trace elements. The ICP-MS analyses yielded accuracies better than 289 5%.

290 **5.2.1. Major elements**

291 The majority of the Yanbian Group sandstones and mudstones have 292 intermediate SiO₂ (55-73 wt%), high Fe₂O₃+MgO (usually 5-12 wt%; total Fe as 293 Fe_2O_3) and TiO_2 (0.6-1.2 wt%) and low CaO (mostly <1 wt%) (Table 4). In 294 general, SiO₂ increases whereas TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, and Na₂O 295 decrease with enhanced mineralogical maturity, indicating an increase in the 296 quartz content and a decrease in chemically unstable detrital grains (e.g., 297 feldspar and volcanic rock fragments) (Bhatia, 1983). There are no systematic 298 stratigraphic variations from the Yumen through Xiaoping to Zagu Formations, 299 possibly reflecting inadequate sampling from the Yumen and Zagu Formations.

Due to enrichment in clay minerals, the mudstones generally have higher K_2O and Al_2O_3 and lower Na_2O contents, resulting in much higher K_2O/Na_2O ratios (typically 1-10) than those of the corresponding sandstones (commonly 0.1-1). Most sandstone samples are immature, with SiO_2/Al_2O_3 ratios between 3 to 6 and Na_2O/K_2O ratios between 1 to 3.5, and plot within the graywacke field in the plot of Pettijohn (1987) (Fig. 7).

306 **5.2.2. Trace elements**

307 Rocks from the three Formations are virtually indistinguishable in their trace 308 element contents, and are characterized by variable contents of Rb (7-140 ppm), 309 Sr (10-377 ppm), Cs (0.4-8 ppm), Ba (80-1200 ppm), Th (2.6-12 ppm) and U 310 (0.5-3.2 ppm) (Table 4). In comparison with average upper continental crust, they 311 show strong Nb-Ta, anomalies, slight depletion of Zr-Hf, La and Th, but moderate 312 enrichment of V (17-257 ppm), Cr (15-185 ppm), Ni (<80 ppm), and Sc (8-22 313 ppm) (Fig. 8a). In addition, the mudstones commonly have higher Rb, Ba, Th, U 314 and Cs contents than the sandstones (Fig 8a), likely reflecting the abundance of 315 clay minerals (e.g., illite and sericite) in these rocks (McLennan et al., 1983).

Both the sandstones and mudstones exhibit subparallel chondritenormalized REE patterns, characterized by moderate fractionation between light REE and heavy REE (La/Yb_N=5.3-7.4), with obvious negative Eu anomalies (Eu/Eu*=0.6-0.74) (Fig. 8b), features typical of post-Archean sedimentary rocks (Taylor and McLennan, 1985). Moreover, the mudstones generally have slightly more fractionated REE patterns than the sandstones and ~20% higher total REE abundances.

323

324 **6. Discussion**

325 **6.1. Age of the Yanbian Group**

326 The depositional age of the unfossiliferous Yanbian Group has long been 327 debated. It was traditionally thought to be Mesoproterozoic (Pan et al., 1987; 328 SBGMR, 1991). However, newly obtained SHRIMP U-Pb zircon ages of 782±53 329 Ma (Du et al., 2005) for the basaltic lavas of the lower Yanbian Group strongly 330 suggest a Neoproterozoic age. Similarly, Zhou et al. (2006a) reported a maximum depositional age of 837±6 Ma based on LA-ICP-MS detrital zircon 331 332 dating. By contrast, Li X.H. et al. (2003, 2006) proposed a minimum age of 333 857±13 Ma, inferred from the emplacement age of the Guandaoshan pluton that 334 intrudes the Yanbian Group. Thus the depositional age of the Yanbian Group 335 should be no younger than 857 ± 13 Ma. The present geochronological results 336 provide reliable and tight constraints on the maximum depositional age of the 337 Yanbian Group. Although eight youngest zircons from the Yanbian Group give 338 ages as young as 852±6 Ma (Fig. 6), we adopt here a somewhat older age of 339 868±6 Ma defined by another ten youngest zircon dates in the concordant 340 dataset (Table 3). The ten zircons are from different samples but yield similar 341 ages within quoted errors. We therefore suggest that the Yanbian Group was 342 most likely not older than ~870 Ma. Furthermore, the Yanbian Group was 343 probably deposited in a syn-magmatic basin, based on the short time delay 344 between deposition of the sediments and emplacement of the 857±13 Ma 345 Guandaoshan pluton.

6.2. Effect of chemical weathering

Chemical weathering strongly affects the mineralogy and major element geochemistry of siliciclastic sediments (Nesbitt and Young, 1982, 1996). The chemical index of alteration (CIA) is very useful in evaluating effects of weathering on sedimentary rock composition and is defined by Nesbitt and Young (1982) as:

352 $CIA = [Al_2O_3/(Al_2O_3+CaO^*+Na_2O+K_2O)]\times 100$

353 Where CaO* represents Ca in the silicate minerals only (i.e. excluding calcite, 354 dolomite and apatite) (Fedo et al., 1995). High CIA values reflect the removal of labile cations (e.g., Na⁺, K⁺ and Ca⁺) in preference to relatively stable residual 355 356 constituents (e.g. Al⁺), corresponding to high degrees of chemical weathering. 357 The values vary from about 50 for the average upper continental crust to about 358 100 for residual clays. Shales typically have intermediate values of about 70-75, 359 indicating that weathering did not proceed to the stage where alkali and alkaline 360 earth elements were substantially removed from the clay minerals (Nesbitt and 361 Young, 1982). The Yanbian sandstones have CIA values ranging broadly from 362 49 to 73 and the mudstones from 57 to 84 (Table 4 and Fig. 9). In turbidites, 363 physical sorting during transport and deposition would yield mudstone with high 364 concentration of fine-grained, aluminous clay minerals of high-CIA value (e.g., 365 kaolinite, gibbsite) derived from the upper parts of weathering profiles, and 366 sandstone relatively enriched in coarse-grained low-CIA residue (e.g., guartz, 367 vestigial feldspars) derived from the lower parts of weathering profiles (Nesbitt et al., 1996). The CIA values of mudstones, therefore, will give a better 368

369 understanding of the intensity of weathering in the source. Most mudstones have 370 CIA values ranging from 65 to 77, reflecting only moderate source weathering. 371 However, 6 mudstone samples in the Xiaoping Formation and 1 sample from the 372 Zagu Formation having much higher CIA values in the range of 79-84 than 373 typical shales of 70-75. If these values were corrected for K metasomatism (Fedo 374 et al., 1995), their CIA values would be even greater than 90 (Fig. 9), indicative of 375 severe weathering in the source. One possible explanation for the higher CIA 376 values in the few samples from the Xiaoping and Zagu Formations may indicate 377 a contribution of a greater proportion of distal high-CIA detritus from older 378 cratonic source, which is consistent with our detrital zircon data.

379 The A-CN-K (Al₂O₃-CaO*+Na₂O-K₂O) triangular plot can also be used to 380 constrain the initial compositions of the source rocks (Fedo et al., 1995). The 381 sandstones and mudstones from the Yanbian Group form a linear trend, which is 382 generally subparallel to the A-CN join, but is slightly below the predicted 383 weathering trend, especially for the fine-grained mudstones (Fig. 9). This probably indicates that the mudstones were more profoundly affected by 384 illitization. Their weathering trends suggest a provenance of tonalitic or 385 386 granodioritic rocks for the Yanbian sediments.

387 Differential weathering at the source and subsequent 388 diagenesis/metamorphism tend to mobilize and change the relative abundance of 389 large-ion lithophile elements (Nesbitt et al., 1980). However, the Yanbian 390 sandstones and mudstones commonly show linear correlation in the elemental 391 plots of K vs. Rb, K vs. Ba, Ce vs. Sm and U vs. Th (Fig. 10), indicating that

392 these elements were probably not changed significantly. Moreover, because the 393 sandstones studied here are relatively uniform in grain size, we believe that the 394 grain-size effect is not important.

6.3. Tectonic setting of the Yanbian Group

396 The pillow basalts and marine sedimentary rocks of the Yanbian Group, and 397 the spatially associated Gaojiacun and Lengshuiging mafic intrusions, were 398 previously regarded as the Yanbian ophiolite (Sun and Vuagnat, 1992). However, 399 recent studies suggest that the mafic plutons postdate the Yanbian volcano-400 sedimentary sequence, arguing against an ophiolite model (Zhou et al., 2006a). 401 Based on the geochemistry of the basaltic lavas, the Yanbian Group has been 402 reinterpreted as a back-arc basin sequence (Du et al., 2005; Li X.H. et al., 2006; 403 Sun et al., 2007), but evidence from the sedimentary sequence was not available. 404 Our new geochronological, petrographical and geochemical data thus provide 405 new constraints on a back-arc basin scenario.

406 The Yanbian Group was deposited at ~870 Ma and derived from a proximal 407 magmatic arc with ages generally between 900 and 920 Ma (Figs. 5 and 6). The 408 presence of almost contemporaneous volcanic arc magmatism indicates an 409 active continental margin setting (DeGraaf-Surpless et al., 2002), in contrast to a 410 passive continental margin where sediments are commonly derived from 411 weathering of older continental crust (Goodge et al., 2002). The immature 412 volcaniclastic graywackes, turbidites of the Yanbian Group are also consistent 413 with an active margin setting (Crook, 1974; Pettijohn et al., 1987), where such 414 rocks are commonly associated with pillow lavas or 'greenstones' (Pettijohn et al.,

415 1987 and references therein) and are commonly observed in modern back-arc416 basins.

417 The sandstones from the Yanbian Group have about 15% modal guartz with 418 mostly 60-73 wt% SiO₂ and K_2O/Na_2O ratios <1, and are quartz-intermediate, 419 indicating a mixed provenance and depositional setting typical of an active 420 continental margin (Crook, 1974). Roser and Korsch (1986) examined the 421 K₂O/Na₂O-SiO₂ systematics of sandstone-mudstone suites from passive 422 continental margins (PM), active continental margins (ACM) and oceanic island 423 arcs (ARC), and found that the chemistry of the fine-grained members, and the 424 coupled sand-mud trends, were more useful indicators of tectonic setting than 425 the sandstones alone. Sandstones from the Yanbian Group plot exclusively in 426 the ARC and ACM fields, whereas most mudstones plot in the ACM field (Fig. 427 11). The coupled sand-mud trends (chain-dashed tie lines in Fig. 11) show one 428 trend parallel to the field boundaries and the other perpendicular to the first, 429 indicating a back-arc basin setting (Roser and Korsch, 1986). Using Bhatia's 430 (1983) scheme, the majority of samples from the Yanbian Group plot in the 431 oceanic island arc (OIA) to continental island arc (CIA) fields (Fig. 12). The 432 observed scatter of some points is probably due to a combination of sandstone 433 maturity and interelement variation.

The trace-element geochemistry of fine-grained clastic sediments has also been widely used to determine tectonic setting (Bhatia and Crook, 1986; Floyd et al., 1991). On the La-Th-Sc and Th-Sc-Zr/10 ternary plots (Fig. 13), most of the Yanbian Group sandstones also fall within the OIA and CIA fields. The elemental

438 compositions of different greywackes can be most easily compared by utilizing 439 upper continental crust-normalized, multi-element patterns. As shown in Figure 440 8a, the Yanbian rocks have pronounced negative Nb-Ta anomalies, clearly 441 indicative of subduction-related magmatic rock source (Floyd et al., 1991). For 442 further comparison, the data were also normalized to the standard tectonic 443 setting values and the results show that the Yanbian rocks are mostly affiliated 444 with a continental arc+active margin (Fig. 14).

REE patterns of clastic rocks are mainly controlled by provenance (Taylor and McLennan, 1985; McLennan, 1989) and are believed to be faithfully preserved in flysch deposited by turbidity currents and mass-flow processes (Hiscott and Gill, 1992). The Yanbian rocks have REE elements and ratios similar to those of continental arc settings (Table 5), in good agreement with the proposed back-arc basin scenario.

451 **6.4. Provenance of the Yanbian Group**

452 Petrographic, geochronological and geochemical evidence not only indicates
453 that rocks of the Yanbian Group rocks were mainly derived from a magmatic arc,
454 but also provides important constraints for the nature of this arc, which was not
455 preserved in the modern exposures.

High feldspar contents (generally >30%) of the Yanbian sandstones indicates
derivation directly from crystalline rocks (Boggs, 2001), because feldspars are
chemically and physically unstable and thus less likely to survive recycling than a
mineral like quartz. Presence of other unstable minerals such as magnetite,
pyroxene and amphibole also support this view. The poorly sorted and immature

461 nature of the Yanbian greywackes, and their deposition in a back-arc basin,
462 further points to a proximal arc source with short transport distance and little or
463 no reworking.

The source area for the Yanbian Group sediments was an undissected to transitional volcanic arc, in which only minor plutonic rocks were exposed. This interpretation is supported by the abundance of volcanic rock fragments in the sediments, the dominance of plagioclase over K-feldspar and the presence of only minor quartz (Fig. 5 a, b and c). It is also consistent with the negative Zr-Hf anomalies of these rocks relative to the average continent upper crust, reflecting a lack of zircon input from silicic plutonic rocks (Fig. 8a).

471 The abundant intermediate and felsic volcanic rock fragments and sparse 472 mafic rock clasts in the Yanbian sandstones provide the most direct evidence for 473 the composition of these volcanic rocks (Table 2). Moreover, the trace element 474 characteristics of the sediments provide additional constraints on the nature of 475 the provenance. Because silicic rocks are significantly richer in La and Th, and 476 poorer in Sc, Cr, and Co than mafic rocks (Cullers, 1994 and references therein), 477 La/Sc, Th/Sc, Th/Co, and Cr/Th ratios are good indicators of the source rocks. 478 The Yanbian rocks have relatively low and constant La/Th ratios with an average 479 of 1.5 but more variable Co/Th ratios (Fig. 15a), suggesting mixing of felsic and 480 intermediate components. Similarly, a plot of La/Th against Hf also points to 481 mixed sources (Fig. 15b). In addition, the Yanbian rocks mostly have Cr/Th ratios 482 of 5-25 (Table 4), clearly indicative of silicic-intermediate source rocks (Cullers, 483 1994). The low Cr (mostly<150 ppm) and Ni (<80 ppm) of the Yanbian rocks and

484 slight V-Cr-Ni anomalies (Fig. 8a) is also consistent with minor mafic-ultramafic
485 input from the source area (Floyd et al., 1991; Garver et al., 1996).

486 **6.5. An integrated tectonic model**

487 Although the tectonic affinity of the western margin of the Yangtze Block 488 during the Neoproterozoic has been a matter of debate, it has been confirmed 489 that a number of plutons in this region were subduction-related. In the Yanbian 490 area, these intrusions include the ~860-Ma Guandaoshan dioritic pluton (Sun and 491 Zhou, 2008), the ~810-Ma Gaojiacun and Lengshuiging mafic intrusions (Zhou et 492 al., 2006a) and the ~740-Ma Dadukou gabbroic pluton (Zhao and Zhou, 2007). 493 Determination of the age and tectonic provenance of the Yanbian Group has 494 significant implications for the regional tectonic evolution during Neoproterozoic 495 time. This study provides a window into a Neoproterozoic magmatic arc on the 496 western margin of the Yangtze Block, and reveals the presence of a ~900-920 497 Ma felsic and intermediate volcanic arc in this region, although such a feature 498 has not yet been widely identified directly.

499 Available data allow us to propose a model involving the development of a 500 volcanic arc and formation of the Yanbian back-arc basin and the closely 501 associated subduction-related plutons in this region (Fig. 16). Subduction-related 502 volcanic rocks of mainly felsic and intermediate composition were produced at ca. 503 900-920 Ma owing to the eastward subduction of oceanic lithosphere along the 504 western margin of the Yangtze Block (Fig. 16a). Rifting occurred as a 505 consequence of diapiric upwelling of metasomatized mantle to create the 506 Yanbian back-arc basin and generate the basaltic lavas of the Fangtian

507 Formation (Fig. 16b). According to Crawford et al. (1981), arc volcanism appears 508 to cease around the time that back-arc opening commences. This basin was built 509 on the ~900-920 Ma volcanic arc sequence which provided materials to fill the 510 adjacent Yanbian basin above the lavas, to form the Yumen, Xiaoping and Zagu 511 Formations (Fig. 16b). With continued erosion, the relief of the source region 512 decreased and hence slowed down the supply of materials for the basin, 513 resulting in biochemical deposition of the carbonates in the Zagu Formation (Fig. 514 16b). Subduction-related magmatism was then re-activated to generate the 515 subduction-related plutons (Fig. 16c). The oldest pluton is the ~860-Ma 516 Guandaoshan dioritic pluton, followed by the ~810-Ma Gaojiacun and 517 Lengshuiging and the youngest ~740 Ma Dadukou gabbroic plutons (Fig. 16c). 518 This period of igneous activity suggests continuous subduction along the western 519 margin of the Yangtze Block between about 920 and 740 Ma. This arc was thus 520 active for at least ~180 million years. Eventually, this region probably became a 521 passive margin and the Sinian Lieguliu Formation was unconformably deposited 522 over the Yanbian Group, marking the termination of the arc setting (Fig. 16d).

The subduction-related environment may extend along the entire western margin of the Yangtze Block. Similar sequences also occurred in the northwest margin including the Bikou Group (Fig. 1), which has detrital zircon ages ranging from 700 to 850 Ma and has been interpreted as fore-arc basin deposits (Yan Q.R. et al., 2004; Druschke et al., 2006). Thus our proposed model implies that the western margin of the Yangtze Block was a major continental arc during the Neoproterozoic, and thus probably flanked the Rodinia supercontinent.

530

531 **7. Conclusions**

532 The Yanbian Group is a typical deep marine, volcaniclastic succession 533 deposited in a back-arc basin. Detrital zircon dating and geological constraints 534 indicate that the Yanbian Group was formed at ~870 Ma. The immature nature of 535 the Yanbian sandstones indicates a proximal arc source with ages of ~900-920 536 Ma. The Yanbian Group and spatially associated subduction-related plutons in 537 the Yanbian region make up a typical arc assemblage, being part of a major 538 continental arc along the western margin of the Yangtze Block for at least 180 539 m.y. (920-740 Ma). We infer that the Yangtze Block probably flanked the Rodinia 540 supercontinent.

541

542 Acknowledgments

This work was financially supported by the National Science Foundation of China (NSFC grant 40672037/D0204), Chinese Education Ministry 111 project (No. B07011) and the International Innovation Partnership Program of CAS & SAFEA. We thank Xiao Fu, Jianfeng Gao, Shijian Bi and Jiangman Zhang for help with the analyses. Paul Robinson is thanked for reading this manuscript. We appreciate thorough reviews by Barry P. Roser, Keith A.W. Crook and Pater A. Cawood, whose insights led to substantial improvements in this paper.

550 **References**

551 Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones.

552 J. Geol. 91, 611-627.

553 Bhatia, M.R., 1985. Rare earth element geochemistry of Australian Paleozoic

graywackes and mudstones: Provenance and tectonic control. Sediment.Geol. 45, 97-113.

556 Bhatia, M.R., Crook, K.A.W., 1986. Trace element characteristics of graywackes

and tectonic setting discrimination of sedimentary basins. Contrib. Mineral.

- 558 Petrol. 92, 181-193.
- 559 BGMRSP (Bureau of Geology and Mineral Resources of the Sichuan Province),

560 1972. Regional Geological Survey of People's Republic of China, the Yanbian
561 Sheet (G-47-XII; geological part), scale 1:200,000 (in Chinese).

- Boggs, S., 2001. Principles of sedimentology and stratigraphy (Third editon).
 New Jersey, Prentice-Hall, 726p.
- 564 Chen, Z.L., Chen, S.Y., 1987. On the tectonic evolution of the west margin of the 565 Yangzi block. Chongqing, China, Chongqing Publishing House, 172p. (in 566 Chinese).
- 567 Cope, T., Ritts, B.D., Darby, B.J., Fildani, A., Graham, S.A., 2005. Late Paleozoic
 568 Sedimentation on the Northern Margin of the North China Block: Implications
- for Regional Tectonics and Climate Change. Int. Geol. Rev. 47, 270-296.
- 570 Crawford, A.J., Beccaluva, L., Serri, G., 1981. Tectono-magmatic evolution of the
- west Philippine-Mariana region and the origin of boninites. Earth Planet. Sci.
 Lett. 54, 346-356.

- 573 Crook, K.A.W., 1974. Lithogenesis and geotectonics: The significance of
 574 compositional variations in flysch arenites (graywackes). In: Dott, R.H.,
 575 Shaver, R.H. (Eds.), Modern and Ancient Geosynclinal Sedimentation. SEPM
 576 Spec. Publ. 19, pp. 304-310.
- 577 Cullers, R.L., 1994. The controls on the major and trace element variation of 578 shales, siltstones, and sandstones of Pennsylvanian-Permian age from 579 uplifted continental blocks in Colorado to platform sediment in Kansas, USA. 580 Geochim. Cosmochim. Acta 58, 4955-4972.
- 581 DeGraaff-Surpless, K., Graham, S.A., Wooden, J.L., McWilliams, M.O., 2002.

582 Detrital zircon provenance analysis of the Great Valley Group, California:

583 Evolution of an arc-forearc system. Geol. Soc. Am. Bull. 114, 1564-1580.

584 Dickinson, W.R., 1970. Interpreting detrital modes of graywacke and arkose. J.
585 Sediment. Petrol. 40, 695-707.

Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of
sandstones. In: Zuffa, G.G. (Eds.), Provenance of arenites. NATO ASI Series
C: Mathematical and Physical Sciences 48, D. Reidel Publishing Company,
pp. 333-361.

Dickinson, W.R., Gehrels, G.E., 2000. Sandstone petrofacies of detrital zircon
samples from Paleozoic and Triassic strata in suspect terranes of northern
Nevada and California. In: Soreghan, M.J., Gehrels, G.E. (Eds.), Paleozoic
and Triassic paleogeography and tectonics of western Nevada and northern
California. Boulder, Colorado, Geol. Soc. Am. Special Paper 347, pp. 151-171.

595 Druschke, P., Hanson, A.D., Yan, Q., Wang, Z., Wang, T., 2006. Stratigraphic 596 and U-Pb SHRIMP detrital zircon evidence for a Neoproterozoic continental 597 arc, Central China: Rodinia implications. J. Geol. 114, 627-636.

598 Du, L.L., Geng, Y.S., Yang, C.H., Wang, X.S., Ren, L.D., Zhou, X.W., Shi, Y.Y.,

599 Yang, Z.S., 2005. Geochemistry and SHRIMP U-Pb zircon chronology of

basalts from the Yanbian group in the western Yangtze Block. Acta Geologica
Sinica 76, 805-813 (in Chinese with English abstract).

Eisbacher, G.H., 1985. Late Proterozoic rifting, glacial sedimentation, and
 sedimentary cycles in the light of Windermere deposition, western Canada.
 Palaeogeogr. Palaeoclimatol. Palaeoecol. 51, 231-254.

Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with

607 implications for weathering conditions and provenance. Geology 23, 921-924.

Floyd, P.A., Leveridge, B.E., 1987. Tectonic environment of the Devonian
 Gramscatho Basin, South Cornwall: Framework mode and geochemical

evidence from turbiditic sandstones. J. Geol. Soc. London 144, 531-542.

