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This review focuses on our effort to address 
plasticity of the nervous system after neural 
injury. We have used different animal models 
to examine cellular mechanisms of plasticity 
underlying the pathological and repair processes. 
After severance of sensory input from one inner 
ear, topographic representations of space-
centered coordinates in the brain undergo plastic 
changes. During vestibular compensation, tissue 
plasticity constitutes an important component 
for functional recovery of neuronal network. In 
Parkinsonian animals, modulation of signaling 
via glutamatergic synapses, neurotrophins and 
neurokinins contributes to the protection of basal 
ganglion neurons from degeneration, thereby 
delaying deterioration of motor functions. With the 
use of animal models of neural injury, we further 
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overcome the molecular restriction at the glial scar 
to enhance neural regrowth and remyelination, 
pointing to the possibility of developing new 
therapeutic strategies to stimulate neural plasticity 
and repair in the adult nervous system.

Modification of Space-centered Coordinates in the 
Brain after Unilateral Loss of Vestibular Function
Vestibular information is centrally processed 
for the recognition of spatial orientation and 
for sensory-motor coordination.1,2 It is well 
documented that vestibular nuclear (VN) neurons 
receive otolith inputs arising from the two sides.3-5 
Immediately after unilateral vestibular neurectomy 
or labyrinthectomy, patients exhibit oculomotor 
and postural disorders as well as a corresponding 
change in their spatial perceptual judgments.6,7 
However, it is unknown whether central vestibular 
neurons receiving inputs solely from the ipsilateral 
or contralateral otoliths can encode spatiotemporal 
information during natural otolithic stimulation 
after unilateral loss of vestibular input from 
the inner ear. In normal rats, otolith-related VN 
neurons exhibited a spectrum of spatiotemporal 
properties, spanning from narrowly to broadly 
tuned patterns.8-12 The response vectors of these 
neurons were found to point in all horizontal 
directions,11 indicating that all horizontal head 
orientations are encoded across an ensemble 
of VN neurons.13,14 In hemi-labyrinectomized 
(HL) preparations in which the labyrinthine 
input from one side was eliminated,8 a number 
of deranged neural patterns were observed. 
Besides a significant increase in the proportion 
of broadly spatiotemporal-tuned neurons, there 
was an imbalance in the distribution of response 
vectors 9,15 resulting in deranged spatial coding 
after HL. Another finding was the emergence of 
unilaterally sensitive neurons that were not found 
in labyrinth-intact animals.11,16 The latter neurons 
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showed large shifts in response vector with change 
in velocity,9 indicating that signals of head 
orientations would be erroneously transmitted by 
these neurons during head movements after HL. In 
addition, asymmetries in spontaneous discharge, 
response dynamics and spatial coding behaviour 
were evidenced between neuronal subpopulations 
on the two sides, 9,10,17 suggesting a segregation 
of otolith signals reaching the ipsilateral and 
contralateral VN. These physiological correlates 
may contribute to both biased spatial coding 
and maladjusted otolith reflexes accompanying 
vestibular compensation. We therefore suggest 
within the VN, gating of spatial and temporal cues 
arising from the bilateral labyrinths are crucial for 
the recognition of head orientations in the normal 
state.

Progress has also been made to bridge the 
gap between remodeling of the perineuronal 
matrix and re-tuning of synaptic transmission 
after unilateral vestibular lesion. Perineuronal 
nets, lattice-like extracellular structures in the 
matrix surrounding neurons, were found to be 
disorganized with severance of peripheral inputs 
from one labyrinth but the nets resumed following 
adaptation to the change.18 It is noteworthy that 
degradation of perineuronal net by treatment 
with chondroitinase ABC reactivated cortical 
plasticity and promoted functional recovery of the 
lesioned visual system in adult animals.19 Since 
the perineuronal nets appear to be restrictive to 
tissue plasticity,20 our finding therefore offers a 
structural correlate for freeing the perineuronal 
environment to synaptic modulations that lead to 
functional recovery of VN neurons in the course 
of vestibular compensation. How the biophysical 
properties of the matrix influence the interactions 
with cellular receptors and consequent signaling 
cascades remain challenging questions for further 
investigations. Given that neurotrophin-mediated 
signaling is important for promoting survival 
of neuronal populations in the central nervous 
system 21 and for the survival of the vestibular 
ganglia,22 we examined the expression of high 
affinity tyrosine kinase receptors TrkA-C in the 