Floyd, P.A., Shail, R., Leveridge. B.E., Franke, W., 1991. Geochemistry and
provenance of Rhenohercynian synorogenic sandstones: implications for
tectonic environment discrimination. In: Morton, A.C., Todd, S.P., Haughton,

614 P.D.W. (Eds.), Developments in sedimentary provenance studies. Geol. Soc.

615 London, Spec. Publ. 57, 173-188.

Garver, J.I., Royce, P.R., Smick, T.A., 1996. Chromium and nickel in shale of the
 Taconic Foreland: A case study for the provenance of fine-grained sediments

- with an ultramafic source. J. Sediment. Res. 66, 100-106.
- 619 Goodge, J.W., Myrow, P., Williams, I.S., Bowring, S.A., 2002. Age and
- 620 provenance of the Beardmore Group, Antarctica: constraints on Rodinia
- 621 supercontinent breakup. J. Geol. 110, 393-406.
- Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., Qi, L., 2002. Provenance and
 tectonic setting of the Proterozoic turbidites in Hunan, South China:
 geochemical evidence. J. Sediment. Res. 72, 393-407.
- Hiscott, R.N., Gill, J.B., 1992. Major and trace element geochemistry of
 Oligocene to Quaternary volcaniclastic sands and sandstones from the IzuBonin arc. In: Taylor, B., Fujioka, K., et al. (Eds.), Proceedings of the Ocean
 Drilling Program, Scientific Results 126. College Station, TX: Ocean Drilling
 Program, pp. 467-485.
- 630 Ingersoll, R.V., Fullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., Sares, S.W.,
- 631 1984. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson
 632 point-counting method: J. Sediment. Petrol. 54, 103-116.
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The
 application of laser ablation-inductively coupled plasma-mass spectrometry
 (LA-ICP-MS) to in-situ U-Pb zircon geochronology. Chem. Geol. 211, 331-335.
 Li, F.H., Tan, J.M., Shen, Y.L., Yu, F.X., Zhou, G.F., Pan, X.N., Li, X.Z., 1988.
- The pre-Sinian in the Kangdian area: Chongqing, China, Chongqing
 Publishing House, 396p. (in Chinese).
- 639 Li, X.H., Li, Z.X., Zhou, H.W., Liu, Y., Liang, X.R., Li, W.X., 2003. SHRIMP U-Pb
- zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW

641 Sichuan: Petrogenesis and tectonic significance. Sci. China Ser. D (Supp.)642 46, 73-83.

Li X.H., Li, Z.X., Sinclair, J.A., Li, W.X., Carter, G., 2006. Revisiting the "Yanbian

Terrane": implications for Neoproterozoic tectonic evolution of the western
Yangtze Block, South China. Precambrian Res. 151, 14-30.

- Li, Z.X., Li, X.H., Kinny, P., Wang, J., 1999. The breakup of Rodinia: did it start
 with a mantle plume beneath South China. Earth Planet. Sci. Lett. 173, 171181.
- Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003.
 Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,
 South China and correlations with other continents: evidence for a mantle
 superplume that broke up Rodinia. Precambrian Res. 122, 85-109.
- Ludwig, K. R., 1999. Isoplot/Ex version 2.06: A geochronological tool kit for
 Microsoft Excel. Berkeley Geochronology Center, Spec. Publ. 1a.
- Maas, R., McCulloch, M.T., 1991. The provenance of Archean clastic
 metasediments in the Narryer Geniss Complex, Western Australia: trace
 element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons.
 Geochim. Cosmochim. Acta 55, 1915-1932.
- Marsaglia, K.M., Ingersoll, R.V., 1992. Compositional trends in arc-related, deep-
- 660 marine sand and sandstone: a reassessment of magmatic-arc provenance.
- 661 Geol. Soc. Am. Bull. 104, 1637-1649.
- McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: Influence of
- provenance and sedimentary processes. Rev. Mineral. Geochem. 21, 169-200.

McLennan, S.M., 1993. Weathering and Global Denudation. J. Geol. 101, 295-303.

McLennan, S.M., Taylor, S.R., Eriksson, K.A., 1983. Geochemistry of Archean
shales from the Pilbara Supergroup, Western Australia. Geochim.
Cosmochim. Acta 47, 1211-1222.

McLennan, S.M., Taylor, S.R., McCulloch, M.T., Maynard, J.B., 1990.
Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal
evolution and plate tectonic associations. Geochim. Cosmochim. Acta 54,
2015-2050.

McLennan, S.M., Hemming, S.R., Taylor, S.R., Eriksson, K.A., 1995. Early
Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from
metasedimentary rocks, southwestern North America. Geochim. Cosmochim.
Acta 59, 1153-1177.

Nesbitt, H.W., Markovics, G., Price, R.C., 1980. Chemical processes affecting
alkalies and alkaline earths during continental weathering: Geochim.
Cosmochim. Acta 44, 1659-1666.

Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions
inferred from major element chemistry of lutites. Nature 299, 715-717.

Nesbitt, H.W., Young, G.M., 1996. Petrogenesis of sediments in the absence of
 chemical weathering: effects of abrasion and sorting on bulk composition and

mineralogy. Sedimentology 43, 341-358.

- Nesbitt, H.W., Young, G.M., McLennan, S.M., and Keays, R.R., 1996. Effects of
 chemical weathering and sorting on the petrogenesis of siliciclastic sediments,
 with implications for provenance studies. J. Geol. 104, 525-542.
- 688 Pettijohn, F.J., Potter, P.E., Siever, R., 1987. Sand and sandstone (Second 689 editon), Springer-Verkag, 553p.
- 690 Pan, X.N., Zhao, J.X., Zhan, X.Y., Zhen, H.X., Yan, Z.H., Zhou, G.F., Tao, D.L.,
- 691 1987. Tectonics and rifting in the Kangdian area: Chongqing, China,
 692 Chongqing Publishing House, 295p. (in Chinese).
- 693 Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites
- by inductively coupled plasma-mass spectrometry. Talanta 51, 507-513.
- Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone-
- mudstone suites using SiO₂ content and K_2O/Na_2O ratio. J. Geol. 94, 635-650.
- 697 Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone
- suites determined using discriminant function analysis of major-element data.
- 699 Chem. Geol. 67, 119-139.
- 700 SBGMR (Sichuan Bureau of Geology and Mineral Resources). 1991. Regional
- Geology of Sichuan Province. Beijing, China, Geological Memoirs 23.
 Geological Publishing House (in Chinese with English summary).
- She, Z.B., Ma, C.Q., Mason, R., Li, J.W., Wang, G.C., Lei, Y.H., 2006.
 Provenance of the Triassic Songpan-Ganzi flysch, west China. Chem. Geol.
 231, 159-175.
- Sun, C.M., Vuagnat, M., 1992. Proterozoic ophiolites from Yanbian and Shimian
 (Sichuan Province, China): Petrography, geochemistry, petrogenesis, and

- geotectonic environment. Schweiz. Mineral. Petrograph. Mitt. 72, 389-413.
- Sun, W.H., Zhou, M.-F., Zhao J.H., 2007. Geochemistry and tectionic
 significance of basaltic lavas in the Neoproterozoic Yanbian Group (Southern
- 711 Sichuan Province, SW China). Int. Geol. Rev. 49, 554-571.
- Sun, W.H., Zhou, M.-F., 2008. The ~860-Ma, Cordilleran-type Guandaoshan
 dioritic pluton in the Yangtze Block, SW China: Implications for the origin of
 Neoproterozoic magmatism. J. Geol. 116, 238-253.
- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust; Its Composition and
 Evolution. London, Blackwell, 312 p.
- Taylor, S.R., McLennan, S.M., 1995. The Geochemical Evolution of the
 Continental Crust. Rev. Geophys. 33, 241-265.
- Yan, D.P., Zhou, M.-F., Song, H. L., Wang, X.W., Malpas, J., 2003. Origin and
 tectonic significance of a Mesozoic multi-layer over-thrust within the Yangtze
 block (South China). Tectonophysics 361, 239-254.
- Yan, Q.R., Hanson, A.D., Wang, Z.Q., Druschke, P.A., Yan, Z., Wang, T., Liu,
- D.Y., Song, B., Pan, P., Zhou, H., Jiang, C.F., 2004. Late Proterozoic
 subduction and rifting on the northern margin of the Yangtze Plate, China:
 implications for Rodinia reconstruction. Int. Geol. Rev. 46, 817-832.
- Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Gunther, D., Wu, F.Y., 2004. Accurate U-
- 727 Pb age and trace element determinations of zircon by laser ablation-728 inductively coupled plasma-mass spectrometry. Geostandard. Geoanal. Res.
- 729 **28**, **353-370**.

Zhao, J.H., Zhou, M.-F., 2007. Geochemistry of Neoproterozoic mafic intrusions
in the Panzhihua district (Sichuan Province, SW China): implications for
subduction-related metasomatism in the upper mantle. Precambrian Res. 152,
27-47.

Zhou, M.-F., Kennedy, A.K., Sun, M., Malpas, J., Lesher, C.M., 2002a. Late
Proterozoic arc-related mafic intrusions along the northern margin of South
China: implications for the accretion of Rodinia. J. Geol. 110, 611-618.

Zhou, M.-F., Yan, D.P., Kennedy, A.K., Li, Y.Q., Ding, J., 2002b. SHRIMP U-Pb
zircon geochronological and geochemical evidence for Late Proterozoic arcmagmatism along the western margin of the Yangtze Block, South China.
Earth Planet. Sci. Lett. 196, 51-67.

- Zhou, M.-F., Ma, Y.X., Yan, D.P., Xia, X.P., Zhao, J.H., Sun, M., 2006a. The
 Yanbian Terrane (Southern Sichuan Province, SW China): A Late Proterozoic
 arc assemblage in the western margin of the Yangtze Block. Precambrian
 Res. 144, 19-38.
- Zhou, M.-F., Yan, D.P., Wang, C.L., Qi, L., Kennedy, A., 2006b. Subductionrelated origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province,
 China): Implications for the tectonic setting of the giant Neoproterozoic
 magmatic event in South China. Earth Planet. Sci. Lett. 248, 286-300.

Zhou, D., Graham, S.A., 1996. The Songpan-Ganzi complex of the West Qinling
Shan as a Triassic remnant ocean basin. In: Yin, A., Harrison, T.M. (Eds.),

751 The Tectonic Evolution of Asia. New York, Cambridge University Press, pp.752 281-299.

753 **Figure captions**

Fig. 1. Simplified geological map of the Yanbian region, Sichuan Province, SW China (after BGMRSP, 1972). The insert map showing the tectonic units of South China and general distribution of Neoproterozoic rocks in the margins of the Yangtze Block.

Fig. 2. Stratigraphy of the Yanbian Group based on a measured cross section (BGMRSP, 1972) and our field mapping. Stars indicate samples for detrital zircon analysis. The sandstone beds shown in the column are not strictly to scale because they are typically thin layers interbedded with slate.

Fig. 3. (a) Contact between the clastic Yumen Formation and the volcanic Fangtian Formation. (b) A scour structure in the Xiaoping Formation. (c) Slumped siltstone in the Xiaoping Formation. (d) Well-exposed Bouma sequences in the Xiaoping Formation.

766 Fig. 4. (a) Photomicrographs of grain types and features in the Yanbian 767 sandstones. (a) General view showing sub-angular monocrystalline quartz (Q) 768 (T3-3). (b) Sub-rounded plagioclase feldspar (PI) and K-feldspar (Kf) grains (T3-769 1-2). (c) A metamorphic grain (Lm) and volcanic grains (Lv) with felsitic and 770 microlitic texture (B11). (d) Siltstone fragments (Ls) (B11). (e) A typical volcanic 771 rock fragment with microlitic texture that we interpret to be derived from 772 intermediate composition (B9). (f) A clinopyroxene grain (Cpx) (F6). All samples 773 are in cross-polarized light. Scale bar in each photograph is 0.3 mm.

Fig. 5. Ternary plots of sandstone point count data for the Yanbian Group. (a) QFL plot. (b) QmFLt plot. (c) QLvmLsm plot. (d) QmPK plot. Provenance fields

are from Dickinson (1985). The large open triangles represent arithmetic meansof data and polygonal box represents one standard deviation.

Fig. 6. Detrital zircon data for the sandstone samples of the Yanbian Group. (a) Neoproterozoic (860-1000 Ma) detrital zircon age histogram and cumulative probability plot, showing number of grains analyzed and percentage of Neoproterozoic ages as a fraction of total discordant and concordant ages. (b) Histogram and cumulative probability plot of total concordant detrital zircon ages. Total number of concordant ages for each sample is shown, with number of analyses (concordant plus discordant ages) shown in parenthesis.

Fig. 7. (a) Geochemical classification of sandstones from the Yanbian Group(Pettijohn et al., 1987).

Fig. 8. (a) Upper crust-normalized, multi-element diagrams for the Yanbian samples; (b) Chondrite-normalized REE patterns of the Yanbian sandstones and mudstones. Post-Archean average Australian shale (PAAS) is also plotted as a heavy dashed line "+" for comparison. Values are from Taylor and McLennan (1985).

Fig. 9. CIA ternary diagram, A-CN-K=Al₂O₃ -CaO*+Na₂O-K₂O, after Nesbitt and Young (1982) showing Yanbian sandstones and mudstones as well as average compositions of tonalite and granodiorite (from Fedo et al., 1995). Approximate correction for carbonate content was made by assuming reasonable Ca/Na ratios in silicate material (McLennan, 1993). After correcting phosphate using P₂O₅, if the remaining mole fraction of CaO \leq Na₂O, then this value of CaO is adopted; if CaO >Na₂O, CaO* is assumed to be equivalent to Na₂O. Due to relatively low
carbonate contents in most samples, however, the calculated proportions arethus very close to actual values.

Fig. 10. Plots of K vs. Rb, K vs. Ba, Ce vs. Sm, and U vs. Th, showing linear correlations.

Fig 11. K_2O/Na_2O-SiO_2 plot for the Yanbian rocks. PM = passive margin; ACM =

active continental margin; ARC = oceanic island arc. (after Roser and Korsch,
1986).

806 Fig.12. Tectonic discrimination diagrams for the Yanbian Group sandstones: PM

= passive margin; ACM = active continental margin; CIA = continental island arc;

808 OIA = oceanic island arc (after Bhatia, 1983).

Fig. 13. Triangular trace element plots for Yanbian sandstones (after Bhatia and
Crook, 1986). Abbreviations as in Fig. 11.

Fig. 14. Normalized multi-element diagrams for the Yanbian sandstones. CAAM

= continental arc+active margin; OIA = oceanic island arc; PM = passive margin;

813 OWP = oceanic within-plate. Normalizing values are from Floyd et al. (1991).

Fig. 15. Source rock discrimination diagrams for the Yanbian rocks; (a) Co/Th vs.

La/Sc diagram (after Gu et al., 2002), showing derivation from mixed felsic-basic

volcanic source, (b) La/Th vs. Hf diagram (after Floyd and Leveridge, 1987),

817 indicating mixed of felsic/basic source rocks.

Fig. 16. Model for the development of the Yanbian Group and the spatially

819 associated subduction-related intrusions in the Yanbian region, SW China.

1	Provenance and tectonic setting of the Neoproterozoic Yanbian
2	Group, western Yangtze Block (SW China)
3	
4	Wei-Hua Sun ^{a,} *, Mei-Fu Zhou ^a , Dan-Ping Yan ^b , Jian-Wei Li ^c and Yuxiao Ma ^d
5	
6	^a Department of Earth Sciences, University of Hong Kong, Hong Kong, China
7	^b School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083,
8	China
9	^c State Key Laboratory of Geological Processes and Mineral Resources, and Faculty of Earth
10	Resources, China University of Geosciences, Wuhan 430074, China
11	^d Department of Geochemistry, Chengdu University of Science and Technology, Chengdu, China
12	
13	* Corresponding author. Tel.: +852 2859 8913; Fax: +852 2517 6912.
14	E-mail: weihua@hkusua.hku.hk
15	Abstract
16	Tectonic evolution of the Yangtze Block of South China during
17	Neoproterozoic time has been a major focus of debate and is important in the
18	reconstruction of the Rodinian supercontinent. The Yanbian Group in the western
19	margin of the Yangtze Block is a well-preserved Neoproterozoic volcanic-
20	sedimentary sequence and provides a rare opportunity to examine the
21	provenance and tectonic setting. It consists of a lower part composed of ~1500 m
22	thick basaltic lavas and an upper part with ~3500 m thick flysch deposits. The
23	flysch sequence contains typical deep marine turbidites consisting mainly of fine-
24	grained volcaniclastic sandstones and mudstones, indicating a submarine fan
25	depositional system. Detrital zircon dating yields ages ranging from ca. 865 Ma to

26 1000 Ma with two peaks at ca. 900 Ma and 920 Ma, respectively. The Yanbian 27 Group is intruded by the ~860- Ma Guandaoshan dioritic pluton, constraining its 28 depositional age at ca. 870 Ma. The sandstones contain abundant feldspar and 29 lithic fragments with minor amounts of quartz and have an average composition 30 of $Q_{16}F_{35}L_{49}$, suggesting a proximal source and an undissected to transitional arc 31 setting. The lithic fragments in the sandstones point to andesitic and felsic 32 volcanic rock sources. The sandstones and mudstones have intermediate SiO₂/Al₂O₃ (typically 3-6), high Fe₂O₃+MgO contents (5-12 wt%), and moderate 33 to high K₂O/Na₂O ratios (generally 0.1-1 and 1-10 for sandstones and mudstones, 34 35 respectively). In comparison with average upper continental crust, they show strong Nb-Ta anomalies, slight depletion of Zr-Hf, La and Th, but moderate 36 37 enrichment of V, Cr, Ni, and Sc. These rocks show LREE enrichment 38 (La/Yb_N=5.3-7.4) with flat HREE, and pronounced negative Eu anomalies 39 (Eu/Eu*=0.6-0.74) in chondrite-normalized REE patterns, similar to post-Archean 40 shales. Geochemical data for these rocks suggest an arc setting and intermediate-felsic volcanic source, consistent with a back-arc basin scenario for 41 the basaltic lavas in the lower Yanbian Group. Together with regional geological 42 43 evidence, the turbidites of the Yanbian Group strongly support a model in which 44 the western margin of the Yangtze Block was a major magmatic arc, active 45 probably from ~920 Ma to 740 Ma, a period of more than 180 million years.

46

Key words: turbidite, detrital zircon dating, geochemistry, provenance, Yanbian
Group, Yangtze Block

49 **1. Introduction**

50 Siliciclastic rocks are useful for investigating provenance and tectonic setting 51 of sedimentary basins (Dickinson, 1970, 1985; Bhatia, 1983, 1985; Roser and 52 Korsch, 1986, 1988; Floyd and Leveridge, 1987). Provenance regions, especially 53 those at destructive plate margins, are rarely well preserved because of 54 subsequent erosion and destruction. In such circumstances, studies of related 55 sedimentary rocks have considerable potential for determining the source rocks 56 and the history of ancient continental margins. A combination of traditional 57 mineralogical (especially for sandstones) and geochemical methods and detrital zircon U-Pb analysis has greatly contributed to our understanding of the 58 provenance, tectonic setting and tectonomagmatic evolution of sedimentary 59 60 basins and their siliciclastic deposits (McLennan et al., 1990, 1995; Maas and 61 McCulloch, 1991; Taylor and McLennan, 1995; Dickinson and Gehrels, 2000; 62 DeGraaff-Surpless et al, 2002; Cope et al., 2005; She et al., 2006).

63 The tectonic evolution of the Yangtze Block of South China is of importance 64 for the reconstruction of the supercontinent Rodinia and has been a matter of hot 65 debate (Li Z.X. et al., 1999, 2003; Li X.H. et al., 2003, 2006; Zhou et al., 2002a, b, 2006a, b). Previous work has focused mainly on the Neoproterozoic igneous 66 67 rocks, and studies of the associated sedimentary sequences are sparse. The 68 Neoproterozoic Yanbian Group in the western margin of the Yangtze Block has been a subject of several recent studies (Du et al., 2005; Zhou et al., 2006a; Li 69 X.H. et al., 2006; Sun et al., 2007), because it is not only one of the best-70 71 preserved volcano-sedimentary sequences in South China, but is spatially

72 associated with several contemporaneous intermediate to mafic plutons, making 73 it ideal for investigating the tectonic affinities of the Yangtze Block. Previous 74 studies on the volcanic rocks in the lower part of the Yanbian Group and the 75 related intrusive rocks have interpreted the Yanbian Group as a relict ophiolite 76 (Sun and Vuagnat, 1992) or a back-arc basin sequence (Du et al., 2005; Zhou et 77 al., 2006a; Li X.H. et al., 2006, Sun et al., 2007). So far, there is no agreement 78 about the depositional age of the Yanbian Group (Du et al., 2005; Zhou et al., 79 2006a; Li X.H. et al., 2006), causing additional ambiguity in its tectonic 80 interpretation. In particular, no studies are available regarding the chemical 81 composition and petrology of the sedimentary rocks, which are crucial to better 82 understanding the source rocks and tectonic setting.

In this paper, we present petrographic, detrital zircon U-Pb geochronological and geochemical data for the upper siliciclastic rocks of the Yanbian Group, in an attempt to constrain the age of the sediments and to infer their provenance and tectonic setting. The results also provide insights into the tectonic evolution of the Yangtze Block during Neoproterozoic time.

88

89 **2. Geological background**

South China consists of the Yangtze Block in the northwest and the Cathaysia Block in the southeast (Fig. 1). The Yangtze Block is separated from the North China Craton by the Qinling-Dabie orogenic belt and is bounded to the west by the Songpan-Ganze Terrane of the Tibetan Plateau. The Songpan-Ganze Terrane is a prominent triangular region filled with Triassic deep-marine

95 flysch deposits (Zhou and Graham, 1996). The Yangtze Block comprises 96 metamorphic basement complexes and Neoproterozoic to Cenozoic cover 97 sequences (Yan D.P. et al., 2003). The basement complexes contain gneiss, 98 mica schist, amphibolite, marble and quartzite, whereas the cover sequences are 99 mainly composed of carbonate, clastic and volcanic rocks (SBGMR, 1991).

100 Along the western margin of the Yangtze Block, a ~1000-km-long, NS-101 trending, Neoproterozoic igneous and metamorphic belt crops out from Kangding 102 in Sichuan Province to Yuanjiang in Yunnan Province (Fig. 1). This belt has been 103 recently interpreted as a major Neoproterozoic continental arc, named the 104 Hannan-Panxi arc, in which the igneous rocks have ages mostly ranging from 105 860 to 740 Ma (Zhou et al., 2002a, b, 2006a, b; Zhao and Zhou, 2007; Sun and 106 Zhou, 2008). The occurrence of this huge continental arc indicates an Andean-107 type continental margin with oceanic crust being subducted eastward beneath 108 the western margin of the Yangtze Block during that time (Zhou et al., 2002b; 109 Sun and Zhou, 2008).

110 In the belt, the igneous plutons intrude high-grade (granitic gneisses and 111 amphibolite) and low-grade metamorphic rocks (Pan et al., 1987; Li F.H. et al., 112 1988). The high-grade metamorphic rocks, including the Kangding and 113 Dahongshan complexes, were traditionally considered to be late Archean to 114 Paleoproterozoic crystalline basement; the low-grade metamorphic rocks, such 115 as the Kunyang, Huili, Yanbian and Bikou Groups, were interpreted to be 116 Mesoproterozoic and to constitute the folded basement in this region (Chen and 117 Chen, 1987).

The Yanbian Group is unconformably overlain by Sinian (latest 118 119 Neoproterozoic) strata known as the Lieguliu Formation (Sun et al., 2007), which 120 is composed of glacial deposits, comparable to those of similar age on other 121 continents (Elsbacher, 1985). The Yanbian Group is intruded by a magmatic 122 association that consists of the ~860-Ma Guandaoshan dioritic pluton (Li X.H. et al., 2003; Sun and Zhou, 2008), 810-820-Ma Tongde dioritic-gabbroic pluton (Li 123 124 Z.X. et al., 2003) and ~810-Ma Gaojiacun and Lengshuiging mafic plutons (Zhou 125 et al., 2006a) (Fig. 1). These, together with the ~740 Ma Dadukou gabbroic 126 intrusion south of Tongde Town (Zhao and Zhou, 2007), have been interpreted as part of the Hannan-Panxi arc along the western margin of the Yangtze Block 127 (Sun and Zhou, 2008). 128

129

3. Stratigraphy and depositional environment

131 Cropping out over an area of approximately 500 km², the Yanbian Group is 132 composed of two principal units: a lower volcanic sequence ca. 1500 m thick, 133 known as the Fangtian Formation, and an upper flysch more than 5000 m thick, 134 comprising the Yumen, Xiaoping and Zagu Formations (Fig. 2)

The Fangtian Formation is composed of massive basalt, pillow basalt and volcanic breccias with subordinate interbeds of chert, and pelitic and siliceous slate. It is conformably overlain by the ca.1700-m-thick Yumen Formation, which consists primarily of thin- to medium-bedded, dark-gray, carbonaceous and siliceous slates with interbeds of fine- to coarse-grained sandstone (Fig. 3a). Lenses of limestone are locally present. An ~5-cm-thick layer of black chert

marks the base of the Yumen Formation where it overlies the basaltic breccias of
the Fangtian Formation (Fig. 3a). The slates and sandstones have regular
parallel bedding, typical of distal turbidites. In this formation, turbidites generally
display T_{bce} of the Bouma sequences.

145 The ~2200-m-thick Xiaoping Formation comprises dark gray slates, 146 carbonaceous slates, fine- to coarse-grained sandstones and siltstones, representing turbidites and associated mudstones. The basal and top parts of the 147 148 succession are dominated by sandstones in beds up to 1.5 m thick, suggesting 149 small-scale channel-fill deposits. The sandstone channels usually display an 150 eroded base and a concave-upward morphology, with the grain size fining 151 upward. Conglomerates are locally present as thin, discontinuous lag beds at 152 the base of the coarse sandstone layers. The sandstones have lenticular or flat 153 beds with thicknesses of 10-20 cm, but ranging from 2 to 50 cm. Sedimentary 154 structure, such as scours, slumps, and load and flame structure, are locally well 155 developed (Figs. 3b, c). Most sandstone beds are normally graded and follow the 156 Bouma sequence. Partial Bouma sequences are more common than complete 157 ones, with the T_{abc} sequence being the most common, followed in abundance by T_{ae} (Fig. 3d). Thin limestone lenses and stromatolithic limestones are also 158 159 observed locally. Pyrite is common in the slates and siltstones, especially along 160 some layer boundaries.

161 The ~1300-m-thick Zagu Formation is composed of dark gray slates, black 162 dolomitic slates and dolomitic limestones. There is a thin (10-15 m) layer of 163 conglomerate and pebbly sandstone at the base, representing a medium-scale

channel-fill deposit. The conglomerate clasts are typically subangular to subrounded, generally 2-4 cm in diameter, and consist mainly of intermediatefelsic volcanic rocks (50-60%), chert (20-25%), fragments of carbonaceous rock (10-15%) and siltstone (~10%). The conglomerates and sandstones are also well graded. The Zagu Formation is unconformably overlain by the Sinian Lieguliu Formation (Sun et al., 2007).

170 The Yanbian Group consists mainly of thin- to medium-bedded, fine-grained, 171 turbiditic volcaniclastic sandstones and mudstones with little variation in 172 sedimentary facies and minor input of coarse clastic material. These sedimentary 173 rocks most likely represent submarine fan deposits, especially mid-fan deposits. 174 This thick turbidite package lacking shallow-water deposits indicates a marine 175 environment below wave base. The presence of limestones throughout the 176 section indicates that the seafloor was above the carbonate compensation depth 177 and suggests a low-latitude, warm-water environment.

178

179 **4. Sandstone petrography**

The sandstones are mostly fine- to medium-grained, poorly sorted and contain angular to subangular grains of low to moderate sphericity. They are mainly composed of quartz, feldspar and lithic fragments. Quartz is relatively minor in volume and is generally subangular to angular, mostly being monocrystalline and lacking inclusions and undulatory extinction (Fig. 4a). Subrounded feldspar is the dominant mineral and is partly altered to saussurite and sericite. Plagioclase is much more common than alkali feldspar (Fig. 4b).

Lithic fragments are dominantly rhyolite and andesite with felsitic and microlitic
textures, although sedimentary and metamorphic varieties are also present (Figs.
4c,d,e).

Biotite and muscovite occur as elongate laths or short plates and are locally accompanied by chlorite and glauconite. Sparse heavy minerals include magnetite, zircon, apatite, titanite, pyrite, rutile and tourmaline. Most of these grains are angular to subangular, although some are well-rounded. Amphibole and pyroxene grains are locally present but extremely rare (Fig. 4f).

The matrix of the sandstones consists of clay minerals, comminuted and altered lithic and feldspathic fragments, fine-grained quartz, micas, opaque minerals, carbonate and some aphanitic material. Matrix is commonly between 10 to 15%, but may be overestimated due to the pseudomatrix problem (Dickinson, 1970). Silica is the dominant cement in these rocks but calcite is also common.

201 Thirty-one medium-grained sandstones were selected for petrographic study 202 using the Gazzi-Dickinson method (Ingersoll et al., 1984). About five to six 203 hundred framework grains were counted from each sample. Matrix (<~0.03 mm) 204 and cement were not counted. The Gazzi-Dickinson method divides volcanic 205 lithic clasts into various textural types (Dickinson, 1970), which is especially 206 significant in magmatic-arc settings, where volcaniclastic components may 207 constitute as much as 100% of the sand fraction (Marsaglia and Ingersoll, 1992). 208 Point-count categories and recalculated parameters are defined in Table 1.

209 The modal point-count data are shown in Table 2 and Figure 5. In general, 210 the sandstones are characterized by low quartz (Q), moderate feldspar (F) and 211 high lithic (L) abundances, with L/F ratios of 1-3, indicating that the sandstones 212 were derived almost exclusively from volcanic sources (Dickinson, 1970). The 213 Yumen, Xiaoping and Zagu Formations have average compositions of $Q_{22}F_{30}L_{48}$, 214 $Q_{15}F_{36}L_{49}$, and $Q_{14}F_{34}L_{52}$, respectively. In the discrimination diagrams (Fig. 5), 215 they plot in the magmatic-arc field, indicating an undissected-transitional arc 216 provenance.

217

5. Geochronology and geochemistry

219 **5.1. Detrital zircon geochronology**

220 Single-grain U-Pb dating were performed using the laser ablation ICP-MS 221 technique at China University of Geosciences (Wuhan). The detailed analytical 222 procedures follow Yuan et al. (2004). A GeoLas 2005M laser-ablation system 223 equipped with a 193 nm ArF-excimer laser was used in connection with an 224 Agilent 7500 ICP-MS. Helium was used as the carrier gas to enhance the 225 transport efficiency of the ablated material. The spot diameter was 32 µm. Raw 226 data were processed using the Glitter program (Jackson et al., 2004). All 227 measurements were normalized relative to standard zircon 91500. Standard 228 silicate glass NIST SRM610 was used to calculate U and Th concentrations. The 229 data were processed using the ISOPLOT program (Ludwig, 1999).

Zircons from these rocks are commonly transparent to orange in color, 100200 µm in size and subrounded to subangular. A total of two hundred and ninety-

232 eight analyses were performed on zircon grains from five samples (Table 3). Of 233 those, 40 analyses with a degree of discordance >3% were discarded. However, 234 only a very few of these discordant analyses yield ages outside the range defined by the remaining relatively concordant analyses. ²⁰⁷Pb/²⁰⁶Pb and ²⁰⁶Pb/²³⁸U ages 235 236 were applied for zircons older and younger than 1000 Ma, respectively. The 237 dataset yields ages mainly of ~900-920 Ma with only a very minor, statistically 238 insignificant, component of older continental-derived zircons in the Yumen and 239 Xiaoping Formations. The Zagu Formation, on the other hand, has a relatively 240 high content of older continental material (Fig. 6).

5.1.1. Yumen Formation

Sample F38, a coarse-grained sandstone specimen, was collected near the base of the Yumen Formation (N26.53.39, E101.30.80) for zircon dating. Of the G0 grains analyzed, 4 were highly discordant and thus were discarded. The remaining forty-six grains yielded 206 Pb/ 238 U apparent ages ranging from 865 to 975 Ma, with a single peak at 917±6 Ma (Fig. 6).

Sample F3, consisting of coarse-grained, feldspar-lithic sandstone, was collected from the upper part of the Yumen Formation (N26.54.47, E101.28.89). Of 58 spot analyses, 41 have concordant ages ranging from 860 to 990 Ma with a weighted mean of 918±8 Ma. Only one concordant grain has a significantly older age of ~2000 Ma (Fig. 6). The remaining 16 analyses are highly discordant but have ages within the younger age population. Thus, the age distribution of zircons from the Yumen Formation suggests uniform source rocks.

254

255 **5.1.2. Xiaoping Formation**

256 A medium- to coarse-grained, feldspar-lithic sandstone, sample F4, was collected from the middle part of the Xiaoping Formation (N26.55.96, 257 258 E101.27.45). Of the 60 grains analyzed, 45 concordant grains yielded apparent 206 Pb/ 238 U ages between 850 and 960 Ma, with a prominent peak at ~920 Ma. 259 Three concordant grains gave much older ages from ~2200 to 2600 Ma (Fig. 6). 260 261 This age spectrum is very similar to that of samples F38 and F3 of the Yumen 262 Formation. However, half of the remaining 12 analyses with varying degrees of discordance (>3%) yield older ages of around 2200-2600, suggesting a 263 264 somewhat greater input of older material input relative to the Yumen Formation. Several concordant ages are as young as ~850 Ma (Fig. 6). 265

Sample F26 (N26.58.76, E101.32.17) was collected near the top of the Xiaoping Formation. 42 of 60 spot analyses have concordant ages ranging from 860 to 970 Ma, with two peaks of 897±6 Ma and 934±5 Ma, respectively (Fig. 6). The remaining 18 discordant analyses also show similar age ranges.

270 **5.1.3. Zagu Formation**

A pebbly sandstone, sample F23 (N26.58.96, E101.32.17), was collected from the base of the Zagu Formation. Of 60 grains analyzed, 46 are concordant. This sample yields an age distribution mainly between~ 870 Ma and 930 Ma, but it is characterized by sharp increase of older zircons with several minor peaks at 1800, 2000, 2600 and 3000 Ma (Fig. 6). Coupled with a rapid coarsening in the stratigraphic section, this suggests increased uplift and erosion in the source terrane.

5.2. Whole rock geochemistry

279 Major oxides and selected trace elements of whole-rock samples were determined by X-ray fluorescence (XRF) on fused glass beads at the University 280 281 of Hong Kong. Trace elements were analyzed with a VG PQ Excell ICP-MS, 282 also at the University of Hong Kong. The samples for ICP-MS analysis were prepared in closed beakers in high-pressure bombs to ensure complete digestion 283 284 (Qi et al., 2000). We used pure elemental standards for external calibration, and 285 BHVO-1 (basalt) and SY-4 (syenite) as reference materials for all analyses. 286 Accuracies of the XRF analyses are estimated to be better than 1% for SiO₂, 287 better than 2% for major oxides present in concentrations greater than 0.5 wt% 288 and 5% for trace elements. The ICP-MS analyses yielded accuracies better than 289 5%.

290 **5.2.1. Major elements**

291 The majority of the Yanbian Group sandstones and mudstones have 292 intermediate SiO₂ (55-73 wt%), high Fe₂O₃+MgO (usually 5-12 wt%; total Fe as 293 Fe_2O_3) and TiO_2 (0.6-1.2 wt%) and low CaO (mostly <1 wt%) (Table 4). In 294 general, SiO₂ increases whereas TiO₂, Al₂O₃, Fe₂O₃, MnO, MgO, CaO, and Na₂O 295 decrease with enhanced mineralogical maturity, indicating an increase in the quartz content and a decrease in chemically unstable detrital grains (e.g., 296 297 feldspar and volcanic rock fragments) (Bhatia, 1983). There are no systematic 298 stratigraphic variations from the Yumen through Xiaoping to Zagu Formations, 299 possibly reflecting inadequate sampling from the Yumen and Zagu Formations.

Due to enrichment in clay minerals, the mudstones generally have higher K_2O and Al_2O_3 and lower Na_2O contents, resulting in much higher K_2O/Na_2O ratios (typically 1-10) than those of the corresponding sandstones (commonly 0.1-1). Most sandstone samples are immature, with SiO₂/Al₂O₃ ratios between 3 to 6 and Na_2O/K_2O ratios between 1 to 3.5, and plot within the graywacke field in the plot of Pettijohn (1987) (Fig. 7).

306 **5.2.2. Trace elements**

307 Rocks from the three Formations are virtually indistinguishable in their trace element contents, and are characterized by variable contents of Rb (7-140 ppm), 308 309 Sr (10-377 ppm), Cs (0.4-8 ppm), Ba (80-1200 ppm), Th (2.6-12 ppm) and U 310 (0.5-3.2 ppm) (Table 4). In comparison with average upper continental crust, they 311 show strong Nb-Ta, anomalies, slight depletion of Zr-Hf, La and Th, but moderate 312 enrichment of V (17-257 ppm), Cr (15-185 ppm), Ni (<80 ppm), and Sc (8-22 313 ppm) (Fig. 8a). In addition, the mudstones commonly have higher Rb, Ba, Th, U 314 and Cs contents than the sandstones (Fig 8a), likely reflecting the abundance of 315 clay minerals (e.g., illite and sericite) in these rocks (McLennan et al., 1983).

Both the sandstones and mudstones exhibit subparallel chondritenormalized REE patterns, characterized by moderate fractionation between light REE and heavy REE (La/Yb_N=5.3-7.4), with obvious negative Eu anomalies (Eu/Eu*=0.6-0.74) (Fig. 8b), features typical of post-Archean sedimentary rocks (Taylor and McLennan, 1985). Moreover, the mudstones generally have slightly more fractionated REE patterns than the sandstones and ~20% higher total REE abundances.

323

324 **6. Discussion**

325 **6.1. Age of the Yanbian Group**

326 The depositional age of the unfossiliferous Yanbian Group has long been 327 debated. It was traditionally thought to be Mesoproterozoic (Pan et al., 1987; 328 SBGMR, 1991). However, newly obtained SHRIMP U-Pb zircon ages of 782±53 329 Ma (Du et al., 2005) for the basaltic lavas of the lower Yanbian Group strongly 330 suggest a Neoproterozoic age. Similarly, Zhou et al. (2006a) reported a maximum depositional age of 837±6 Ma based on LA-ICP-MS detrital zircon 331 332 dating. By contrast, Li X.H. et al. (2003, 2006) proposed a minimum age of 333 857±13 Ma, inferred from the emplacement age of the Guandaoshan pluton that 334 intrudes the Yanbian Group. Thus the depositional age of the Yanbian Group 335 should be no younger than 857 ± 13 Ma. The present geochronological results 336 provide reliable and tight constraints on the maximum depositional age of the 337 Yanbian Group. Although eight youngest zircons from the Yanbian Group give ages as young as 852±6 Ma (Fig. 6), we adopt here a somewhat older age of 338 339 868±6 Ma defined by another ten youngest zircon dates in the concordant 340 dataset (Table 3). The ten zircons are from different samples but yield similar 341 ages within quoted errors. We therefore suggest that the Yanbian Group was 342 most likely not older than ~870 Ma. Furthermore, the Yanbian Group was 343 probably deposited in a syn-magmatic basin, based on the short time delay 344 between deposition of the sediments and emplacement of the 857±13 Ma 345 Guandaoshan pluton.

6.2. Effect of chemical weathering

Chemical weathering strongly affects the mineralogy and major element geochemistry of siliciclastic sediments (Nesbitt and Young, 1982, 1996). The chemical index of alteration (CIA) is very useful in evaluating effects of weathering on sedimentary rock composition and is defined by Nesbitt and Young (1982) as:

352 $CIA = [Al_2O_3/(Al_2O_3+CaO^*+Na_2O+K_2O)]\times 100$

353 Where CaO* represents Ca in the silicate minerals only (i.e. excluding calcite, 354 dolomite and apatite) (Fedo et al., 1995). High CIA values reflect the removal of labile cations (e.g., Na⁺, K⁺ and Ca⁺) in preference to relatively stable residual 355 356 constituents (e.g. Al⁺), corresponding to high degrees of chemical weathering. 357 The values vary from about 50 for the average upper continental crust to about 358 100 for residual clays. Shales typically have intermediate values of about 70-75, 359 indicating that weathering did not proceed to the stage where alkali and alkaline 360 earth elements were substantially removed from the clay minerals (Nesbitt and 361 Young, 1982). The Yanbian sandstones have CIA values ranging broadly from 362 49 to 73 and the mudstones from 57 to 84 (Table 4 and Fig. 9). In turbidites, physical sorting during transport and deposition would yield mudstone with high 363 364 concentration of fine-grained, aluminous clay minerals of high-CIA value (e.g., 365 kaolinite, gibbsite) derived from the upper parts of weathering profiles, and 366 sandstone relatively enriched in coarse-grained low-CIA residue (e.g., guartz, 367 vestigial feldspars) derived from the lower parts of weathering profiles (Nesbitt et 368 al., 1996). The CIA values of mudstones, therefore, will give a better

369 understanding of the intensity of weathering in the source. Most mudstones have 370 CIA values ranging from 65 to 77, reflecting only moderate source weathering. 371 However, 6 mudstone samples in the Xiaoping Formation and 1 sample from the 372 Zagu Formation having much higher CIA values in the range of 79-84 than 373 typical shales of 70-75. If these values were corrected for K metasomatism (Fedo et al., 1995), their CIA values would be even greater than 90 (Fig. 9), indicative of 374 375 severe weathering in the source. One possible explanation for the higher CIA 376 values in the few samples from the Xiaoping and Zagu Formations may indicate 377 a contribution of a greater proportion of distal high-CIA detritus from older 378 cratonic source, which is consistent with our detrital zircon data.

379 The A-CN-K (Al₂O₃-CaO*+Na₂O-K₂O) triangular plot can also be used to 380 constrain the initial compositions of the source rocks (Fedo et al., 1995). The 381 sandstones and mudstones from the Yanbian Group form a linear trend, which is 382 generally subparallel to the A-CN join, but is slightly below the predicted 383 weathering trend, especially for the fine-grained mudstones (Fig. 9). This probably indicates that the mudstones were more profoundly affected by 384 385 illitization. Their weathering trends suggest a provenance of tonalitic or 386 granodioritic rocks for the Yanbian sediments.

387 Differential weathering subsequent at the source and 388 diagenesis/metamorphism tend to mobilize and change the relative abundance of 389 large-ion lithophile elements (Nesbitt et al., 1980). However, the Yanbian 390 sandstones and mudstones commonly show linear correlation in the elemental 391 plots of K vs. Rb, K vs. Ba, Ce vs. Sm and U vs. Th (Fig. 10), indicating that

392 these elements were probably not changed significantly. Moreover, because the 393 sandstones studied here are relatively uniform in grain size, we believe that the 394 grain-size effect is not important.

6.3. Tectonic setting of the Yanbian Group

396 The pillow basalts and marine sedimentary rocks of the Yanbian Group, and 397 the spatially associated Gaojiacun and Lengshuiging mafic intrusions, were 398 previously regarded as the Yanbian ophiolite (Sun and Vuagnat, 1992). However, 399 recent studies suggest that the mafic plutons postdate the Yanbian volcano-400 sedimentary sequence, arguing against an ophiolite model (Zhou et al., 2006a). 401 Based on the geochemistry of the basaltic lavas, the Yanbian Group has been 402 reinterpreted as a back-arc basin sequence (Du et al., 2005; Li X.H. et al., 2006; 403 Sun et al., 2007), but evidence from the sedimentary sequence was not available. 404 Our new geochronological, petrographical and geochemical data thus provide 405 new constraints on a back-arc basin scenario.

406 The Yanbian Group was deposited at ~870 Ma and derived from a proximal 407 magmatic arc with ages generally between 900 and 920 Ma (Figs. 5 and 6). The 408 presence of almost contemporaneous volcanic arc magmatism indicates an 409 active continental margin setting (DeGraaf-Surpless et al., 2002), in contrast to a 410 passive continental margin where sediments are commonly derived from 411 weathering of older continental crust (Goodge et al., 2002). The immature 412 volcaniclastic graywackes, turbidites of the Yanbian Group are also consistent 413 with an active margin setting (Crook, 1974; Pettijohn et al., 1987), where such 414 rocks are commonly associated with pillow lavas or 'greenstones' (Pettijohn et al.,

415 1987 and references therein) and are commonly observed in modern back-arc416 basins.

417 The sandstones from the Yanbian Group have about 15% modal guartz with 418 mostly 60-73 wt% SiO₂ and K_2O/Na_2O ratios <1, and are quartz-intermediate, 419 indicating a mixed provenance and depositional setting typical of an active 420 continental margin (Crook, 1974). Roser and Korsch (1986) examined the 421 K₂O/Na₂O-SiO₂ systematics of sandstone-mudstone suites from passive 422 continental margins (PM), active continental margins (ACM) and oceanic island 423 arcs (ARC), and found that the chemistry of the fine-grained members, and the 424 coupled sand-mud trends, were more useful indicators of tectonic setting than 425 the sandstones alone. Sandstones from the Yanbian Group plot exclusively in 426 the ARC and ACM fields, whereas most mudstones plot in the ACM field (Fig. 427 11). The coupled sand-mud trends (chain-dashed tie lines in Fig. 11) show one 428 trend parallel to the field boundaries and the other perpendicular to the first, 429 indicating a back-arc basin setting (Roser and Korsch, 1986). Using Bhatia's 430 (1983) scheme, the majority of samples from the Yanbian Group plot in the 431 oceanic island arc (OIA) to continental island arc (CIA) fields (Fig. 12). The 432 observed scatter of some points is probably due to a combination of sandstone 433 maturity and interelement variation.

The trace-element geochemistry of fine-grained clastic sediments has also been widely used to determine tectonic setting (Bhatia and Crook, 1986; Floyd et al., 1991). On the La-Th-Sc and Th-Sc-Zr/10 ternary plots (Fig. 13), most of the Yanbian Group sandstones also fall within the OIA and CIA fields. The elemental

438 compositions of different greywackes can be most easily compared by utilizing 439 upper continental crust-normalized, multi-element patterns. As shown in Figure 440 8a, the Yanbian rocks have pronounced negative Nb-Ta anomalies, clearly 441 indicative of subduction-related magmatic rock source (Floyd et al., 1991). For 442 further comparison, the data were also normalized to the standard tectonic 443 setting values and the results show that the Yanbian rocks are mostly affiliated 444 with a continental arc+active margin (Fig. 14).