VN. The vast majority of otolith-related neurons 
in various VN subnuclei of adult rats expressed 
TrkA, TrkB or TrkC receptors.23,24 In hippocampal 
neurons, interaction of brain-derived neurotrophic 
factor (BDNF) / neurotrophin-4 with TrkB receptor 
altered the phosphorylation of NR125 and NR2B 
subunits,26 thereby modulating the properties of N-
methyl-D-asparate (NMDA) channels.27,28 Within 
the VN which receives signals of head movements 
via glutamatergic vestibular primary afferents,29,30 
otolith-related neurons highly expressed NMDA 
receptors.31,32 Co-expression of NMDA and α-
amino-3-hydroxyl-5-methyl-4isoxazole-propionic 
acid (AMPA) receptor subunits was also observed 
in VN neurons,33 implicating cross-modulation 
between these receptors. Pilot experiments using 
whole cell patch-clamp recording in VN neurons 
further demonstrated that changes in NMDA 
and AMPA receptor components are crucial 
for the differential demands of glutamatergic 
neurotransmission during the maturation of VN 
neurons.34 That 90% of otolith¬ related VN neurons 
expressed either NR1 or NR231 and that a similar 
proportion expressed TrkB receptor 35 tempted 
us to infer that co-localization of TrkB and NR1/
NR2 receptors in most otolith-related VN neurons 
contribute to the survival of central vestibular 
neurons during vestibular compensation.

Role of Glutamatergic Synapses, Neurotrophins 
and Neurokinins in Neuroprotection
Glutamate is also a key neurotransmitter in the basal 
ganglia.36 One of the possible causes of cell death 
in the substantia nigra of Parkinsonian patients is 
thought to be glutamate-mediated excitotoxicity 
and over-activity of glutamatergic pathways.37,38 
We have conducted a series of studies to investigate 
the contribution of glutamate neurotransmission, 
neurotrophins and neurokinins in protecting basal 
ganglia neurons of Parkinsonian animals from 
degeneration. Subpopulations of striatal neurons 
showed stage-specific combinations of NMDA 
subunits during postnatal development.39,40 The 
change in expression patterns of NR subunits may 
be related to functional maturation of neurons in 
the neostriatum. Similar observations have been 
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reported for the localization and expression of 
AMPA receptors,41-43 metabotropic glutamate 
receptors (Lam et al. 2005)44 and γ-aminobutyric 
acid (GABA) receptors 45,46 in the neostriatum. 
We have also found that the expression of NMDA 
and AMPA receptor subunits in the neostriatum 
changed after the induction of Parkinsonism in a 6-
hydroxydopamine (6-OHDA) ¬lesioned rat model 
of the disease.47 Other than the use of antagonists 
to block glutamatergic transmission,48 we recently 
demonstrated that motor symptoms of Parkinson’s 
disease in the rat model could be ameliorated after 
administration of an NR1 antisense oligonucleotide 
to the lesioned neostriatum.13 These results thus 
shed new light on alternative treatments of motor 
problems associated with Parkinson’s disease.

Several lines of evidence have shown that 
degeneration of dopaminergic neurons and onset 
of Parkinson’s disease are closely related to the level 
of neurokinins (including substance P, neurokinin 
A and B) in the basal ganglia.49-51 The biological 
functions of neurokinin as neurotransmitters or 
neuromodulators 52 are mediated by distinct G-
protein coupled receptors. Neurons in the basal 
ganglia display distinct subclasses of neurokinin 
receptors, with a predominance of NK-3 receptor 
in the substantia nigra and NK-l receptor in the 
neostriatum.53,54 Administration of NK-3 receptor 
agonist to mice treated with 1-methyl-4-phenyl¬ 
1,2,3,6-tetrahydropyridine (MPTP) aggravated 
the motor symptoms of Parkinson’s disease, 
indicating that NK-3 antagonism may improve 
the Parkinson’s disease conditions after onset of 
the disease. In the ventral pallidum, cholinergic 
neurons expressed both receptors,55,56 suggesting 
the differential roles of neurokinin receptors in the 
basal ganglia.