REE patterns of clastic rocks are mainly controlled by provenance (Taylor and McLennan, 1985; McLennan, 1989) and are believed to be faithfully preserved in flysch deposited by turbidity currents and mass-flow processes (Hiscott and Gill, 1992). The Yanbian rocks have REE elements and ratios similar to those of continental arc settings (Table 5), in good agreement with the proposed back-arc basin scenario.

451 **6.4. Provenance of the Yanbian Group**

452 Petrographic, geochronological and geochemical evidence not only indicates
453 that rocks of the Yanbian Group rocks were mainly derived from a magmatic arc,
454 but also provides important constraints for the nature of this arc, which was not
455 preserved in the modern exposures.

High feldspar contents (generally >30%) of the Yanbian sandstones indicates
derivation directly from crystalline rocks (Boggs, 2001), because feldspars are
chemically and physically unstable and thus less likely to survive recycling than a
mineral like quartz. Presence of other unstable minerals such as magnetite,
pyroxene and amphibole also support this view. The poorly sorted and immature

461 nature of the Yanbian greywackes, and their deposition in a back-arc basin,
462 further points to a proximal arc source with short transport distance and little or
463 no reworking.

The source area for the Yanbian Group sediments was an undissected to transitional volcanic arc, in which only minor plutonic rocks were exposed. This interpretation is supported by the abundance of volcanic rock fragments in the sediments, the dominance of plagioclase over K-feldspar and the presence of only minor quartz (Fig. 5 a, b and c). It is also consistent with the negative Zr-Hf anomalies of these rocks relative to the average continent upper crust, reflecting a lack of zircon input from silicic plutonic rocks (Fig. 8a).

471 The abundant intermediate and felsic volcanic rock fragments and sparse 472 mafic rock clasts in the Yanbian sandstones provide the most direct evidence for 473 the composition of these volcanic rocks (Table 2). Moreover, the trace element 474 characteristics of the sediments provide additional constraints on the nature of 475 the provenance. Because silicic rocks are significantly richer in La and Th, and 476 poorer in Sc, Cr, and Co than mafic rocks (Cullers, 1994 and references therein), 477 La/Sc, Th/Sc, Th/Co, and Cr/Th ratios are good indicators of the source rocks. 478 The Yanbian rocks have relatively low and constant La/Th ratios with an average 479 of 1.5 but more variable Co/Th ratios (Fig. 15a), suggesting mixing of felsic and 480 intermediate components. Similarly, a plot of La/Th against Hf also points to 481 mixed sources (Fig. 15b). In addition, the Yanbian rocks mostly have Cr/Th ratios 482 of 5-25 (Table 4), clearly indicative of silicic-intermediate source rocks (Cullers, 483 1994). The low Cr (mostly<150 ppm) and Ni (<80 ppm) of the Yanbian rocks and

484 slight V-Cr-Ni anomalies (Fig. 8a) is also consistent with minor mafic-ultramafic
485 input from the source area (Floyd et al., 1991; Garver et al., 1996).

486 **6.5. An integrated tectonic model**

487 Although the tectonic affinity of the western margin of the Yangtze Block 488 during the Neoproterozoic has been a matter of debate, it has been confirmed 489 that a number of plutons in this region were subduction-related. In the Yanbian 490 area, these intrusions include the ~860-Ma Guandaoshan dioritic pluton (Sun and 491 Zhou, 2008), the ~810-Ma Gaojiacun and Lengshuiging mafic intrusions (Zhou et 492 al., 2006a) and the ~740-Ma Dadukou gabbroic pluton (Zhao and Zhou, 2007). 493 Determination of the age and tectonic provenance of the Yanbian Group has 494 significant implications for the regional tectonic evolution during Neoproterozoic 495 time. This study provides a window into a Neoproterozoic magmatic arc on the 496 western margin of the Yangtze Block, and reveals the presence of a ~900-920 497 Ma felsic and intermediate volcanic arc in this region, although such a feature 498 has not yet been widely identified directly.

499 Available data allow us to propose a model involving the development of a 500 volcanic arc and formation of the Yanbian back-arc basin and the closely 501 associated subduction-related plutons in this region (Fig. 16). Subduction-related 502 volcanic rocks of mainly felsic and intermediate composition were produced at ca. 503 900-920 Ma owing to the eastward subduction of oceanic lithosphere along the 504 western margin of the Yangtze Block (Fig. 16a). Rifting occurred as a 505 consequence of diapiric upwelling of metasomatized mantle to create the 506 Yanbian back-arc basin and generate the basaltic lavas of the Fangtian

507 Formation (Fig. 16b). According to Crawford et al. (1981), arc volcanism appears 508 to cease around the time that back-arc opening commences. This basin was built 509 on the ~900-920 Ma volcanic arc sequence which provided materials to fill the 510 adjacent Yanbian basin above the lavas, to form the Yumen, Xiaoping and Zagu 511 Formations (Fig. 16b). With continued erosion, the relief of the source region 512 decreased and hence slowed down the supply of materials for the basin, 513 resulting in biochemical deposition of the carbonates in the Zagu Formation (Fig. 514 16b). Subduction-related magmatism was then re-activated to generate the 515 subduction-related plutons (Fig. 16c). The oldest pluton is the ~860-Ma 516 Guandaoshan dioritic pluton, followed by the ~810-Ma Gaojiacun and 517 Lengshuiging and the youngest ~740 Ma Dadukou gabbroic plutons (Fig. 16c). 518 This period of igneous activity suggests continuous subduction along the western 519 margin of the Yangtze Block between about 920 and 740 Ma. This arc was thus 520 active for at least ~180 million years. Eventually, this region probably became a 521 passive margin and the Sinian Lieguliu Formation was unconformably deposited 522 over the Yanbian Group, marking the termination of the arc setting (Fig. 16d).

The subduction-related environment may extend along the entire western margin of the Yangtze Block. Similar sequences also occurred in the northwest margin including the Bikou Group (Fig. 1), which has detrital zircon ages ranging from 700 to 850 Ma and has been interpreted as fore-arc basin deposits (Yan Q.R. et al., 2004; Druschke et al., 2006). Thus our proposed model implies that the western margin of the Yangtze Block was a major continental arc during the Neoproterozoic, and thus probably flanked the Rodinia supercontinent.

530

531 **7. Conclusions**

532 The Yanbian Group is a typical deep marine, volcaniclastic succession 533 deposited in a back-arc basin. Detrital zircon dating and geological constraints 534 indicate that the Yanbian Group was formed at ~870 Ma. The immature nature of 535 the Yanbian sandstones indicates a proximal arc source with ages of ~900-920 536 Ma. The Yanbian Group and spatially associated subduction-related plutons in 537 the Yanbian region make up a typical arc assemblage, being part of a major 538 continental arc along the western margin of the Yangtze Block for at least 180 539 m.y. (920-740 Ma). We infer that the Yangtze Block probably flanked the Rodinia 540 supercontinent.

541

542 Acknowledgments

This work was financially supported by the National Science Foundation of China (NSFC grant 40672037/D0204), Chinese Education Ministry 111 project (No. B07011) and the International Innovation Partnership Program of CAS & SAFEA. We thank Xiao Fu, Jianfeng Gao, Shijian Bi and Jiangman Zhang for help with the analyses. Paul Robinson is thanked for reading this manuscript. We appreciate thorough reviews by Barry P. Roser, Keith A.W. Crook and Pater A. Cawood, whose insights led to substantial improvements in this paper.

550 **References**

- 551 Bhatia, M.R., 1983. Plate tectonics and geochemical composition of sandstones.
- 552 J. Geol. 91, 611-627.
- 553 Bhatia, M.R., 1985. Rare earth element geochemistry of Australian Paleozoic
- graywackes and mudstones: Provenance and tectonic control. Sediment.Geol. 45, 97-113.
- 556 Bhatia, M.R., Crook, K.A.W., 1986. Trace element characteristics of graywackes
- and tectonic setting discrimination of sedimentary basins. Contrib. Mineral.
- 558 Petrol. 92, 181-193.
- 559 BGMRSP (Bureau of Geology and Mineral Resources of the Sichuan Province),
- 560 1972. Regional Geological Survey of People's Republic of China, the Yanbian
 561 Sheet (G-47-XII; geological part), scale 1:200,000 (in Chinese).
- Boggs, S., 2001. Principles of sedimentology and stratigraphy (Third editon).
 New Jersey, Prentice-Hall, 726p.
- 564 Chen, Z.L., Chen, S.Y., 1987. On the tectonic evolution of the west margin of the
- 565 Yangzi block. Chongqing, China, Chongqing Publishing House, 172p. (in 566 Chinese).
- 567 Cope, T., Ritts, B.D., Darby, B.J., Fildani, A., Graham, S.A., 2005. Late Paleozoic
- 568 Sedimentation on the Northern Margin of the North China Block: Implications
- 569 for Regional Tectonics and Climate Change. Int. Geol. Rev. 47, 270-296.
- 570 Crawford, A.J., Beccaluva, L., Serri, G., 1981. Tectono-magmatic evolution of the
- west Philippine-Mariana region and the origin of boninites. Earth Planet. Sci.
 Lett. 54, 346-356.

- 573 Crook, K.A.W., 1974. Lithogenesis and geotectonics: The significance of
 574 compositional variations in flysch arenites (graywackes). In: Dott, R.H.,
 575 Shaver, R.H. (Eds.), Modern and Ancient Geosynclinal Sedimentation. SEPM
 576 Spec. Publ. 19, pp. 304-310.
- 577 Cullers, R.L., 1994. The controls on the major and trace element variation of 578 shales, siltstones, and sandstones of Pennsylvanian-Permian age from 579 uplifted continental blocks in Colorado to platform sediment in Kansas, USA. 580 Geochim. Cosmochim. Acta 58, 4955-4972.
- 581 DeGraaff-Surpless, K., Graham, S.A., Wooden, J.L., McWilliams, M.O., 2002.

582 Detrital zircon provenance analysis of the Great Valley Group, California:

583 Evolution of an arc-forearc system. Geol. Soc. Am. Bull. 114, 1564-1580.

584 Dickinson, W.R., 1970. Interpreting detrital modes of graywacke and arkose. J.
585 Sediment. Petrol. 40, 695-707.

Dickinson, W.R., 1985. Interpreting provenance relations from detrital modes of
sandstones. In: Zuffa, G.G. (Eds.), Provenance of arenites. NATO ASI Series
C: Mathematical and Physical Sciences 48, D. Reidel Publishing Company,
pp. 333-361.

Dickinson, W.R., Gehrels, G.E., 2000. Sandstone petrofacies of detrital zircon
samples from Paleozoic and Triassic strata in suspect terranes of northern
Nevada and California. In: Soreghan, M.J., Gehrels, G.E. (Eds.), Paleozoic
and Triassic paleogeography and tectonics of western Nevada and northern
California. Boulder, Colorado, Geol. Soc. Am. Special Paper 347, pp. 151-171.

595 Druschke, P., Hanson, A.D., Yan, Q., Wang, Z., Wang, T., 2006. Stratigraphic 596 and U-Pb SHRIMP detrital zircon evidence for a Neoproterozoic continental 597 arc, Central China: Rodinia implications. J. Geol. 114, 627-636.

598 Du, L.L., Geng, Y.S., Yang, C.H., Wang, X.S., Ren, L.D., Zhou, X.W., Shi, Y.Y.,

599 Yang, Z.S., 2005. Geochemistry and SHRIMP U-Pb zircon chronology of

basalts from the Yanbian group in the western Yangtze Block. Acta Geologica
Sinica 76, 805-813 (in Chinese with English abstract).

Eisbacher, G.H., 1985. Late Proterozoic rifting, glacial sedimentation, and
 sedimentary cycles in the light of Windermere deposition, western Canada.
 Palaeogeogr. Palaeoclimatol. Palaeoecol. 51, 231-254.

Fedo, C.M., Nesbitt, H.W., Young, G.M., 1995. Unraveling the effects of
 potassium metasomatism in sedimentary rocks and paleosols, with
 implications for weathering conditions and provenance. Geology 23, 921-924.

111 mplications for weathering conditions and provenance. Geology 23, 921-924.

Floyd, P.A., Leveridge, B.E., 1987. Tectonic environment of the Devonian

609 Gramscatho Basin, South Cornwall: Framework mode and geochemical

evidence from turbiditic sandstones. J. Geol. Soc. London 144, 531-542.

Floyd, P.A., Shail, R., Leveridge. B.E., Franke, W., 1991. Geochemistry and
provenance of Rhenohercynian synorogenic sandstones: implications for
tectonic environment discrimination. In: Morton, A.C., Todd, S.P., Haughton,

614 P.D.W. (Eds.), Developments in sedimentary provenance studies. Geol. Soc.

615 London, Spec. Publ. 57, 173-188.

Garver, J.I., Royce, P.R., Smick, T.A., 1996. Chromium and nickel in shale of the
 Taconic Foreland: A case study for the provenance of fine-grained sediments

- with an ultramafic source. J. Sediment. Res. 66, 100-106.
- 619 Goodge, J.W., Myrow, P., Williams, I.S., Bowring, S.A., 2002. Age and
- 620 provenance of the Beardmore Group, Antarctica: constraints on Rodinia
- 621 supercontinent breakup. J. Geol. 110, 393-406.
- Gu, X.X., Liu, J.M., Zheng, M.H., Tang, J.X., Qi, L., 2002. Provenance and
 tectonic setting of the Proterozoic turbidites in Hunan, South China:
 geochemical evidence. J. Sediment. Res. 72, 393-407.
- Hiscott, R.N., Gill, J.B., 1992. Major and trace element geochemistry of
 Oligocene to Quaternary volcaniclastic sands and sandstones from the IzuBonin arc. In: Taylor, B., Fujioka, K., et al. (Eds.), Proceedings of the Ocean
 Drilling Program, Scientific Results 126. College Station, TX: Ocean Drilling
 Program, pp. 467-485.
- 630 Ingersoll, R.V., Fullard, T.F., Ford, R.L., Grimm, J.P., Pickle, J.D., Sares, S.W.,
- 631 1984. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson
 632 point-counting method: J. Sediment. Petrol. 54, 103-116.
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The
 application of laser ablation-inductively coupled plasma-mass spectrometry
 (LA-ICP-MS) to in-situ U-Pb zircon geochronology. Chem. Geol. 211, 331-335.
 Li, F.H., Tan, J.M., Shen, Y.L., Yu, F.X., Zhou, G.F., Pan, X.N., Li, X.Z., 1988.
- The pre-Sinian in the Kangdian area: Chongqing, China, Chongqing
 Publishing House, 396p. (in Chinese).
- 639 Li, X.H., Li, Z.X., Zhou, H.W., Liu, Y., Liang, X.R., Li, W.X., 2003. SHRIMP U-Pb
- zircon age, geochemistry and Nd isotope of the Guandaoshan pluton in SW

641 Sichuan: Petrogenesis and tectonic significance. Sci. China Ser. D (Supp.)642 46, 73-83.

Li X.H., Li, Z.X., Sinclair, J.A., Li, W.X., Carter, G., 2006. Revisiting the "Yanbian

Terrane": implications for Neoproterozoic tectonic evolution of the western
Yangtze Block, South China. Precambrian Res. 151, 14-30.

- Li, Z.X., Li, X.H., Kinny, P., Wang, J., 1999. The breakup of Rodinia: did it start
 with a mantle plume beneath South China. Earth Planet. Sci. Lett. 173, 171181.
- Li, Z.X., Li, X.H., Kinny, P.D., Wang, J., Zhang, S., Zhou, H., 2003.
 Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton,
 South China and correlations with other continents: evidence for a mantle
 superplume that broke up Rodinia. Precambrian Res. 122, 85-109.
- Ludwig, K. R., 1999. Isoplot/Ex version 2.06: A geochronological tool kit for
 Microsoft Excel. Berkeley Geochronology Center, Spec. Publ. 1a.
- Maas, R., McCulloch, M.T., 1991. The provenance of Archean clastic
 metasediments in the Narryer Geniss Complex, Western Australia: trace
 element geochemistry, Nd isotopes, and U-Pb ages for detrital zircons.
 Geochim. Cosmochim. Acta 55, 1915-1932.
- Marsaglia, K.M., Ingersoll, R.V., 1992. Compositional trends in arc-related, deep-
- 660 marine sand and sandstone: a reassessment of magmatic-arc provenance.
- 661 Geol. Soc. Am. Bull. 104, 1637-1649.
- McLennan, S.M., 1989. Rare earth elements in sedimentary rocks: Influence of
- provenance and sedimentary processes. Rev. Mineral. Geochem. 21, 169-200.

McLennan, S.M., 1993. Weathering and Global Denudation. J. Geol. 101, 295-303.

McLennan, S.M., Taylor, S.R., Eriksson, K.A., 1983. Geochemistry of Archean
shales from the Pilbara Supergroup, Western Australia. Geochim.
Cosmochim. Acta 47, 1211-1222.

McLennan, S.M., Taylor, S.R., McCulloch, M.T., Maynard, J.B., 1990.
Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal
evolution and plate tectonic associations. Geochim. Cosmochim. Acta 54,
2015-2050.

McLennan, S.M., Hemming, S.R., Taylor, S.R., Eriksson, K.A., 1995. Early
Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from
metasedimentary rocks, southwestern North America. Geochim. Cosmochim.
Acta 59, 1153-1177.

Nesbitt, H.W., Markovics, G., Price, R.C., 1980. Chemical processes affecting
alkalies and alkaline earths during continental weathering: Geochim.
Cosmochim. Acta 44, 1659-1666.

Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions
inferred from major element chemistry of lutites. Nature 299, 715-717.

Nesbitt, H.W., Young, G.M., 1996. Petrogenesis of sediments in the absence of
 chemical weathering: effects of abrasion and sorting on bulk composition and

mineralogy. Sedimentology 43, 341-358.

- Nesbitt, H.W., Young, G.M., McLennan, S.M., and Keays, R.R., 1996. Effects of
 chemical weathering and sorting on the petrogenesis of siliciclastic sediments,
 with implications for provenance studies. J. Geol. 104, 525-542.
- 688 Pettijohn, F.J., Potter, P.E., Siever, R., 1987. Sand and sandstone (Second 689 editon), Springer-Verkag, 553p.
- 690 Pan, X.N., Zhao, J.X., Zhan, X.Y., Zhen, H.X., Yan, Z.H., Zhou, G.F., Tao, D.L.,
- 691 1987. Tectonics and rifting in the Kangdian area: Chongqing, China,
 692 Chongqing Publishing House, 295p. (in Chinese).
- 693 Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites
- by inductively coupled plasma-mass spectrometry. Talanta 51, 507-513.
- Roser, B.P., Korsch, R.J., 1986. Determination of tectonic setting of sandstone-
- mudstone suites using SiO₂ content and K_2O/Na_2O ratio. J. Geol. 94, 635-650.
- 697 Roser, B.P., Korsch, R.J., 1988. Provenance signatures of sandstone-mudstone
- 698 suites determined using discriminant function analysis of major-element data.
- 699 Chem. Geol. 67, 119-139.
- 700 SBGMR (Sichuan Bureau of Geology and Mineral Resources). 1991. Regional
- Geology of Sichuan Province. Beijing, China, Geological Memoirs 23.
 Geological Publishing House (in Chinese with English summary).
- She, Z.B., Ma, C.Q., Mason, R., Li, J.W., Wang, G.C., Lei, Y.H., 2006.
 Provenance of the Triassic Songpan-Ganzi flysch, west China. Chem. Geol.
 231, 159-175.
- Sun, C.M., Vuagnat, M., 1992. Proterozoic ophiolites from Yanbian and Shimian
 (Sichuan Province, China): Petrography, geochemistry, petrogenesis, and

- geotectonic environment. Schweiz. Mineral. Petrograph. Mitt. 72, 389-413.
- Sun, W.H., Zhou, M.-F., Zhao J.H., 2007. Geochemistry and tectionic
 significance of basaltic lavas in the Neoproterozoic Yanbian Group (Southern
- 711 Sichuan Province, SW China). Int. Geol. Rev. 49, 554-571.
- Sun, W.H., Zhou, M.-F., 2008. The ~860-Ma, Cordilleran-type Guandaoshan
 dioritic pluton in the Yangtze Block, SW China: Implications for the origin of
 Neoproterozoic magmatism. J. Geol. 116, 238-253.
- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust; Its Composition and
 Evolution. London, Blackwell, 312 p.
- Taylor, S.R., McLennan, S.M., 1995. The Geochemical Evolution of the
 Continental Crust. Rev. Geophys. 33, 241-265.
- Yan, D.P., Zhou, M.-F., Song, H. L., Wang, X.W., Malpas, J., 2003. Origin and
 tectonic significance of a Mesozoic multi-layer over-thrust within the Yangtze
 block (South China). Tectonophysics 361, 239-254.
- Yan, Q.R., Hanson, A.D., Wang, Z.Q., Druschke, P.A., Yan, Z., Wang, T., Liu,
- D.Y., Song, B., Pan, P., Zhou, H., Jiang, C.F., 2004. Late Proterozoic
 subduction and rifting on the northern margin of the Yangtze Plate, China:
 implications for Rodinia reconstruction. Int. Geol. Rev. 46, 817-832.
- Yuan, H.L., Gao, S., Liu, X.M., Li, H.M., Gunther, D., Wu, F.Y., 2004. Accurate U-
- Pb age and trace element determinations of zircon by laser ablation-
- inductively coupled plasma-mass spectrometry. Geostandard. Geoanal. Res.28, 353-370.

Zhao, J.H., Zhou, M.-F., 2007. Geochemistry of Neoproterozoic mafic intrusions
in the Panzhihua district (Sichuan Province, SW China): implications for
subduction-related metasomatism in the upper mantle. Precambrian Res. 152,
27-47.

Zhou, M.-F., Kennedy, A.K., Sun, M., Malpas, J., Lesher, C.M., 2002a. Late
Proterozoic arc-related mafic intrusions along the northern margin of South
China: implications for the accretion of Rodinia. J. Geol. 110, 611-618.

Zhou, M.-F., Yan, D.P., Kennedy, A.K., Li, Y.Q., Ding, J., 2002b. SHRIMP U-Pb
zircon geochronological and geochemical evidence for Late Proterozoic arcmagmatism along the western margin of the Yangtze Block, South China.
Earth Planet. Sci. Lett. 196, 51-67.

- Zhou, M.-F., Ma, Y.X., Yan, D.P., Xia, X.P., Zhao, J.H., Sun, M., 2006a. The
 Yanbian Terrane (Southern Sichuan Province, SW China): A Late Proterozoic
 arc assemblage in the western margin of the Yangtze Block. Precambrian
 Res. 144, 19-38.
- Zhou, M.-F., Yan, D.P., Wang, C.L., Qi, L., Kennedy, A., 2006b. Subductionrelated origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province,
 China): Implications for the tectonic setting of the giant Neoproterozoic
 magmatic event in South China. Earth Planet. Sci. Lett. 248, 286-300.