Substance P was also found to protect striatal 
cholinergic neurons from glutamate excitotoxicity, 
probably via modulating NMDA57 and AMPA 
receptors.43 In addition, the expression of substance 
P in striatal neurons was under the control 
of neurotrophic factors such as glial-derived 
neurotrophic factor (GDNF) and neurotrophin-

4/5,58 thus promoting the survival of dopaminergic 
neurons and prevention of neuronal death within 
the basal ganglia circuitry.59

Experiments have also been conducted to examine 
the contributory role of reactive astrocytes in the 
recovery of brain functions in Parkinsonism. In 
MPTP-treated mice, significant re-expression of 
nestin protein, an intermediate filament that is 
expressed in migrating and proliferating cells 
during embryogenesis but restricted to areas 
of regeneration in adults,60 was found in the 
caudate putamen while no obvious change was 
detected in the globus pallidus and substantia 
nigra.61,62 In the caudate putamen, the majority of 
nestin-immunoreactive cells displayed astrocytic 
morphology and expressed glial fibrillary acid 
protein (GFAP), a marker for astrocytic glial cells.61 
In addition, these nestin-expressing glial cells 
exhibited proliferative (Ki-67) and neurotrophic 
(BDNF) properties.63 Taken together, these results 
suggest that reactive astrocytes, through their 
neurotrophic functions and active interaction 
with dopaminergic neurons or progenitors, play 
important roles in the protection of surviving 
dopamine cells, thereby delaying deterioration of 
dopaminergic neurons in Parkinson’s disease.64

Neural Regeneration After Injury
Structural plasticity of neural tissue plays a key 
role in the remodeling and regeneration of the 
adult nervous system after injury. The association 
of extracellular matrix molecules with neural 
regeneration or remodeling has been increasingly 
acknowledged.65-68 For example, heparan sulfate 
proteoglycan is considered to play a permissive role 
while chondroitin sulfate proteoglycan has been 
conferred a restrictive role. Using a nerve bridge 
model, we demonstrated that supplementation 
of soluble heparan sulfates to the regenerative 
environment of sciatic nerves enhanced axonal 
reconnection of the severed nerve with the target 
muscle.69 A full recovery of the nerve conduction 
velocity was also evidenced in the course of 
20 weeks. Upregulation of chondroitin 6-
sulphotransferase-1 was demonstrated to result in 
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enhanced mobility of Schwann cells that guided 
axonal regrowth in the injured sciatic nerve.70 
Within the spinal cord of adult rats, co-localization 
of syndecan-3, a transmembrane heparan sulfate 
proteoglycan, with heparanase was revealed 
in neurons and oligodendrocytes,35 providing 
cellular basis for further study on the role of 
these components in enhancing regeneration 
and plasticity after spinal cord injury. Another 
extracellular matrix component, the chondroitin 
sulfate proteoglycans, were found to be up-
regulated in regions of reactive gliosis after spinal 
cord injury.71 We hypothesized that chondroitin 
sulfate proteoglycans deposited at the gliotic front 
constitute a molecular barrier to axonal growth 
into the transected spinal cord. Despite success in 
guiding axonal growth into the cellular graft that 
bridges across the transected cord, regeneration 
across the distal graft-host interface into the host 
spinal cord was limited.72,73 We exploited activity 
of chondroitinase ABC in vivo to resolve restriction 
due to chondroitin sulfate moieties at the glial scar 
to enhance neural regrowth and remyelination 
in the host cord.74 Our findings indicate that 
the regrowing axons could advance through 
the diminished chondroitin sulfate barrier at the 
interface, thus facilitating axonal regeneration into 
the caudal host spinal cord. Also, the prospect of 
the therapeutic use of the Schwann cell-seeded 
channel as a bridge to facilitate axonal regrowth 
across traumatic injury in the spinal cord is 
advanced.
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