Zhou, D., Graham, S.A., 1996. The Songpan-Ganzi complex of the West Qinling
Shan as a Triassic remnant ocean basin. In: Yin, A., Harrison, T.M. (Eds.),

751 The Tectonic Evolution of Asia. New York, Cambridge University Press, pp.752 281-299.

753 **Figure captions**

Fig. 1. Simplified geological map of the Yanbian region, Sichuan Province, SW China (after BGMRSP, 1972). The insert map showing the tectonic units of South China and general distribution of Neoproterozoic rocks in the margins of the Yangtze Block.

Fig. 2. Stratigraphy of the Yanbian Group based on a measured cross section (BGMRSP, 1972) and our field mapping. Stars indicate samples for detrital zircon analysis. The sandstone beds shown in the column are not strictly to scale because they are typically thin layers interbedded with slate.

Fig. 3. (a) Contact between the clastic Yumen Formation and the volcanic Fangtian Formation. (b) A scour structure in the Xiaoping Formation. (c) Slumped siltstone in the Xiaoping Formation. (d) Well-exposed Bouma sequences in the Xiaoping Formation.

766 Fig. 4. (a) Photomicrographs of grain types and features in the Yanbian 767 sandstones. (a) General view showing sub-angular monocrystalline quartz (Q) 768 (T3-3). (b) Sub-rounded plagioclase feldspar (PI) and K-feldspar (Kf) grains (T3-769 1-2). (c) A metamorphic grain (Lm) and volcanic grains (Lv) with felsitic and 770 microlitic texture (B11). (d) Siltstone fragments (Ls) (B11). (e) A typical volcanic 771 rock fragment with microlitic texture that we interpret to be derived from 772 intermediate composition (B9). (f) A clinopyroxene grain (Cpx) (F6). All samples 773 are in cross-polarized light. Scale bar in each photograph is 0.3 mm.

Fig. 5. Ternary plots of sandstone point count data for the Yanbian Group. (a) QFL plot. (b) QmFLt plot. (c) QLvmLsm plot. (d) QmPK plot. Provenance fields

are from Dickinson (1985). The large open triangles represent arithmetic means
of data and polygonal box represents one standard deviation.

Fig. 6. Detrital zircon data for the sandstone samples of the Yanbian Group. (a) Neoproterozoic (860-1000 Ma) detrital zircon age histogram and cumulative probability plot, showing number of grains analyzed and percentage of Neoproterozoic ages as a fraction of total discordant and concordant ages. (b) Histogram and cumulative probability plot of total concordant detrital zircon ages. Total number of concordant ages for each sample is shown, with number of analyses (concordant plus discordant ages) shown in parenthesis.

Fig. 7. (a) Geochemical classification of sandstones from the Yanbian Group(Pettijohn et al., 1987).

Fig. 8. (a) Upper crust-normalized, multi-element diagrams for the Yanbian samples; (b) Chondrite-normalized REE patterns of the Yanbian sandstones and mudstones. Post-Archean average Australian shale (PAAS) is also plotted as a heavy dashed line "+" for comparison. Values are from Taylor and McLennan (1985).

Fig. 9. CIA ternary diagram, A-CN-K=Al₂O₃ -CaO*+Na₂O-K₂O, after Nesbitt and Young (1982) showing Yanbian sandstones and mudstones as well as average compositions of tonalite and granodiorite (from Fedo et al., 1995). Approximate correction for carbonate content was made by assuming reasonable Ca/Na ratios in silicate material (McLennan, 1993). After correcting phosphate using P₂O₅, if the remaining mole fraction of CaO \leq Na₂O, then this value of CaO is adopted; if CaO >Na₂O, CaO* is assumed to be equivalent to Na₂O. Due to relatively low
- carbonate contents in most samples, however, the calculated proportions arethus very close to actual values.
- Fig. 10. Plots of K vs. Rb, K vs. Ba, Ce vs. Sm, and U vs. Th, showing linear correlations.
- Fig 11. K_2O/Na_2O-SiO_2 plot for the Yanbian rocks. PM = passive margin; ACM =
- active continental margin; ARC = oceanic island arc. (after Roser and Korsch,
 1986).
- 806 Fig.12. Tectonic discrimination diagrams for the Yanbian Group sandstones: PM
- = passive margin; ACM = active continental margin; CIA = continental island arc;
- 808 OIA =oceanic island arc (after Bhatia, 1983).
- Fig. 13. Triangular trace element plots for Yanbian sandstones (after Bhatia and
 Crook, 1986). Abbreviations as in Fig. 11.
- Fig. 14. Normalized multi-element diagrams for the Yanbian sandstones. CAAM
- = continental arc+active margin; OIA = oceanic island arc; PM = passive margin;
- 813 OWP = oceanic within-plate. Normalizing values are from Floyd et al. (1991).
- Fig. 15. Source rock discrimination diagrams for the Yanbian rocks; (a) Co/Th vs.
- La/Sc diagram (after Gu et al., 2002), showing derivation from mixed felsic-basic
- volcanic source, (b) La/Th vs. Hf diagram (after Floyd and Leveridge, 1987),
- 817 indicating mixed of felsic/basic source rocks.
- Fig. 16. Model for the development of the Yanbian Group and the spatially
- associated subduction-related intrusions in the Yanbian region, SW China.

Table 1. Definition of point-count and recalculated mode parameters (after Dickinson, 1970; Ingersoll et al., 1984)

Symb	ool Definition
Poin	t-counting Categories
Qm	Monocrystalline quartz
Qpq	Polycrystalline quartz (not including chert)
Cht	Chert
Ρ	Plagioclase feldspar
K	K-feldspar
Lvf	Volcanic-lithic with felsitic texture (mainly silicic volcanic rocks)
Lvm	Volcanic-lithic with microlitic texture (mainly intermediate lava)
Lvl	Volcanic-lithic with lathwork texture (mainly basaltic lava)
Lvv	Vitric volcanic-lithic grain
Lmv	Metavolcanic-lithic grain
Lms	Metamorphic-lithic grains except Lmv
Lss	Siltstone/shale sedimentary-lithic grain
Lsc	Carbonate grain
М	Phyllosilicates
Ηv	Heavy minerals
FW	Total framework grains counted
Reca	Iculated Parameters
Qp	Polycrystalline quartz including chert (Qpq+Cht)
Q	Total quartzose grains (Qm+Qp)
F	Total feldspar grains (P+K)
Lvm	Total volcanic-lithic grains (Lvf+Lvm+Lvl+Lvv+Lmv)

- Lsm Total volcaniç, lithic grins (Lss+Lms)
- L Total unstable lithic grains (Lvm+Lsm)
- Lt Total lithics (L+Qp)

	uur	10111	0 000		Du	uu r	01 01	10 10	1110 1 0		1042	, 01	enn	a			(Q-)	F-L)	(Qm-	F-L	t)	(Qm-	P-K)	(Qp-	Lv–L	s)		
Fm. Sample	Qm	Qpq	Cht	Р	K	Lvf	Lvm	Lv1	Lvv	Lmv	Lms	Lss	Lsc N	[Hv	7	FW	%Q	%F	۶ %L	%Qm	%F	%Lt	%Qm	%P	%K	%Qp	%Lv	%Ls	Lv/L	, P/F
ZG F22	48	1	1 12	26	67	127	67			1	3	120	Ę	6	55	61	9	34	57	9	34	57	20	52	28	1	61	38	0.61	0.65
ZG F23	50	2	1 11	19	96	122	39			1	2	157	3	4	15	89	9	37	54	8	37	55	19	45	36	1	50	49	0.50	0.55
ZG B15	50	1	6 17	72	51	156	110					14	4	. 6	55	60	10	40	50	9	40	51	18	63	19	2	93	5	0.95	5 0.77
ZG L18	59	6	32 12	22	41	155	56					61	4	5	55	32	18	31	51	11	31	58	27	55	18	12	68	20	0.78	0.75
ZG YM6	75	5	46 13	36	25	134	48					77	4	ç	95	46	23	29	47	14	29	57	32	58	11	16	59	25	0.70	0.84
XP F20	27	1	5 14	48	19	126	207					9	2	2 7	75	42	6	31	63	5	31	64	14	76	10	2	96	3	0.97	0.89
XP B9	28	1	4 10	03	18	204	117	2			2	86	3	Ģ	95	63	6	21	73	5	21	74	19	69	12	1	78	21	0.79	0.85
XP B10	27	1	5 12	28	21	176	195				3	20	4	- 7	75	76	6	26	68	5	26	69	15	73	12	2	93	6	0.94	0.86
XP B11	13	1	4 9	94	5	125	185				9	120	0	6	55	56	3	18	79	2	18	80	12	84	4	1	70	29	0.71	0.95
XP F4	73	2	69 21	15	3	138	8				1	31	13	4	15	40	27	40	33	14	40	46	25	74	1	29	59	13	0.82	2 0.99
XP F5	69	7	74 20	09	8	129	7				2	53	13	5 7	75	58	27	39	34	12	39	49	24	73	3	30	50	20	0.71	0.96
XP F6	19	1	19 22	22	5	18	228	1				7	1 2	6	55	19	8	44	49	4	44	53	8	90	2	7	90	3	0.97	0.98
XP F7	17	1	13 21	18	4	17	243				1	3	3	4	15	17	6	43	51	3	43	54	7	91	2	5	94	1	0.98	0.98
XP F8	18	1	12 21	16	5	16	265				3		1	7	75	36	6	41	53	3	41	55	8	90	2	4	95	1	0.99	0.98
XP F9	61	2	82 19	93	8	83	34			1	1	123	3	3	35	88	25	34	41	10	34	55	23	74	3	26	36	38	0.49	0.96
XP F10	72	3	53 8	89	28	181	110				3		1	5	55	39	24	22	55	13	22	65	38	47	15	16	83	1	0.99	0.76
XP F11	79	4	21 21	15	12	102	124						1		15	57	19	41	41	14	41	45	26	70	4	10	90	0	1.00	0.95
XP F14	11	1	1 12	25	4	3	373				3	6	1 2	5	55	27	2	24	73	2	24	73	8	89	3	1	97	2	0.98	8 0.97
XP F33	93	4	38 33	31	24	62	43					43	3	3	36	38	21	56	23	15	56	30	21	74	5	22	55	23	0.71	0.93
XP F34	89	3	39 21	18	21	168	47					56	3	4	16	41	20	37	42	14	37	49	27	66	6	13	69	18	0.79	0.91
XP S6	65	4	26 8	85	28	267	4		15			2	0	6	54	96	19	23	58	13	23	64	37	48	16	9	90	1	0.99	0.75
XP S8	66	1	12 17	74	49	96	52		1		4	93	4	. 4	15	48	14	41	45	12	41	47	23	60	17	5	58	37	0.61	0.78
XP S3-1	87	4	19 20	03	18	164	31		3		1	2	2	5	55	32	21	42	38	16	42	42	28	66	6	10	88	1	0.99	0.92
XP S5	99	4	21 23	36	27	106	71		1			12	1	5	55	77	21	46	33	17	46	37	27	65	7	12	83	6	0.94	0.90
XP S4	86	3	27 32	26	53	38	21						3	4	15	54	21	68	11	16	68	16	18	70	11	34	66	0	1.00	0.86
XP B4	77	3	26 13	31	19	204	69					6			15	35	20	28	52	14	28	58	34	58	8	9	89	2	0.98	3 0.87
XP L6	43	3	38 8	84	26	225	44	1				80	5	6	55	43	15	20	64	8	20	72	28	55	17	10	69	20	0.77	0.76
YM F3	41	2	58 19	96	1	93	5			1		136	2		(5	33	19	37	44	8	37	55	17	82	0	20	34	46	0.42	2 0.99
YM F38	74	5	27 9	96	19	113	73			1		112	2		5 5	20	20	22	58	14	22	64	39	51	10	10	56	34	0.63	8 0.83
YM T3	128	1	18 13	31	16	212	8					26	2	2	15	40	27	27	46	24	27	49	47	48	6	7	83	10	0.89	0.89
YM T3-1-2	108	2	16 17	71	22	208	23				1	12	2	5	55	63	22	34	43	19	34	47	36	57	7	7	88	5	0.95	5 0.89

Table 2 Modal Point-count Data for the Yanbian Group, SW China

Table 3. Zircon U-Pb LA-ICPMS data*

	Pb ²⁰⁷ /Pb ²⁰⁶	Pb ²⁰⁷ /	U^{235}	Pb ²⁰⁶ /	U^{238}	Pb ²⁰⁷ /P	b^{206}	Pb ²⁰⁷ /U	235	Pb ²⁰⁶ /U	238	Disc.	Best age e	stimate
	Ratio 10	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	%	Age(Ma)	1σ
Sam	ple F23													
1	$0.1747 \ 0.0021$	11.9588	0.1430	0.4964	0.0052	2603	20	2601	11	2599	22	0.2	2603	20
2	$0.0676 \ 0.0010$	1.3793	0.0200	0.1479	0.0016	858	30	880	9	889	9	3.6		
3	$0.0680 \ 0.0010$	1.3289	0.0197	0.1418	0.0015	868	31	858	9	855	9	1.5	855	9
4	$0.0697 \ 0.0016$	1.4184	0.0322	0.1477	0.0017	918	47	897	14	888	10	3.4		
5	$0.1110 \ 0.0014$	5.1468	0.0633	0.3362	0.0035	1816	22	1844	10	1868	17	2.8	1816	22
6	0.0687 0.0011	1.3693	0.0212	0.1446	0.0016	889	32	876	9	871	9	2.1	871	9
7	0.1225 0.0017	6.1327	0.0837	0.3631	0.0039	1993	24	1995	12	1997	19	0.2	1993	24
8	0.0694 0.0010	1.4550	0.0214	0.1520	0.0016	911	30	912	9	912	9	0.1	912	9
9	$0.0674 \ 0.0010$	1.3556	0.0208	0.1458	0.0016	851	32	870	9	877	9	3.0	877	9
10	0.0697 0.0015	1.4726	0.0321	0.1533	0.0018	918	45	919	13	920	10	0.2	920	10
11	0.0691 0.0016	1.3990	0.0327	0.1468	0.0017	903	48	889	14	883	10	2.2	883	10
12	0.0680 0.0009	1.3527	0.0180	0.1443	0.0015	869	27	869	8	869	9	0	869	9
13	0.0717 0.0010	1.5399	0.0205	0.1557	0.0016	978	27	947	8	933	9	4.7		
14	0.0683 0.0012	1.3789	0.0232	0.1464	0.0016	879	35	880	10	881	9	0.2	881	9
15	0.1270 0.0017	6.9029	0.0925	0.3943	0.0042	2057	23	2099	12	2143	20	4.1		
16	0.1796 0.0024	12.7856	0.1673	0.5163	0.0056	2649	22	2664	12	2684	24	1.3	2649	22
17	0.0683 0.0013	1.3726	0.0251	0.1458	0.0016	877	38	877	11	877	9	0	877	9
18	0.0690 0.0009	1.3639	0.0172	0.1434	0.0015	898	26	874	7	864	8	3.9		
19	0.0688 0.0014	1.3452	0.0272	0.1419	0.0016	892	42	866	12	855	9	4.2		
20	0.0701 0.0010	1.4866	0.0201	0.1538	0.0016	931	27	925	8	922	9	0.9	922	9
21	0.0676 0.0011	1.3185	0.0214	0.1416	0.0015	855	34	854	9	854	9	0.2	854	9
22	0.0723 0.0018	1.6481	0.0412	0.1653	0.0020	995	51	989	16	986	11	0.9	986	11
23	0.1219 0.0015	6.1732	0.0778	0.3672	0.0039	1984	22	2001	11	2016	18	1.6	1984	22
24	0.0690 0.0009	1.4192	0.0192	0.1492	0.0016	898	28	897	8	897	9	0.1	897	9
25	0.0676 0.0011	1.3131	0.0220	0.1408	0.0015	857	35	852	10	849	9	0.9	849	9
26	0.0696.0.0014	1 4648	0.0284	0.1526	0.0017	917	40	916	12	915	10	0.2	915	10
27	0.0686.0.0011	1 3947	0.0215	0.1475	0.0016	887	32	887	9	887	9	0.2	887	9
28	0.1265.0.0016	6 5102	0.0847	0.3734	0.0040	2049	23	2047	11	2045	19	02	2049	23
29	0.1239.0.0016	5 9332	0.0756	0 3474	0.0037	2013	22	1966	11	1922	18	0.2 4.6	2019	23
30	0.1248 0.0016	6 2883	0.0815	0.3655	0.0039	2015	22	2017	11	2008	18	0.9	2026	23
31	0.0691.0.0012	1 4347	0.0254	0.1505	0.0017	903	36	904	11	904	9	0.1	904	9
32	0.1274 0.0016	6 6361	0.0254	0.1505	0.0040	2062	23	2064	11	2066	19	0.1	2062	23
33	0.0705.0.0011	1 5078	0.0223	0.1550	0.0017	944	30	934	9	929	9	1.6	929	9
34	0.0706 0.0015	1 // 50	0.0223	0.1330	0.0017	947 947	14	908	13	802	10	5.0)2)	,
35	0.0687 0.0016	1 3731	0.0305	0.1450	0.0017	890	46	900 878	13	873	9	1.9	873	9
36	0.1097 0.0015	1.3751	0.0505	0.3218	0.0017	1794	-10 24	1796	11	1700	17	0.3	179/	24
37	0.0692 0.0010	1/1371	0.0000	0.1506	0.0034	905	24	905	8	904	0	0.5	00/	0
38	0.1288 0.0010	67728	0.0202	0.1500	0.0010	2082	2)	2082	13	2083	10	0.1	2082	26
30	0.0733 0.0028	1 7131	0.0988	0.3614	0.0042	1022	20 75	1013	24	1000	13	1.2	1022	20 75
40	0.0733 0.0028	1 2 4 4 9	0.0031	0.1095	0.0025	860	24	865	24	869	15	1.2	1022 969	0
40	0.0077 0.0011	1.3440	0.0219	0.1440	0.0010	2025	54 25	2024	12	2022	10	0.9	606	9 25
41	0.1247 0.0018	0.3380	0.0890	0.3085	0.0040	2025	25	2024	12	2023	19	0.1	2025	25
42 12	0.1230 0.0018	0.4518	0.0920	0.5/20	0.0040	2037	20	2039	13	2042	19	0.2	2037	23
43 11	0.0092 0.0013	1.3000	0.0253	0.1433	0.0016	903	38 22	8/3 054	11	804	9 10	4.5		
44 15	0.0721 0.0012	1.3396	0.0252	0.1568	0.0017	990	33	954	10	939	10	5.2	2000	24
40	0.1230 0.0017	0.1609	0.0840	0.3632	0.0039	2000	24	1999	12	1997	18	0.2	2000	24
40 17	0.0689 0.0011	1.4897	0.0240	0.156/	0.0017	891	55 24	926	10	939	10	4.6	0//	0
47 48	0.00/8 0.0011	1.3443	0.0222	0.1437	0.0016	803 020	34 30	805 027	10	800 026	9 10	0.3	800 026	9 10
40	0.0683.0.0017	1 2607	0.0202	0.1345	0.0017	949 977	72 10	921 876	14	920 876	10	0.5	920 876	10
49	0.0005 0.0017	1.307/	0.0520	0.1455	0.0017	0//	+2	070	14	070	10	0.2	0/0	10

*A total of 19 youngest concordant zircions used to define the maximum depositon age are shown in bold.

Table 3. Zircon U-Pb LA-ICPMS data (continued)

	Pb ²⁰⁷ /Pb ²⁰⁶	Pb ²⁰⁷ /	U^{235}	Pb ²⁰⁶ /	U^{238}	Pb ²⁰⁷ /P	b^{206}	Pb ²⁰⁷ /U	1 ²³⁵	Pb ²⁰⁶ /U	1 ²³⁸	Disc.	Best age e	stimate
	Ratio 1o	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	%	Age(Ma)	1σ
50	0.0687 0.0010	1.4077	0.0209	0.1485	0.0016	891	30	892	9	893	9	0.2	893	9
51	0.0712 0.0019	1.4592	0.0380	0.1487	0.0018	963	53	914	16	894	10	7.4		
52	0.0685 0.0012	1.3267	0.0227	0.1405	0.0016	883	35	857	10	848	9	4.1		
53	0.0697 0.0030	1.4771	0.0630	0.1537	0.0023	919	87	921	26	922	13	0.3	922	13
54	0.1659 0.0024	10.8526	0.1550	0.4743	0.0051	2517	24	2511	13	2503	22	0.6	2517	24
55	0.0687 0.0013	1.4217	0.0261	0.1500	0.0017	890	38	898	11	901	9	1.2	901	9
56	0.1237 0.0018	6.2384	0.0916	0.3657	0.0040	2010	26	2010	13	2009	19	0	2010	26
57	0.2149 0.0031	17.1552	0.2512	0.5791	0.0063	2943	23	2944	14	2945	26	0.1	2943	23
58	0.0703 0.0012	1.4722	0.0241	0.1518	0.0017	938	33	919	10	911	9	2.9	911	9
59	0.0699 0.0012	1.4070	0.0233	0.1459	0.0016	926	34	892	10	878	9	5.3		
60	0.0697 0.0014	1.4298	0.0276	0.1487	0.0017	920	40	902	12	894	9	2.9	894	9
Sam	ple F26													
1	0.0713 0.0010	1.4611	0.0203	0.1486	0.0016	966	28	915	8	893	9	7.8		
2	0.0700 0.0010	1.3875	0.0191	0.1439	0.0015	927	28	884	8	867	9	6.7		
3	0.0724 0.0010	1.5491	0.0211	0.1553	0.0016	996	28	950	8	930	9	6.8		
4	0.0708 0.0010	1.5402	0.0218	0.1578	0.0017	951	29	947	9	945	9	0.6	945	9
5	0.0704 0.0011	1.5070	0.0231	0.1553	0.0017	939	31	933	9	931	9	0.9	931	9
6	0.0688 0.0010	1.4104	0.0206	0.1486	0.0016	894	30	893	9	893	9	0	893	9
7	0.0720 0.0011	1.6095	0.0250	0.1622	0.0017	985	32	974	10	969	10	1.6	969	10
8	0.0712 0.0020	1.5768	0.0428	0.1607	0.0020	963	56	961	17	960	11	0.2	960	11
9	0.0689 0.0018	1.4175	0.0371	0.1492	0.0018	896	54	896	16	896	10	0	896	10
10	0.0681 0.0012	1.3846	0.0244	0.1476	0.0016	870	37	882	10	887	9	1.9	887	9
11	0.0716 0.0010	1.4686	0.0210	0.1488	0.0016	975	29	918	9	894	9	8.6		
12	0.1492 0.0031	3.4552	0.0696	0.1680	0.0021	2337	35	1517	16	1001	11	80		
13	0.0689 0.0014	1.4114	0.0288	0.1486	0.0017	895	42	894	12	893	9	0.2	893	9
14	0.0695 0.0010	1.3420	0.0196	0.1401	0.0015	913	30	864	9	845	8	7.8		
15	0.0664 0.0023	1.1731	0.0389	0.1282	0.0017	818	69	788	18	778	10	5.0		
16	0.0693 0.0010	1.3423	0.0189	0.1404	0.0015	908	29	864	8	847	8	6.9		
17	0.0781 0.0020	1.6387	0.0407	0.1521	0.0019	1151	50	985	16	913	10	23		
18	0.0691 0.0018	1.4277	0.0354	0.1500	0.0018	900	51	901	15	901	10	0	901	10
19	0.0696 0.0010	1.4677	0.0216	0.1529	0.0016	917	30	917	9	917	9	0	917	9
20	0.0712 0.0011	1.4712	0.0229	0.1498	0.0016	964	32	919	9	900	9	6.9		
21	0.0703 0.0011	1.5170	0.0233	0.1566	0.0017	936	31	937	9	938	9	0.2	938	9
22	0.0686 0.0009	1.3949	0.0189	0.1475	0.0016	886	28	887	8	887	9	0.1	887	9
23	0.0689 0.0016	1.4034	0.0322	0.1478	0.0017	895	47	890	14	889	10	0.7	889	10
24	0.0693 0.0013	1.4428	0.0260	0.1510	0.0017	907	37	907	11	907	9	0	907	9
25	0.0712 0.0011	1.5062	0.0237	0.1535	0.0017	962	32	933	10	921	9	4		
26	0.0730 0.0016	1.5189	0.0325	0.1509	0.0017	1015	43	938	13	906	10	11		
27	0.0696 0.0012	1.4573	0.0254	0.1518	0.0017	917	36	913	11	911	9	0.6	911	9
28	0.0718 0.0013	1.5011	0.0262	0.1517	0.0017	980	36	931	11	910	9	7.3		
29	0.0702 0.0011	1.5093	0.0237	0.1559	0.0017	935	32	934	10	934	9	0.1	934	9
30	0.0733 0.0033	1.7038	0.0739	0.1687	0.0027	1021	88	1010	28	1005	15	1.6	1005	15
31	0.0687 0.0011	1.4049	0.0223	0.1482	0.0016	891	33	891	9	891	9	0	891	9
32	0.0697 0.0011	1.4450	0.0231	0.1503	0.0016	920	33	908	10	903	9	1.9	903	9
33	0.0702 0.0011	1.5067	0.0239	0.1558	0.0017	933	33	933	10	933	9	0.1	933	9
34	0.0683 0.0010	1.3717	0.0197	0.1456	0.0016	878	30	877	8	877	9	0.2	877	9
35	0.0703 0.0011	1.4870	0.0235	0.1535	0.0017	937	32	925	10	920	9	1.8	920	9
36	$0.0727 \ 0.0012$	1.5204	0.0242	0.1516	0.0016	1006	32	939	10	910	9	10		
37	0.0712 0.0014	1.4255	0.0273	0.1452	0.0016	964	39	900	11	874	9	9.8		
38	0.0725 0.0013	1.3722	0.0234	0.1373	0.0015	999	35	877	10	830	9	19		

Table 3. Zircon U-Pb LA-ICPMS data (continued)

	Pb ²⁰⁷ /Pb ²⁰⁶	Pb ²⁰⁷ /I	U^{235}	Pb ²⁰⁶ /	U^{238}	Pb ²⁰⁷ /P	b^{206}	Pb ²⁰⁷ /U	1 ²³⁵	Pb ²⁰⁶ /U	238	Disc.	Best age e	stimate
	Ratio 1σ	Ratio	1σ	Ratio	1σ	Age	1σ	Age	1σ	Age	lσ	%	Age(Ma)	1σ
39	0.0716 0.0025	1.5722	0.0543	0.1592	0.0022	976	71	959	21	952	12	2.4	952	12
40	0.0706 0.0011	1.5263	0.0241	0.1567	0.0017	947	32	941	10	939	9	0.8	939	9
41	0.0705 0.0017	1.5075	0.0348	0.1551	0.0018	943	47	933	14	929	10	1.5	929	10
42	0.0702 0.0012	1.4962	0.0255	0.1547	0.0017	933	35	929	10	927	9	0.6	927	9
43	0.0699 0.0018	1.4769	0.0365	0.1534	0.0018	924	51	921	15	920	10	0.4	920	10
44	0.0699 0.0012	1.4815	0.0248	0.1538	0.0017	924	34	923	10	922	9	0.2	922	9
45	0.0698 0.0015	1.4757	0.0305	0.1533	0.0018	924	43	920	12	919	10	0.5	919	10
46	0.0700 0.0013	1.4972	0.0265	0.1550	0.0017	930	36	929	11	929	10	0.1	929	10
47	0.0683 0.0019	1.3724	0.0373	0.1457	0.0018	878	56	877	16	877	10	0.1	877	10
48	0.0683 0.0015	1.3725	0.0298	0.1457	0.0017	879	45	877	13	877	9	0.2	877	9
49	0.0709 0.0018	1.5599	0.0378	0.1596	0.0019	955	50	954	15	954	11	0.1	954	11
50	0.0693 0.0012	1.3932	0.0229	0.1459	0.0016	907	34	886	10	878	9	3.2		
51	0.0686 0.0014	1.3947	0.0284	0.1474	0.0017	887	42	887	12	886	9	0.1	886	9
52	0.0689 0.0012	1.4111	0.0246	0.1486	0.0016	895	36	894	10	893	9	0.2	893	9
53	0.0678 0.0015	1.3268	0.0295	0.1420	0.0017	861	46	858	13	856	9	0.6	856	9
54	0.0685 0.0013	1.3894	0.0255	0.1470	0.0016	885	38	884	11	884	9	0	884	9
55	0.0702 0.0013	1.4982	0.0264	0.1548	0.0017	934	36	930	11	928	10	0.6	928	10
56	0.0699 0.0012	1.5011	0.0244	0.1557	0.0017	926	33	931	10	933	9	0.8	933	9
57	0.0691 0.0023	1.4252	0.0454	0.1496	0.0020	902	66	900	19	899	11	0.3	899	11
58	0.0687 0.0012	1.3986	0.0244	0.1476	0.0016	890	36	888	10	888	9	0.3	888	9
59	0.0696 0.0012	1.4631	0.0247	0.1525	0.0017	916	35	915	10	915	9	0	915	9
60	0.0699 0.0012	1.4857	0.0253	0.1542	0.0017	925	35	925	10	925	9	0	925	9
San	nple F4													
1	0.1817 0.0022	12.7955	0.1577	0.5107	0.0055	2669	20	2665	12	2660	23	0.3	2669	20
2	0.0682 0.0010	1.3674	0.0204	0.1454	0.0016	874	30	875	9	875	9	0.1	875	9
3	0.1707 0.0020	8.4354	0.1027	0.3584	0.0038	2565	20	2279	11	1975	18	26		
4	0.0690 0.0014	1.4184	0.0290	0.1490	0.0017	900	42	897	12	895	10	0.5	895	10
5	0.0703 0.0013	1.5193	0.0270	0.1568	0.0018	937	36	938	11	939	10	0.3	939	10
6	0.0696 0.0010	1.4647	0.0217	0.1526	0.0017	917	30	916	9	916	9	0.1	916	9
7	0.0690 0.0011	1.4226	0.0219	0.1496	0.0016	898	31	898	9	899	9	0.1	899	9
8	0.1196 0.0015	2.3069	0.0286	0.1400	0.0015	1949	22	1214	9	844	8	79		
9	0.1737 0.0021	10.7804	0.1330	0.4500	0.0048	2594	20	2504	11	2395	21	8.0		
10	0.0702 0.0019	1.5102	0.0391	0.1559	0.0019	935	53	935	16	934	11	0.1	934	11
11	0.0683 0.0009	1.3712	0.0185	0.1457	0.0016	877	27	877	8	877	9	0	877	9
12	0.0713 0.0012	1.5836	0.0272	0.1611	0.0018	965	35	964	11	963	10	0.2	963	10
13	0.0680 0.0009	1.3502	0.0186	0.1441	0.0016	867	28	868	8	868	9	0.1	868	9
14	0.0700 0.0010	1.4886	0.0219	0.1543	0.0017	927	30	926	9	925	9	0.2	925	9
15	0.0699 0.0010	1.4880	0.0217	0.1545	0.0017	924	29	926	9	926	9	0.2	926	9
16	0.0689 0.0009	1.4145	0.0194	0.1490	0.0016	894	28	895	8	895	9	0.1	895	9
17	0.0695 0.0011	1.4606	0.0231	0.1524	0.0017	913	32	914	10	915	9	0.1	915	9
18	0.0690 0.0011	1.4214	0.0219	0.1493	0.0016	900	31	898	9	897	9	0.3	897	9
19	0.0690 0.0011	1.4190	0.0222	0.1492	0.0017	898	32	897	9	897	9	0.2	897	9
20	0.0694 0.0008	1.2403	0.0139	0.1296	0.0014	911	22	819	6	785	8	15		
21	0.1626 0.0021	7.9200	0.1046	0.3533	0.0038	2483	22	2222	12	1950	18	24		
22	0.1580 0.0020	7.8123	0.1003	0.3586	0.0039	2434	21	2210	12	1976	18	21		
23	0.1380 0.0018	7.7464	0.1048	0.4070	0.0045	2203	23	2202	12	2201	20	0.1	2203	23
24	0.0695 0.0012	1.4544	0.0247	0.1517	0.0017	914	35	912	10	911	10	0.4	911	10
25	0.0700 0.0016	1.5050	0.0329	0.1558	0.0019	930	45	932	13	934	10	0.4	934	10
26	0.0674 0.0011	1.3110	0.0209	0.1410	0.0016	851	33	851	9	850	9	0.1	850	9
27	0.0689 0.0011	1.4126	0.0223	0.1487	0.0017	895	32	894	9	894	9	0.1	894	9

Table 3. Zircon U-Pb LA-ICPMS data (continued)

	Pb ²⁰⁷ /Pb ²⁰⁶	Pb ²⁰⁷ /U ²³⁵	Pb ²⁰⁶ /	U^{238}	Pb ²⁰⁷ /P	b^{206}	Pb ²⁰⁷ /U	235	Pb ²⁰⁶ /U	238	Disc.	Best age e	stimate
	Ratio 1 0	Ratio 1 0	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	%	Age(Ma)	1σ
28	0.0690 0.0010	1.4247 0.0204	0.1498	0.0016	898	29	899	9	900	9	0.2	900	9
29	0.0674 0.0009	1.3115 0.0178	0.1411	0.0015	850	27	851	8	851	9	0	851	9
30	0.0713 0.0013	1.5832 0.0295	0.1610	0.0019	966	38	964	12	963	10	0.3	963	10
31	0.0694 0.0020	1.4406 0.0410	0.1506	0.0019	909	59	906	17	905	11	0.5	905	11
32	0.0684 0.0009	1.3797 0.0194	0.1463	0.0016	880	28	880	8	880	9	0	880	9
33	0.0681 0.0009	1.3574 0.0191	0.1447	0.0016	870	28	871	8	871	9	0.1	871	9
34	0.0691 0.0010	1.4249 0.0202	0.1496	0.0016	900	29	899	8	899	9	0.2	899	9
35	0.1830 0.0025	13.00/1 0.1780	0.5154	0.0056	2680	22	2680	13	2680	24	0	2680	24
36	0.0697 0.0010	1.4692 0.0219	0.1529	0.0017	919	30	918	9	917	9	0.1	917	9
37	0.0698 0.0014	1.4828 0.0300	0.1541	0.0018	923	41	923	12	924	10	0.1	924	10
38	0.0699 0.0011	1.4789 0.0242	0.1535	0.0017	925	33	922	10	921	10	0.4	921	10
39	0.0695 0.0016	1.4546 0.0331	0.1519	0.0018	912	47	912	14	911	10	0.1	911	10
40	0.0676 0.0011	1.3163 0.0223	0.1413	0.0016	855	35	853	10	852	9	0.3	852	9
41	0.0697 0.0011	1.4/49 0.0236	0.1534	0.0017	921	32	920	10	920	10	0.1	920	10
42	0.0708 0.0011	1.5573 0.0242	0.1595	0.0018	952	31	953	10	954	10	0.2	954	10
43	0.0705 0.0015	1.5334 0.0315	0.1577	0.0019	944	42	944	13	944	10	0	944	10
44	0.0685 0.0016	1.38/7 0.0327	0.1469	0.0018	883	48	884	14	884	10	0	884	10
45	0.0682 0.0010	1.5182 0.0222	0.1613	0.0018	876	29	938	9	964	10	9.6		
46	0.0850 0.0019	2.0445 0.0460	0.1744	0.0021	1316	44	1131	15	1036	12	24	0.2.4	10
47	0.0699 0.0011	1.4864 0.0236	0.1542	0.0017	926	32	925	10	924	10	0.2	924	10
48	0.0667 0.0011	1.04/3 0.01/2	0.1139	0.0013	827	34	728	9	696	10	17	016	10
49	0.0696 0.0011	1.4653 0.0236	0.1527	0.0017	916	32	916	10	916	10	0	916	10
50	0.0725 0.0012	1.6/61 0.0284	0.16/7	0.0019	999	34	1000	11	1000	11	0.1	1000	11
51	0.1884 0.0028	9.3023 0.1394	0.3581	0.0040	2728	24	2368	14	1973	19	32	00.6	10
52	0.0689 0.0012	1.4161 0.0246	0.1490	0.0017	896	35	896	10	896	10	0	896	10
53	0.1401 0.0021	7.5719 0.1155	0.3918	0.0044	2229	26	2182	14	2131	20	4.5		10
54	0.0696 0.0012	1.4702 0.0252	0.1531	0.0017	918	35	918	10	918	10	0.1	918	10
55	0.0675 0.0011	1.3140 0.0210	0.1413	0.0016	852	32	852	9	852	9	0	852	9
56	0.0698 0.0012	1.4766 0.0250	0.1535	0.0017	922	34	921	10	920	10	0.2	920	10
57	0.0687 0.0012	1.4093 0.0246	0.1487	0.0017	890	35	893	10	894	10	0.4	894	10
58	0.0672 0.0011	1.4552 0.0233	0.1571	0.0018	843	32	912	10	941	10	11		
59	0.0701 0.0013	1.4986 0.0283	0.1551	0.0018	931	38	930	11	929	10	0.2	929	10
60	0.0696 0.0013	1.4711 0.0268	0.1532	0.0018	918	37	919	11	919	10	0.1	919	10
San		1 4505 0 0206	0.1504	0.0016	012	20	014	0	014	0	0.0	014	0
1	0.0695 0.0010	1.4595 0.0206	0.1524	0.0016	913	29	914	9	914	9	0.2	914	9
2	0.0707 0.0010	1.5490 0.0219	0.1588	0.0017	950	29	950	9	950	9	0	950	9
3	0.0692 0.0009	1.5022 0.0184	0.1574	0.0016	906	25	931	/	942	9	4.0	942	9
4	0.0680 0.0012	1.3491 0.0227	0.1439	0.0016	868	35	867	10	867	9	0.2	867	9
5	0.0696 0.0009	1.4639 0.0196	0.1526	0.0016	916	28	916	8	915	10	0.1	915	9
6 7	0.0711 0.0012	1.5/10 0.0263	0.1602	0.0017	961	34	959	10	958	10	0.3	958	10
1	0.0686 0.0011	1.3903 0.0219	0.14/1	0.0016	885	33	885	9	885	9	0	885	9
8	0.0691 0.0010	1.4291 0.0198	0.1499	0.0016	903	28	901	8	901	9	0.2	901	9
9	0.0724 0.0010	1.6640 0.0232	0.1668	0.0018	996	28	995	9	995	10	0.1	995	10
10	0.0685 0.0009	1.3850 0.0181	0.1467	0.0015	883	27	883	8	883	9	0	883	9
11	0.0682 0.0012	1.3/12 0.023/	0.1457	0.0016	876	36	8//	10	8//	9	0.1	8//	9
12	0.0697 0.0009	1.4707 0.0194	0.1531	0.0016	919	27	918	8	918	9	0.1	918	9
13	0.0692 0.0012	1.4355 0.0247	0.1505	0.0016	904	36	904	10	904	9	0	904	9
14	0.0688 0.0013	1.40/0 0.0257	0.1482	0.0016	894	38	892	11	891	9	0.3	891	9
15	0.0806 0.0010	1.6356 0.0207	0.1472	0.0015	1211	25	984	8	885	9	31	0.50	~
16	0.0691 0.0013	1.3720 0.0245	0.1441	0.0016	901	37	877	11	868	9	3.8	868	9
17	0.0918 0.0012	1.3533 0.0172	0.1069	0.0011	1464	24	869	7	655	6	76		

Table 3. Zircon U-Pb LA-ICPMS data (continued)

	Pb ²⁰⁷ /Pb ²⁰⁶	Pb ²⁰⁷ /U ²³⁵	Pb ²⁰⁶ /	U^{238}	Pb ²⁰⁷ /Pl	b^{206}	Pb ²⁰⁷ /U	1 ²³⁵	Pb ²⁰⁶ /U	238	Disc.	Best age e	stimate
	Ratio 10	Ratio 10	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	%	Age(Ma)	1σ
18	0.0695 0.0009	1.4625 0.0191	0.1526	0.0016	913	27	915	8	916	9	0.3	916	9
19	0.0688 0.0011	1.4038 0.0214	0.1480	0.0016	892	31	891	9	890	9	0.3	890	9
20	0.0698 0.0009	1.4841 0.0188	0.1541	0.0016	924	26	924	8	924	9	0	924	9
21	0.0828 0.0014	1.6643 0.0273	0.1457	0.0016	1266	32	995	10	877	9	36		
22	0.0714 0.0011	1.5864 0.0243	0.1611	0.0017	969	31	965	10	963	10	0.6	963	10
23	0.0850 0.0015	1.8289 0.0322	0.1560	0.0017	1316	34	1056	12	934	10	34		
24	0.0685 0.0011	1.3891 0.0212	0.1470	0.0016	885	31	884	9	884	9	0.1	884	9
25	0.0688 0.0009	1.4106 0.0186	0.1488	0.0016	892	27	893	8	894	9	0.2	894	9
26	0.1196 0.0019	5.7505 0.0903	0.3486	0.0038	1951	28	1939	14	1928	18	1.2	1951	28
27	0.0690 0.0010	1.4279 0.0207	0.1500	0.0016	900	30	901	9	901	9	0.1	901	9
28	0.0694 0.0010	1.4474 0.0214	0.1514	0.0016	909	30	909	9	909	9	0.1	909	9
29	0.0733 0.0010	1.6188 0.0218	0.1602	0.0017	1022	27	978	8	958	9	6.5		
30	0.0702 0.0012	1.5064 0.0243	0.1556	0.0017	935	33	933	10	932	9	0.3	932	9
31	0.0699 0.0013	1.4860 0.0274	0.1542	0.0017	926	38	925	11	924	9	0.1	924	9
32	0.0698.0.0010	1 4762 0 0209	0 1535	0.0016	921	29	921	9	921	9	0.1	921	9
33	0.0760.0.0010	1.5237 0.0201	0.1454	0.0015	1096	26	940	8	875	9	22	21	,
3/	0.0706 0.0009	1.5257 0.0201	0.1570	0.0017	9/6	20	945	8	9/5	o o	0.1	9/5	0
35	0.0700 0.000	1.5571 0.0204	0.1577	0.0017	001	20	000	0	000	10	0.1	000	10
36	0.0722 0.0011	1.0321 0.0240	0.1591	0.0018	991	29	990	9	990	10	0.1	990	10
20	0.0700 0.0012	1.3393 0.0233	0.1540	0.0017	947	54 20	940	10	940	10	0.1	940	10
37	0.0699 0.0010	1.4841 0.0217	0.1540	0.0016	925	30	924	12	924	9	0.1	924	9
38	0.0775 0.0015	1.5968 0.0297	0.1495	0.0017	1133	3/	969	12	898	9	23		
39	0.0695 0.0010	1.4613 0.0202	0.1525	0.0016	914	28	915	8	915	9	0.1	915	9
40	0.0724 0.0011	1.4769 0.0217	0.1480	0.0016	997	30	921	9	890	9	11.4		
41	0.0687 0.0010	1.3970 0.0204	0.1476	0.0016	889	30	888	9	887	9	0.1	887	9
42	0.0747 0.0012	1.5199 0.0250	0.1476	0.0016	1060	33	938	10	888	9	18		
43	0.0695 0.0011	1.4589 0.0226	0.1523	0.0016	914	32	914	9	914	9	0	914	9
44	0.0712 0.0013	1.5834 0.0277	0.1613	0.0018	964	36	964	11	964	10	0	964	10
45	0.0680 0.0012	1.3501 0.0239	0.1440	0.0016	868	37	868	10	868	9	0	868	9
46	0.0693 0.0011	1.4420 0.0222	0.1510	0.0016	907	32	907	9	906	9	0.1	906	9
47	0.0699 0.0011	1.4924 0.0229	0.1548	0.0017	926	31	927	9	928	9	0.2	928	9
48	0.0706 0.0010	1.4622 0.0212	0.1502	0.0016	946	30	915	9	902	9	4.8	902	9
49	0.0700 0.0012	1.4973 0.0243	0.1550	0.0017	930	33	929	10	929	9	0	929	9
50	0.0834 0.0013	1.3573 0.0209	0.1181	0.0013	1277	30	871	9	720	7	56		
51	0.0709 0.0017	1.5551 0.0359	0.1592	0.0019	953	47	953	14	952	10	0.1	952	10
52	0.0691 0.0012	1.4347 0.0251	0.1505	0.0016	903	36	904	10	904	9	0.1	904	9
53	0.0700 0.0012	1.4975 0.0262	0.1551	0.0017	928	36	929	11	930	9	0.1	930	9
54	0.0740 0.0011	1.5527 0.0232	0.1522	0.0016	1041	30	952	9	913	9	13		
55	0.0712 0.0013	1.4545 0.0253	0.1482	0.0016	963	35	912	10	891	9	7.8		
56	0.0701.0.0011	1 5066 0 0242	0.1558	0.0017	932	33	933	10	934	9	0.2	934	9
57	0.0786.0.0013	1.5576 0.0252	0.1437	0.0017	1162	32	954	10	866	9	29	754	,
58	0.0710 0.0018	1.5576 0.0252	0.1400	0.0010	057	50	057	15	057	11	2)	057	11
50 Son	0.0/10 0.0018	1.3033 0.0384	0.1000	0.0019	937	50	937	15	937	11	0	937	11
1		1 4284 0 0160	0 1500	0.0015	001	24	001	7	001	0	0	001	0
י ר	0.0091 0.0008	1.4264 0.0109	0.1300	0.0013	901	24 71	901	21	901	9	12	901	9
2	0.0719 0.0020	1.4407 0.0303	0.1460	0.0020	965	71	909	21	0/0	11	12	070	0
3	0.0689 0.0009	1.3850 0.0175	0.1459	0.0015	895	26	883	/	8/8	8	1.9	8/8	8
4	0.0692 0.0011	1.4367 0.0226	0.1506	0.0016	905	33	904	9	904	9	0.1	904	9
5	0.0688 0.0011	1.4100 0.0222	0.1487	0.0016	893	33	893	9	893	9	0.1	893	9
6	0.0688 0.0008	1.4194 0.0156	0.1497	0.0015	892	23	897	7	899	9	0.8	899	9
7	0.0688 0.0009	1.4073 0.0184	0.1484	0.0015	892	27	892	8	892	9	0.1	892	9
8	0.0697 0.0009	1.4699 0.0188	0.1531	0.0016	918	26	918	8	918	9	0	918	9
9	0.0685 0.0008	1.3890 0.0161	0.1471	0.0015	884	24	884	7	885	8	0.1	885	8

Table 3. Zircon U-Pb LA-ICPMS data (continued)

	Pb ²⁰⁷ /Pb ²⁰⁶	Pb^{207}/U^{235}	Pb ²⁰⁶ /	U^{238}	Pb ²⁰⁷ /F	b^{206}	Pb ²⁰⁷ /U	1 ²³⁵	Pb ²⁰⁶ /U	238	Disc.	Best age e	stimate
	Ratio 10	Ratio 10	Ratio	1σ	Age	1σ	Age	1σ	Age	1σ	%	Age(Ma)	1σ
10	0.0729 0.0035	1.6331 0.0753	0.1625	0.0027	1011	93	983	29	971	15	4.2		
11	0.0704 0.0014	1.5216 0.0301	0.1568	0.0017	939	41	939	12	939	10	0	939	10
12	0.0687 0.0014	1.4061 0.0276	0.1484	0.0016	891	41	892	12	892	9	0.1	892	9
13	0.0700 0.0013	1.4675 0.0261	0.1520	0.0017	929	37	917	11	912	9	1.9	912	9
14	0.0689 0.0012	1.4168 0.0247	0.1491	0.0016	896	36	896	10	896	9	0	896	9
15	0.0695 0.0008	1.4608 0.0157	0.1524	0.0015	914	22	914	6	914	9	0	914	9
16	0.0689 0.0011	1.4201 0.0228	0.1494	0.0016	897	33	897	10	898	9	0.1	898	9
17	0.0696 0.0008	1.4667 0.0164	0.1528	0.0016	917	23	917	7	917	9	0	917	9
18	0.0704 0.0013	1.5248 0.0278	0.1571	0.0017	940	38	940	11	941	10	0.1	941	10
19	0.0695 0.0008	1.4611 0.0160	0.1524	0.0015	915	22	915	7	915	9	0	915	9
20	0.0702 0.0009	1.5146 0.0198	0.1564	0.0016	935	27	936	8	937	9	0.2	937	9
21	0.0745 0.0013	1.5630 0.0265	0.1521	0.0017	1056	34.4	955.6	11	913	9	16		
22	0.0692 0.0011	1.4496 0.0236	0.1519	0.0016	905	34	910	10	912	9	0.7	912	9
23	0.0698 0.0010	1.4809 0.0199	0.1539	0.0016	923	28	923	8	923	9	0	923	9
24	0.0690 0.0010	1.4227 0.0200	0.1496	0.0016	898	29	899	8	899	9	0.1	899	9
25	0.0696 0.0008	1.4658 0.0173	0.1527	0.0016	917	24	916	7	916	9	0.1	916	9
26	0.0695 0.0010	1.4563 0.0200	0.1521	0.0016	913	28	913	8	912	9	0	912	9
27	0.0710 0.0013	1.5680 0.0290	0.1601	0.0018	958	38	958	11	957	10	0.1	957	10
28	0.0697 0.0012	1.4720 0.0247	0.1532	0.0016	920	35	919	10	919	9	0.1	919	9
29	0.0710 0.0012	1.5627 0.0268	0.1597	0.0017	957	35	956	11	955	10	0.1	955	10
30	0.0705 0.0008	1.5292 0.0175	0.1574	0.0016	941	23	942	7	943	9	0.1	943	9
31	0.0716 0.0018	1.6105 0.0385	0.1633	0.0019	973	49	974	15	975	11	0.2	975	11
32	0.0703 0.0013	1.5188 0.0277	0.1566	0.0017	938	38	938	11	938	10	0	938	10
33	0.0709 0.0012	1.5566 0.0269	0.1593	0.0017	953	35	953	11	953	10	0	953	10
34	0.0679 0.0041	1.3543 0.0792	0.1446	0.0027	867	120	869	34	871	15	0.4	871	15
35	0.0698 0.0012	1.4766 0.0242	0.1535	0.0016	921	34	921	10	921	9	0.1	921	9
36	0.0687 0.0018	1.3998 0.0353	0.1478	0.0018	890	52	889	15	889	10	0.1	889	10
37	0.0670 0.0015	1.2385 0.0267	0.1341	0.0015	837	45	818	12	811	9	3.2		
38	0.0685 0.0007	1.3834 0.0150	0.1466	0.0015	883	22	882	6	882	8	0.1	882	8
39	0.0700 0.0009	1.4932 0.0195	0.1547	0.0016	929	27	928	8	927	9	0.2	927	9
40	0.0694 0.0012	1.4509 0.0241	0.1517	0.0016	910	34	910	10	910	9	0	910	9
41	0.0696 0.0012	1.4661 0.0249	0.1528	0.0016	916	35	917	10	917	9	0.1	917	9
42	0.0702 0.0015	1.5076 0.0315	0.1557	0.0017	935	43	934	13	933	10	0.2	933	10
43	0.0700 0.0011	1.4933 0.0230	0.1548	0.0016	927	32	928	9	928	9	0.1	928	9
44	0.0693 0.0008	1.4454 0.0163	0.1512	0.0015	908	23	908	7	908	9	0	908	9
45	0.0707 0.0015	1.5425 0.0310	0.1583	0.0018	948	41	948	12	947	10	0.1	947	10
46	0.0685 0.0012	1.3849 0.0230	0.1467	0.0016	882	34	883	10	883	9	0.1	883	9
47	0.0709 0.0017	1.5593 0.0364	0.1595	0.0019	954	48	954	14	954	10	0	954	10
48	0.0678 0.0014	1.3427 0.0271	0.1436	0.0016	863	42	864	12	865	9	0.2	865	9
49	0.0699 0.0011	1.4892 0.0238	0.1545	0.0016	926	33	926	10	926	9	0	926	9
50	0.0691 0.0013	1.4266 0.0260	0.1498	0.0016	901	38	900	11	900	9	0.1	900	9
51	0.0703 0.0018	1.5147 0.0377	0.1564	0.0018	936	51	936	15	937	10	0.1	937	10
52	0.0699 0.0008	1.4896 0.0174	0.1545	0.0016	926	24	926	7	926	9	0	926	9
53	0.0703 0.0012	1.5111 0.0262	0.1559	0.0017	937	36	935	11	934	9	0.3	934	9
54	0.0705 0.0020	1.5338 0.0421	0.1577	0.0019	944	57	944	17	944	11	0	944	11
55	0.0701 0.0008	1,4976 0.0161	0.1551	0.0016	930	22	929	7	929	9	01	929	9
56	0.0701 0.0008	1.4999 0.0166	0.1552	0.0016	931	22	930	, 7	930	9	0.1	930	9
57	0.0696 0.0013	1.4614 0.0262	0.1524	0.0017	915	37	915	11	914	9	0.1	914	9
58	0.0700 0.0008	1.4927 0.0161	0.1547	0.0016	928	22	927	7	927	9	0.1	927	9
59	0.0690 0.0012	1.4206 0.0238	0.1493	0.0016	899	35	898	10	897	9	0.2	897	9
60	0.0700 0.0010	1.4989 0.0211	0.1553	0.0016	929	29	930	9	930	9	0.2	930	9

				Sande	tone	Yume	en Formatio	n			Judeto	no		
	F38	T3-1-2	T3-2	T-1	T-3	73	Average	st11	st12	st13	st14	st15	st16	Average
Maior O	xides (v	/t%)	102		10	20	Twerage	5(11	0(12	5110	5(14	0110	5010	Twendge
SiO ₂	69.7	79.8	65.2	64.1	80.1	67.7	71.1	65.7	62.1	64.1	65.7	65.3	73.4	66.0
TiO ₂	0.99	0.48	0.81	1.02	0.30	0.79	0.73	0.89	0.85	0.76	0.93	0.98	0.84	0.88
AI_2O_3	12.7	10.4	15.5	15.7	10.9	13.9	13.2	14.0	16.3	14.7	13.3	17.8	14.3	15.1
Fe ₂ O ₃	6.62	1.13	5.92	7.87	0.87	7.21	4.94	7.42	7.30	7.70	6.74	2.62	1.69	5.58
MnO	0.05	0.03	0.07	0.10	0.01	0.03	0.05	0.07	0.04	0.03	0.03	0.01	0.02	0.03
MgO	1.94	0.23	1.07	2.17	0.20	1.91	1.25	2.12	1.97	1.81	2.27	1.32	1.01	1.75
CaO	0.31	0.22	0.91	0.30	0.25	0.34	0.39	0.28	0.20	0.22	0.69	0.05	0.05	0.25
Na ₂ O	3.66	5.05	4.97	1.70	5.14	2.43	3.82	2.91	2.06	2.82	3.41	0.87	1.01	2.18
K ₂ O	1.11	0.50	2.23	2.45	0.43	1.50	1.37	1.71	2.57	1.95	1.34	3.55	3.76	2.48
P_2O_5	0.16	0.00	0.09	0.10	0.00	0.16	0.09	0.14	0.10	0.16	0.21	0.00	0.00	0.10
LOI	2.64	1.67	3.07	3.65	1.06	3.12	2.54	4.67	5.70	5.10	5.06	6.23	3.85	5.10
Total	99.9	99.6	99.8	99.2	99.3	99.1	99.5	99.9	99.2	99.3	99.7	98.7	100.0	99.5
CIA	63	53	56	73	54	70	61	67	72	68	63	77	71	70
Trace el	ements	(ppm)												<i>i</i> = -
Sc	11.8	1.85	12.8	17.5	6.29	17.1	12.2	16.0	19.3	15.9	17.2	19.1	19.7	17.8
V Cr	89	17.7	40 27	127	20	115	69 02	108	137	114	134	257	206	159
	200	14.9	37 2.20	/4 18 3	19.0	152	93 6.01	100	102	170	201	140	01	561
Ni	45 3	94	9.2	38.6	27	32.7	23.0	48.9	55 7	48.2	69.9	2.70 41 3	10.00	45 7
Rb	30.5	0. 7.4	36.2	90.7	9.3	70.8	40.8	69.7	114	80.8	54.3	137	134	98
Sr	48	153	213	80	266	60	137	62	61	88	138	29	18	66
Y	19.7	6.0	28.0	21.6	10.1	21.7	17.8	18.7	24.6	35.6	20.1	26.1	25.9	25.1
Zr	125	89	214	193	119	162	150	122	135	119	129	153	170	138
Nb	5.14	5.23	9.59	11.40	6.21	6.18	7.29	6.41	10.04	7.94	6.20	10.52	13.24	9.06
Cs	1.98	0.38	2.52	3.85	0.43	3.47	2.10	3.39	5.71	5.07	2.82	8.03	7.62	5.44
Ba	170	125	352	324	132	255	226	271	419	296	295	417	618	386
La	22.2	8.5	15.0	22.3	17.4	21.9	17.89	20.6	29.5	32.0	13.1	41.5	29.9	27.8
Се	45.8	15.5	28.8	44.3	28.9	51.7	35.83	46.0	61.9	81.8	26.8	83.6	57.0	59.5
Pr	6.00	1.94	3.91	4.95	3.82	6.14	4.46	5.19	6.75	9.12	3.49	9.45	6.37	6.73
Nd	27.4	8.15	17.3	19.4	14.1	26.6	18.82	21.9	26.1	38.1	15.7	40.5	26.2	28.1
Sm	6.43	1.68	4.14	4.07	2.62	6.20	4.19	4.61	5.21	8.48	3.62	8.16	4.73	5.80
Eu	0.94	0.28	1.01	0.90	0.50	1.48	0.87	1.10	1.32	2.33	0.89	1.72	0.90	1.39
Th	0.29	0.28	0.70	0.62	2.01	0.20	0.63	4.00	0.76	9.21	0.55	0.75	4.55	0.80
Dv	5 71	1 70	4 79	3.63	1 82	4 44	3.68	3.54	4 24	6.91	3 43	5.30	4 50	4 65
Ho	1.12	0.32	1.14	0.78	0.40	0.87	0.77	0.71	1.02	1.35	0.78	1.08	0.99	0.99
Er	2.83	0.84	3.30	2.36	1.21	2.32	2.14	1.96	2.80	3.28	2.11	3.07	3.08	2.72
Tm	0.38	0.13	0.49	0.34	0.18	0.31	0.31	0.30	0.41	0.44	0.32	0.49	0.48	0.41
Yb	2.36	0.83	3.08	2.38	1.30	2.13	2.01	1.80	2.85	2.70	2.00	2.89	3.10	2.56
Lu	0.36	0.14	0.51	0.35	0.22	0.30	0.31	0.29	0.43	0.39	0.29	0.44	0.49	0.39
Hf	4.14	3.06	6.75	4.84	3.01	4.10	4.32	3.74	4.30	3.57	3.99	4.65	5.22	4.25
Та	0.27	0.20	0.43	0.73	0.41	0.40	0.41	0.36	0.60	0.47	0.36	0.68	0.90	0.56
Pb	9.83	5.96	7.95	3.48	4.32	5.06	6.10	5.88	7.96	11.3	17.4	13.7	47.4	17.3
ih	4.57	2.99	6.03	1.68	3.64	5.45	5.06	5.19	8.66	6.58	4.72	8.94	14.50	8.10
	1.31	0.93	1.72	1.50	0.69	1.16	1.22	1.53	2.12	1.65	1.42	3.26	3.95	2.32
	U.49 109	0.51 42	0.70 88	U.// 110	U./D 75	U.ÖU 120	0.00 06	U.70 112	U./9 1/9	U.Ö I 107	0.74 77	0.7 I 206	U.09 1/2	U.13 117
i∖⊑E La/Vh	6 22	74 6 0 2	00 3.20	6.21	1 J Q 01	602	50 6 / 6	7 60	6.05	<i>וטו</i> 7 00	тт Л Л 1	200	6 10	1 4 7 7 20
	0.33	0.92 10.20	J.20 1 97	0.31	9.UI 12.20	0.92 10.20	0.40	11 42	0.90	1.90 11 06	4.41 6 5 6	5.00 11 01	0.49	1.20
Cr/Th	56.8	5.0	4.07 6.1	9.7	5.2	27.9	9.00 18.45	35.8	21.0	25.9	55.3	16.5	5.6	26.7

Table 4 Chemical compositon of the Yanbian rocks in the western margin of the Yangtze Block.

Table 4 (continued)

						Х	laoping	g ⊢orm	ation	topo							
	E2	E1 1	E4 2	55	Ee	E7	Eo	EO	Sanus		E10	E12	E14	E15	E16	E17	E10
Major O	ro xides (<u>r4-i</u> wt%)	Г4-2	гэ	ΓŬ	Γ/	ГО	гэ	FIU	FII	FIZ	FIJ	Г 14	FID	FIU	ΓΙ/	FIO
SiO ₂	67.5	69.0	69.8	66.5	66.4	59.6	58.8	66.3	71.1	71.1	62.3	53.3	54.9	55.1	54.7	60.8	59.59
TiO ₂	1.00	0.65	0.69	0.81	0.78	1.01	1.18	0.79	0.54	0.73	1.02	1.74	1.23	1.14	1.14	1.25	1.20
AI_2O_3	13.8	13.2	13.5	14.3	14.1	16.6	16.3	15.5	14.7	14.6	16.2	16.2	17.9	16.9	17.7	16.2	17.51
Fe_2O_3	5.97	4.86	5.09	5.97	5.86	8.11	8.43	6.52	2.12	1.91	6.17	10.71	9.50	6.94	8.84	6.49	7.17
MnO	0.08	0.09	0.06	0.07	0.08	0.11	0.13	0.05	0.02	0.03	0.11	0.26	0.23	0.18	0.22	0.14	0.14
MgO	1.63	1.22	1.15	1.51	1.84	2.85	3.12	1.60	0.75	0.47	1.82	3.24	2.63	1.97	2.62	1.86	1.72
CaO	0.29	1.64	0.35	0.98	0.35	0.82	1.07	0.16	0.31	0.32	2.26	4.67	3.52	5.33	3.39	2.88	1.22
Na ₂ O	2.80	4.05	4.31	3.02	5.07	6.21	6.04	2.73	3.76	5.82	4.58	3.63	3.65	4.78	3.45	5.54	4.09
K ₂ O	1.95	1.49	1.50	2.22	2.10	0.61	0.56	1.71	3.99	2.33	2.25	1.55	2.43	1.93	2.84	1.57	3.11
P_2O_5	0.13	0.08	0.07	0.07	0.10	0.15	0.17	0.08	0.06	0.02	0.16	0.27	0.25	0.28	0.24	0.18	0.18
LOI	3.51	3.22	2.97	3.01	2.71	3.05	3.17	3.78	2.18	1.90	2.55	4.21	3.50	5.22	3.60	2.83	3.39
Total	98.6	99.5	99.5	98.4	99.4	99.1	98.9	99.2	99.6	99.3	99.4	99.7	99.8	99.8	98.8	99.8	99.3
CIA	66	54	59	61	56	58	57	71	57	54	54	54	55	49	55	51	60
Trace el	ement	s (ppm	1)														
Sc	12.5	11.6	10.4	10.2	12.6	13.5	14.5	11.5	13.4	14.4	14.6	18.4	14.5	15.9	14.0	10.8	14.9
V	93	64	60	70	94 74	130	158	102	36	33	93	228	147	105	125	38	117
Cr	12	56	53	12	/4 10.0	51	60 16 1	/8	28	33	41	147	11	47	110	30	62
	12.1	9.9	9.1 22.4	11.Z	12.8	17.1	10.4	4.Z	9.5	1.0	11.0	ZZ.4	15.5	10.0	14.9	1.U	19.1 27.7
Dh	40.0 55.0	23.9	22.4	20.Z	37.0 45.4	29.0 11 /	24.2	10.9	22. I 55 /	4.5	20.0	00.9 16.6	30.1	21.3	34.5	13.7	31.1 120
Sr	73	1/1	152	160	40.4	255	9.9 244	103	204	178	325	330	377	29.9	330	218	42.9
Y	17.8	16.0	18.2	17.0	16.0	18 1	277 15 8	66 7	204 29 7	15.8	25.4	24 7	21.6	24.9	22.1	217	29.0
Żr	202	119	99	140	117	101	104	123	146	164	171	158	154	147	160	47	174
Nb	12.0	6.21	5.64	7.99	5.59	4.91	5.12	5.99	8.12	8.38	9.89	9.31	8.94	8.27	8.95	2.93	10.14
Cs	2.97	1.32	1.44	2.93	2.29	0.76	1.23	1.46	2.43	1.32	1.46	1.24	2.32	1.84	2.63	0.88	1.65
Ва	308	278	284	355	303	195	179	316	943	424	480	407	650	589	568	341	1125
La	27.1	15.3	22.1	24.6	20.2	14.5	16.0	51.8	34.9	25.0	24.4	25.6	25.1	26.0	24.9	20.4	23.6
Ce	48.9	34.2	37.8	44.4	38.0	28.5	31.1	104	67.2	45.6	48.0	45.6	44.8	45.2	46.6	36.1	47.8
Pr	5.40	3.82	5.06	5.34	4.33	3.43	3.72	15	8.47	5.06	5.79	5.79	5.65	5.71	6.13	4.46	6.47
Nd	21.1	16.2	21.1	22.4	17.0	15.0	16.0	69.3	37.1	19.9	25.0	25.7	23.6	24.5	26.1	20.1	28.8
Sm	3.83	3.45	4.42	4.39	3.43	3.25	3.46	16	8.04	3.76	5.28	5.32	4.99	4.98	5.33	4.12	6.37
Eu	0.71	0.71	0.76	0.92	0.75	0.73	0.77	2.88	1.81	1.07	1.18	1.26	1.37	1.24	1.31	0.97	1.73
Gd	4.44	3.16	4.27	4.36	3.52	2.83	3.20	17	7.50	4.18	4.99	4.93	4.83	4.91	5.18	4.03	5.64
Ib	0.67	0.55	0.72	0.72	0.57	0.52	0.56	2.49	1.40	0.63	0.84	0.86	0.81	0.84	0.87	0.70	1.02
Dy	4.22	3.47	4.48	4.58	3.56	3.46	3.50	16	9.02	3.95	5.44	5.47	5.01	5.27	5.55	4.40	0.00
HU Er	0.80	1 01	0.92	0.85	0.70	0.72	0.08	2.00	1.70	0.70	1.00	1.04	0.90	1.10	1.12	0.89	1.37
LI Tm	2.27	0.20	0.36	2.30	2.09	2.00	0.28	0.05	4.02	2.1 4 0.30	2.07	2.02	2.43	0.45	0.44	0.36	0.51
Yh	2 10	1.80	2 22	2 10	1 92	1.88	0.20	5.04	3.53	1 91	0. 4 2 2.72	2.54	2 32	2 72	2 70	2 32	3.25
	0.36	0.27	0.34	0.32	0.30	0.29	0.28	0.74	0.55	0.32	0.41	0.40	0.37	0.43	0.42	0.38	0.5
Hf	5.90	3.61	3.44	4.43	3.76	3.15	3.25	4.26	4.78	4.89	5.10	4.80	4.74	4.58	5.03	1.72	5.45
Та	0.38	0.23	0.22	0.29	0.24	0.20	0.22	0.27	0.30	0.32	0.33	0.31	0.31	0.30	0.32	0.11	0.4
Pb	17.2	15.6	15.0	15.6	18.6	5.78	8.56	22.7	10.1	8.46	9.90	5.44	4.74	8.99	6.77	4.68	10.2
Th	10.7	4.27	4.15	5.50	5.35	2.71	2.57	5.28	5.48	5.13	4.72	3.29	3.98	3.76	3.98	2.86	3.77
U	2.44	1.03	1.02	1.31	1.24	0.80	0.83	1.24	1.51	1.48	1.42	1.00	1.16	1.09	1.16	0.54	1.08
Eu/Eu*	0.53	0.66	0.53	0.64	0.66	0.74	0.71	0.54	0.71	0.82	0.70	0.75	0.85	0.77	0.76	0.73	0.88
REE	122	86	107	118	97	77	83	309	187	115	128	128	123	126	130	102	137
La/Yb _N	8.32	5.74	6.70	7.89	7.08	5.18	6.06	6.92	6.66	8.80	6.03	6.79	7.28	6.43	6.21	5.93	4.89
La/Yb	12.4	8.52	9.95	11.7	10.52	7.70	9.01	10	9.90	13.07	8.96	10.09	10.82	9.55	9.22	8.81	7.26
Cr/Th	6.7	13.1	12.8	13.1	13.9	19.0	23.5	14.7	5.1	6.4	9.9	44.6	19.4	12.6	17.5	10.4	16.3

Table 4 (continued)

								ioping	Sands	tone							
	F19	F20	F21	F24	F25	F26	F27	F28	F29	F30	F31	F32	F33	F34	Z4	Z5	Average
Major C)xides	(wt%)			•												, noreige
SiO ₂	64.2	62.7	62.7	61.9	60.3	62.1	60.9	62.3	68.6	72.1	66.9	62.0	68.9	72.5	66.2	63.4	63.8
TiO ₂	1.09	1.14	1.04	1.21	1.21	1.14	1.20	1.25	1.06	0.83	0.87	0.92	0.75	0.66	0.72	0.92	1.00
	15.8	15.0	15.0	15.3	15.5	15.3	16.1	15.1	13.8	12.2	14.6	15.0	14.1	12.5	13.8	14.4	15.11
Fe ₂ O ₂	5 / 0	7.82	7 38	7 77	8 07	8.64	8 32	8 00	1 01	1 31	6 34	7 30	1 61	3 / 0	7.04	8.64	6 66
MnO	0.40	0.11	0.00	0.08	0.07	0.04	0.02	0.00	0.06	0.20	0.04	0.00	0.10	0.40	0.05	0.04	0.00
MaQ	1 40	3.02	2.95	2.87	3.24	2.93	2 75	2.93	1.62	1.54	1 42	1.86	1 14	0.00	2 75	2 17	2.04
CaO	0.99	0.56	0.59	0.40	0.50	0.50	0.45	0.36	0.10	0.11	0.26	0.13	0.63	0.63	0.35	0.79	1.12
Na ₂ O	4 28	4 36	3.93	3.82	3 4 5	2.96	2.97	3 48	3 64	3 35	3.01	2 00	5 48	5.63	2 46	2 32	3.96
K-0	3.03	1.87	2.00	2.08	1 05	2.00	2.24	1 02	1 64	1 10	1 03	2.00	1 11	1 08	2.10	1.85	1 07
	0.40	0.00	2.09	2.00	0.00	2.10	2.24	0.00	0.00	0.00	0.00	2.01	0.05	1.00	2.24	1.00	1.37
$P_2 O_5$	0.18	0.20	0.22	0.21	0.30	0.27	0.20	0.23	0.06	0.03	0.09	0.13	0.05	0.04	0.12	0.27	0.15
LOI	2.71	3.18	3.29	3.56	3.75	3.33	4.09	3.82	3.90	3.18	4.14	6.86	2.28	1.67	3.07	4.12	3.39
Iotal	99.2 57	100.0	99.3	99.2	99.2	99.4 67	99.2	99.5	99.4	99.0 64	99.6	98.4 72	99.6 55	99.1 50	98.8	98.9	99.3 50
CIA Trace e	ט <i>ו</i> lemen	ts (nnm	0∠))	64	00	67	60	00	64	64	07	13	55	52	67	68	59
Sc	15.4	13.8	12.9	14.1	13.7	12.0	13.3	13.6	12.5	10.2	11.8	10.3	13.4	11.6	14.2	16.7	13.2
V	94	110	104	130	128	129	137	133	98	82	98	106	62	48	106	143	103
Cr	52	46	42	69	71	79	70	75	67	84	177	67	55	45	38	41	65
Со	15.3	12.1	12.4	11.5	13.4	11.6	10.4	10.1	6.8	2.6	7.8	4.5	7.0	8.4	11.3	22.1	11.4
Ni	24.1	28.2	31.0	30.0	34.0	37.1	30.6	28.5	22.2	16.5	37.9	21.3	16.9	18.3	16.8	22.2	27.0
Rb	39.7	42.3	47.6	52.2	49.6	53.8	51.7	41.8	41.8	31.7	53.4	42.8	27.8	16.3	59.4	63.7	39.3
Sr	189	60	54	57	56	48	49	51	63	80	75	51	107	112	75	83	149
Y	36.5	25.7	25.1	24.1	29.6	27.0	36.2	26.2	16.5	13.1	14.6	24.5	16.3	13.0	28.4	26.4	24.4
Zr	154	116	114	128	118	113	124	113	125	89	122	128	135	105	133	132	130
Nb	8.81	5.69	5.42	6.25	5.91	5.69	5.89	5.57	7.22	5.44	7.12	7.51	6.86	5.93	7.18	5.44	6.98
Cs	1.26	2.32	2.58	2.46	2.32	3.06	2.74	2.15	3.17	2.37	4.14	2.77	1.22	0.71	2.00	3.07	2.08
Ва	1215	336	349	337	320	349	427	351	283	223	235	275	317	259	523	408	423
La	26.6	15.2	15.1	16.6	18.1	16.1	24.1	15.9	15.8	18.9	24.1	20.3	15.4	11.0	22.8	14.1	21.6
Ce	51.6	34.2	34.7	34.7	40.9	34.9	43.8	35.4	32.0	32.7	48.1	37.7	32.6	20.2	45.0	33.4	42.0
Pr	6.72	4.01	4.41	4.19	5.19	4.49	6.59	4.62	3.74	4.17	5.40	4.//	3.86	2.38	5.30	4.10	5.26
INU Sm	29.3	10.0	20.3	10.9	24.1 5.50	20.2	30.7	21.0	10.0	10.9	ZZ.9	20.2	10.2	9.7	21.7	18.3	ZZ.8
500	0.22	4.37	4.79	4.ZZ	0.03	5.04 1.04	1.23	0.27 1.05	0.10	0.55	4.03	4.21	0.72	2.04	4.07	4.27	4.90
Eu	5.07	1 23	0.95 1 50	3 /0	0.93	1.04	1.49 5.71	1.05	3 1/	3 12	0.70 1.56	4.06	3.22	2.03	1.23	1.21	1.00
Th	1.06	4.23 0.74	0.76	0.67	0.89	03 0.80	1 10	0.83	0.54	0.50	0.73	0.73	0.57	0.34	0.85	0.76	0.81
Dv	6.94	4 74	5 10	4 61	5.96	5.37	7.32	5.60	3 56	3 14	4 45	4 80	3 77	2 34	5.00	4 70	5 18
Ho	1.44	1.05	1.07	1.05	1.28	1.16	1.51	1.19	0.75	0.59	0.90	1.05	0.78	0.54	1.03	1.03	1.05
Er	4.10	3.04	3.01	3.04	3.71	3.39	4.23	3.49	2.19	1.55	2.32	3.01	2.22	1.67	2.73	2.83	2.88
Tm	0.58	0.43	0.42	0.45	0.55	0.50	0.64	0.51	0.34	0.23	0.32	0.46	0.34	0.26	0.37	0.41	0.42
Yb	3.62	2.70	2.66	2.80	3.32	3.20	3.94	3.21	2.12	1.48	2.02	2.93	2.19	1.65	2.41	2.74	2.60
Lu	0.59	0.43	0.40	0.43	0.51	0.48	0.58	0.48	0.35	0.24	0.30	0.47	0.35	0.27	0.34	0.40	0.40
Hf	4.99	3.80	3.62	4.08	4.00	3.93	4.20	3.90	4.21	2.92	3.85	4.32	4.32	3.62	3.60	3.51	4.11
Та	0.32	0.24	0.24	0.26	0.26	0.25	0.27	0.25	0.27	0.19	0.24	0.28	0.28	0.23	0.45	0.35	0.28
Pb	8.61	9.86	8.14	5.67	11.3	10.9	5.66	6.01	7.78	16.8	11.5	4.61	10.2	14.1	5.92	7.46	10.1
Th	3.34	3.04	3.12	3.66	3.30	3.27	3.48	3.06	5.40	4.01	5.30	6.03	4.83	4.31	5.49	2.93	4.31
U	1.08	0.78	0.81	0.95	0.90	0.87	0.92	0.80	1.34	1.07	1.39	1.45	1.26	1.10	0.88	0.42	1.10
Eu/Eu*	0.85	0.65	0.61	0.65	0.57	0.70	0.71	0.68	0.62	0.51	0.52	0.61	0.66	0.89	0.78	0.86	0.69
REE	146	95	98	96	115	101	139	103	83	87	121	105	86	55	118	93	116
La/Yb _N	4.95	3.78	3.83	3.99	3.66	3.39	4.12	3.33	5.01	8.59	8.02	4.65	4.72	4.47	6.37	3.46	5.7
La/Yb	7.35	5.61	5.69	5.93	5.44	5.04	6.13	4.94	7.45	12.8	11.9	6.91	7.02	6.64	9.46	5.15	8.5
Cr/Th	15.7	15.2	13.6	18.8	21.4	24.1	20.0	24.5	12.4	20.9	33.5	11.2	11.4	10.4	6.9	13.9	16.1

Table 4 (continued)

							Лаори	ng Forn	hation								
	et2	et/	et5	et6	et7	ct8	et17	1\ ct18	100510	ne st20	ct21	ct22	S+23	S+24	St25	S+26	Average
Maior C	Jvides	$\frac{514}{(wt\%)}$	515	510	517	510	5117	5110	5119	5120	SIZI	SIZZ	3123	3124	3125	3120	Average
SiO ₂	59.0	70.6	65.2	68.8	62.2	59.4	63.3	58.4	61.2	59.5	58.5	60.9	57.9	63.5	58.1	59.1	61.6
TiO ₂	0.74	0.98	0.95	0.83	0.83	0.87	0.98	0.75	0.78	0.74	0.82	0.92	0.88	0.78	0.97	0.80	0.9
Al_2O_3	15.2	15.4	15.3	13.6	15.5	15.9	17.0	19.6	16.8	17.3	16.1	16.9	18.5	15.5	19.5	17.7	16.6
Fe ₂ O ₃	6.55	2.70	5.42	5.22	7.67	8.68	3.94	8.11	7.30	8.59	9.51	6.99	7.45	5.68	5.15	7.59	6.7
MnO	0.13	0.04	0.04	0.02	0.15	0.07	0.04	0.04	0.15	0.05	0.10	0.06	0.03	0.12	0.04	0.03	0.1
MaO	3.21	1.37	1.92	1.31	2.50	2.16	1.77	1.26	2.20	1.99	2.90	2.39	1.99	1.77	1.72	1.89	2.0
CaO	2.54	0.06	0.09	0.31	0.37	0.40	0.09	0.06	0.24	0.08	0.57	0.99	0.26	0.88	1.29	0.13	0.5
Na ₂ O	2.34	0.14	2.97	2.90	1.70	1.66	0.35	0.17	0.93	0.54	2.16	2.51	0.57	2.76	1.41	0.69	1.5
 K₂Ō	3.59	3.60	2.23	1.91	2.43	2.20	3.28	3.22	2.91	2.93	2.43	2.72	2.98	3.77	4.67	2.91	3.0
P ₂ O ₂	0.13	0.02	0.06	0.09	0.13	0.18	0.01	0.11	0.06	0.10	0.32	0.18	0.10	0.06	0.21	0.12	0.1
	5.82	1 77	5.00	1 11	5.06	7.52	8.06	7.84	6 37	7 3/	5 11	1 15	7 00	4 50	5.62	7 01	6.2
Total	00.2	4.// 00.7	00.2	4.14	00 /	00.1	0.00	00.5		00 1	08.0	4.4J	08.6	4.50	08 7	08.0	0.2
CIA	57.2	79.1 79	99.2 68	99.2 65	33. 4 73	39.1 75	90.9 80	99.J 84	99.0 77	89.1 81	90.9 71	99.0 67	90.0 81	99.5 61	68 68	90.9 81	33.1 72
Trace e	lemen	ts (ppr	n)	00	10	15	00	04		01	11	07	01	01	00	01	12
Sc	19.5	22.3	19.8	15.4	19.2	18.8	20.9	19.5	20.5	17.4	19.2	22.2	9.3	14.6	13.9	9.6	17.6
V	133	241	145	110	143	140	238	141	133	125	132	142	136	80	106	124	142
Cr	57	119	61	157	111	78	102	96	112	100	91	89	99	57	38	83	91
Со	27.0	8.9	11.7	13.4	17.8	13.1	1.6	7.4	11.4	5.0	10.4	6.7	4.3	8.5	3.5	6.1	9.8
Ni	11.8	0	0	10.4	28.7	19.2	32.6	44.2	59.4	32.5	77.1	36.0	31.0	25.8	15.1	39.0	28.9
Rb	128	140	73.9	74.0	90.5	79.0	114	114	105	96.1	74.8	83.0	75.1	80.3	112	69.1	94.3
Sr	90	23	95	102	53	65	48	11	103	14	114	171	13	78	59	27	67
Y	25.6	22.0	20.4	17.8	23.2	27.6	33.9	28.3	28.8	28.0	23.8	31.1	24.6	20.4	42.1	43.5	27.6
Zr	158	178	150	147	158	164	176	166	158	161	135	147	147	166	206	125	159
Nb	10	13	8.55	8.13	9.96	9.16	12.0	12.1	10.9	10.6	8.87	9.11	9.61	10.01	12.6	7.97	10.15
Cs	7.08	8.42	4.63	4.61	4.97	3.24	5.39	6.33	4.65	3.70	3.12	4.16	4.06	6.83	6.16	2.79	5.01
Ba	519	554	472	283	413	340	602	576	652	530	393	579	491	725	966	531	539
La	27.9	36.3	22.4	25.1	31.8	24.3	38.8	39.9	38.9	16.4	13.3	24.8	27.4	26.4	14.9	43.5	28.3
Ce	53.9	72.4	46.7	53.8	60.7	43.6	72.7	78.7	75.0	19.1	29.2	55.2	50.9	47.2	35.6	51.7	52.9
Pr	5.79	7.44	5.18	6.06	6.86	5.60	9.58	9.19	8.19	4.07	4.34	6.77	7.28	5.72	5.68	11.0	6.80
Nd	21.9	27.2	19.8	24.2	26.7	23.4	37.9	37.8	31.8	18.5	19.7	28.4	31.7	22.9	27.3	47.6	27.9
Sm	4.67	4.81	4.23	5.37	5.42	5.73	7.29	7.26	5.50	3.99	4.66	6.12	7.10	4.53	7.51	10.5	5.92
Eu	1.03	1.04	0.98	1.21	1.20	1.30	1.76	1.69	1.36	1.12	1.11	1.90	1.32	1.03	1.43	1.86	1.33
Gd	4.54	4.28	3.76	4.79	5.02	5.78	7.12	5.80	5.22	4.64	4.70	6.06	6.31	4.76	6.63	9.06	5.53
ID	0.79	0.66	0.61	0.69	0.75	0.87	0.93	0.83	0.74	0.67	0.67	0.91	1.08	0.74	1.15	1.67	0.86
Dy	4.61	3.91	3.63	3.71	4.31	4.82	5.92	4.97	5.12	4.47	4.07	5.78	6.72	4.85	1.94	10.6	5.34
HO En	0.95	0.82	0.82	0.73	0.90	1.01	1.29	1.10	1.11	1.01	0.94	1.23	1.32	0.95	1.71	2.10	1.12
El	2.80	2.04	2.38	2.07	2.70	2.19	3.73	3.14	3.14	3.15	2.00	3.50	3.52	2.71	4.73	0.34	3.19
TIII Vh	0.40	0.43	0.41	0.31	0.41	0.43	0.00	0.00	0.49	0.01	0.40	0.00	0.00	0.42	0.04	1 20	0.49
	2.99	0.10	2.70	2.10	2.07	2.00	0.50	0.50	0.53	0.10	2.04	0.57	0.51	2.09	4.13	4.39	0.40
Lu Llf	0.40	0.40 1 00	0.40	0.33	0.40	0.44 1 27	0.59	0.00 5 10	0.00	0.40 1 90	1 20	0.0Z	0.01	0.44 5.44	7.45	0.00	0.49 1 97
Ta	0.88	4.90	4.00	0.40	4.54	4.57	0.67	0.77	4.72	4.09	4.20	0.50	0.33	0.35	0.45	4.00	4.07
Ph	6 30	31 1	9.50	0. 4 3 8.87	12 7	6 79	17 Q	6.27	8 22	11 4	8 15	7 87	12.0	17.4	4 10	6.65	11 0
Th	11	10	5 79	5.34	8 52	6.21	10.41	10.27	12.2	8 27	7 59	7 75	7 14	7.06	7 76	6.92	8 27
U	1 63	2 30	1.52	1 47	1 64	1.38	4 74	2 30	2 31	1 73	1 72	1 75	1.89	2 31	1 81	1 53	2 00
Eu/Eu*	0.68	0.70	0.75	0.73	0.71	0.69	0.75	0.80	0.78	0.80	0.72	0.95	0.60	0.68	0.62	0.58	0.72
REE	133	166	114	131	150	123	192	195	180	81	89	145	149	125	120	201	143
La/Yb⊾	6.28	7.95	5.45	7 75	8.04	5 74	6.88	7.83	7 84	3 48	3 38	4 67	5.75	6.61	2 4 2	6.66	6.0
la/Vh	0.20	11 R	8 10	11 51	11 05	8 52	10.22	11 62	11 6	5 17	5.00	6 0/	8 5/	0.83	3 60	a an	9.0 9 N
Cr/Th	5.4	11.4	10.6	29.5	13.0	12.5	9.8	9.2	9.2	12.1	12.0	11.4	13.8	8.1	5.0	12.0	11.6
U	U . 1			20.0		0	0.0	J	J.2					v . i	0.0		

Table 4 (continued)

				Zagu				
		Sar	ndstone	;		Muc	lstone	
	F22	F23	Z1	Average	st1	st9	st10	Average
Major O	xides	(wt%)						
SiO ₂	63.1	65.4	66.8	65.1	61.5	58.9	67.1	62.5
TiO ₂	1.03	0.89	0.70	0.9	0.85	0.81	0.55	0.7
Al_2O_3	15.2	14.0	13.8	14.3	16.1	20.0	14.9	17.0
Fe ₂ O ₃	7.44	6.63	6.32	6.8	8.04	7.26	5.84	7.0
MnO	0.05	0.05	0.05	0.0	0.14	0.02	0.05	0.1
MaQ	3 15	2 80	2 50	2.8	3.28	2.02	1.91	24
CaO	0.37	0.31	0.49	0.4	0.27	0.08	0.30	0.2
Na ₂ O	3.45	3.34	2.40	3.1	2.52	0.26	1.73	1.5
K₂O	2.70	2.24	2.33	2.4	2.65	3.48	2.23	2.8
P_2O_5	0.15	0.13	0.19	0.2	0.14	0.11	0.05	0.1
LOI	2.98	3.39	3.13	3.2	4.27	6.21	4.69	5.1
Total	99.7	99.2	98.7	99.2	99.8	99.1	99.3	99.4
CIA	63	63	67	64	69	83	72	75
Trace e	lemen	ts (ppm)	01	00	00		10
Sc	12.7	11.7	, 14.3	12.9	20.1	20.4	12.8	17.8
V	116	96	103	105	126	160	72	119
Cr	58	49	34	47	56	90	40	62
Co	11.8	67	10.5	97	18.5	10.2	10 1	12.9
Ni	26.0	21.1	16.7	21.3	5.96	25.9	0.00	10.6
Rh	52.3	44.8	63.6	53.6	85.9	122.9	78.3	95.7
Sr	70	68	85	74	51	16	75	47
V	21.1	21 4	335	25.3	28.9	36.5	323	32.6
7 7r	138	21. 4 111	135	128	167	204	181	184
Nh	8 73	7.01	7 40	7 71	10.05	13/0	10 68	11 37
Ce	1.88	1 60	2 10	1.86	3 88	10.40	6 54	5 00
Ba	553	1.00	563	527	310	733	853	635
La	20.2	18 1	22.5	20.3	30.5	182	347	377
La	20.2	10.1 26.6	22.5	20.3	50.Z	40.Z	J4.7 17 7	57.7 64 5
Dr	1 25	30.0 4 02	44.7 5 50	40.5	6 02	11 21	47.7 0.61	04.0
	4.55	4.02	0.09	4.05	0.00	11.51	0.01	0.92
INU Cree	10.0	10.0	23.0 5.00	19.5	20.0	44.0	04.0	30.3 0.00
500	3.77	3.74	5.90	4.47	0.15	9.41	8.49	8.02
Eu	0.89	0.85	1.75	1.10	1.09	2.03	1.57	1.50
Ga	3.75	3.50	6.23	4.51	5.60	8.39	1.62	1.21
	0.63	0.64	1.14	0.80	0.93	1.25	1.27	1.15
Dy	4.24	4.27	6.51	5.01	5.30	7.03	0.00	6.33
HO	0.91	0.94	1.29	1.05	1.13	1.41	1.26	1.27
Er	2.58	2.74	3.23	2.85	3.31	3.98	3.59	3.63
Im	0.41	0.39	0.43	0.41	0.53	0.60	0.56	0.56
Yb	2.57	2.44	2.69	2.57	3.75	3.95	3.67	3.79
Lu	0.43	0.39	0.37	0.40	0.53	0.58	0.54	0.55
Hf	4.64	3.70	3.68	4.01	4.61	5.74	5.08	5.14
Та	0.30	0.24	0.46	0.33	0.65	0.95	0.80	0.80
Pb	10.2	6.68	6.27	7.72	1.58	15.8	3.88	7.09
Th	7.66	5.50	5.82	6.33	8.47	11.13	8.05	9.21
U	1.77	1.28	0.92	1.32	1.51	2.35	1.60	1.82
Eu/Eu*	0.72	0.71	0.88	0.77	0.57	0.70	0.60	0.62
REE	102	95	126	108	153	227	161	180
La/Yb _N	5.30	5.00	5.63	5.3	5.42	8.21	6.35	6.7
La/Yb	7.87	7.43	8.36	7.9	8.05	12.20	9.44	9.9
Cr/Th	7.6	9.0	5.8	7.5	6.6	8.1	4.9	6.5

Table 5 Discriminating REE elements and ratios for the Yanbian sandstones (after Bhatia, 1983)

Tectonic settings	La	Ce	∑REE	La/Yb	La/Yb _N	∑LREE/∑HREE	Eu/Eu*	
Oceanic island arc	8±1.7	19±3.7	58±10	4.2±1.3	2.8±0.9	3.8±0.9	1.04±0.11	
Andean-type continetnal margin	37	78	186	12.5	8.5	9.1	0.6	
Passive margins	39	85	210	15.9	10.8	8.5	0.56	
Continental island arc	27±4.5	59±8.2	146±20	11±3.6	7.5±2.5	7.7±1.7	0.79±0.13	
Yanbian Group*	22	42	116	8.5	5.7	5.6	0.69	

*Values are adopted from the mean values of the 33 sandstones in the Xiaoping Formation.

Click here to download high resolution image

Formations		Lithological log	Lithologies description	Sedimentary	
ullu (ue)	5250 m	*****	Shale and sandstone with a ~30 m layer of conglomerate of glacial-interglacial origin.		
Lieg	4870m		Dolomitic slate, dolomitic limestone and gray siliceous slate.	parallel bedding	
Zagu Formation	F23 3960 m		Dark gray slates with minor black cabonaceous slate and sandstone interbeds. At the base there is a layer of conglomerate and pebbly sandstone (~10 m thick).	parallel bedding, grading, Bouma sequence,	
Xisoping Formation	F26		Dark gray slate and black cabonaceous slate with minor sandstone interbeds. At the top, the sandstone beds increase.	paratiel bedding, grading, Bouma sequence, scour and filling, load and flam textures.	
	¢ F4		In the upper part, there are black and gray slates with minor sandstone interbeds. In the lower part, there are dark gray or black cabonaceous slates with minor sandstone interbeds. Locally limestone lenses are present.	parallel bedding, grading, Bouma sequence, scour, slump, ferruginous	
	1720m		At the base, there are thick pebbly and coarse sandstones where Bouma sequences are well observed.	nodules.	
Yumen Formation	F3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dark gray, or black carbonaceous slate and gray slate with minor sandstone interbeds.	parallel bedding, grading, and Bouma sequence,	
	F38		Dark gray, black carbonaceous and siliceous slate with isolated lenses of limestone and minor sandstone interbeds. It conformabaly overlies the Fangtian Formation.	parallel bedding, grading and slumps.	
Fangtian Formation			Avolcanic sequence, > 1500 m thick, is composed of massive basalt, pillow basalt, and volcanic breccia, with minor interbedded chert and siliceous or pelitic slate.	pillow, vesicular, and amygdaloidal textures.	

