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Multiyear Transmission Expansion Planning
Using Ordinal Optimization

Min Xie, Jin Zhong, Member, IEEE, and Felix F. Wu, Fellow, IEEE

Abstract—The increasing complexity of the transmission expan-
sion planning problem in the restructured industry makes simu-
lation the only viable means to evaluate and compare the perfor-
mances of different plans. Ordinal optimization is an approach
suitable for solving the simulation-based multiyear transmission
expansion planning problem. It uses crude models and rough esti-
mates to derive a small set of plans for which simulations are nec-
essary and worthwhile to find good enough solutions. In the end,
reasonable solutions are obtained with drastically reduced compu-
tational burden.

Index Terms—Multiyear transmission expansion, ordinal opti-
mization, transmission planning.

I. INTRODUCTION

TRANSMISSION EXPANSION PLANNING (TEP) aims
at strengthening an existing transmission network to serve

power producers and customers in an optimal way. Due to the
large-scale nature of a transmission system and its inherent
complexities, TEP has always been a complex problem. It has
been formulated as a large-scale mixed-integer nonlinear opti-
mization problem. Various optimization techniques have been
used to solve the problem, such as linear programming [1], [2],
dynamic programming, nonlinear programming [3], [4], and
mixed-integer programming [5]–[8]. At the same time, various
divide-and-conquer strategies such as Benders decomposition
[9]–[11], hierarchical decomposition, and branch-and-bound
algorithm have also been applied to solve large-scale TEP
problems. A more complete literature survey can be found in
[12].

Industry restructuring in recent years has resulted in the sep-
aration of generation and transmission systems and the intro-
duction of competitive electricity markets. A comprehensive
methodology, called the Transmission Economic Assessment
Methodology (TEAM), was developed by the California ISO
and London Economics to evaluate the economic benefits of
transmission expansion [13]. TEAM advocates the use of sim-
ulations for a large number of scenarios.
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The economic impacts of alternative transmission enhance-
ment schemes are different for different market participants. The
participants of an electricity market include independent power
producers, large customers, transmission network owners, and
the independent system operator. The interests of different par-
ties vary a great deal. Furthermore, other factors, such as un-
certainties in generation patterns, transmission congestions, and
regulatory policy changes, need to be considered in the evalu-
ation. Transmission expansion planning in the restructured in-
dustry has become much more complicated than before [14]. No
simple mathematical model can capture all the major factors in
the transmission expansion planning. Computer simulation, in
particular Monte Carlo simulation, has become the only viable
approach for assessing alternative plans for transmission expan-
sion.

A large number of scenarios and operating conditions, as well
as uncertainties regarding contracts and bidding, must be con-
sidered in planning. Simulation-based transmission planning of
such a stochastic system for practical large networks will require
computational resources that are commonly unavailable.

If, on the other hand, analytical approaches can be used to
complement the simulation-based search methods so that the
search for optimum performance can be narrowed down to a
set of good enough solutions, then the computational require-
ments may be manageable. Ordinal Optimization (OO) [15] is
a method that provides a theoretical foundation for such an ap-
proach.

In Section II, a TEP problem is described. Ordinal optimiza-
tion theory is introduced in Section III. In Section IV, ordinal
optimization theory is applied to solve the TEP problem. In
Section V, numerical examples are given to illustrate the ap-
proach. Conclusions are drawn in Section VI.

II. TRANSMISSION EXPANSION PLANNING PROBLEM

We assume that there is an entity, which may be the transmis-
sion company, the independent system operator (ISO), or the re-
gional transmission organization (RTO), who is responsible for
planning the expansion of the transmission network (i.e., when
and where to install new lines, capacities and types, etc.). The
economic effects of TEP on various market players are different.
Transmission owners are concerned about their investment re-
turns; generation companies are about congestion rents affecting
their profits; the system operator is about congestion revenues;
and the consumers are about electricity prices after network en-
hancement. On the other hand, societal outage costs may very
well be reduced after adding line capacities in the network. The
magnitudes of the economic effects on generators, consumers,
the system operator, and the society depend on system operating
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conditions that change from moment to moment. The benefit of
an expansion scheme to an individual participant may take sev-
eral years to realize. To simulate the effects of multiple years of
an expansion plan on market players, an hourly-based dispatch
model is more or less necessary for the whole expansion time
horizon.

Industry restructuring is an ongoing process in many parts of
the world. Its initial focus has been on the competitive market
for generation. Transmission systems remain largely regulated,
and the rules and regulations for transmission expansion are
mostly unsettled. The obligations and responsibilities of the
participants are not fully defined, except that some general
characteristics can be detected. The TEP has become an opti-
mization problem whose variables are strongly stochastic and
lumpy (discrete), with multiple participants having different
objectives. Traditional optimization formulations and tech-
niques are no longer appropriate. In this paper, we propose
the application of ordinal optimization to the TEP problem.
The development of OO is motivated by the complexities
of large-scale, stochastic, discrete-event nonlinear dynamic
systems, such as manufacturing systems, whose performance
can only be evaluated by way of computer simulations.

Because the TEP problem is not fully standardized and spec-
ified, we will not attempt to give a definitive algorithmic solu-
tion to the problem. Instead, our goal is to demonstrate that the
OO approach is viable. Therefore, our formulation of the TEP
problem and its solution algorithm are for illustration purposes
only. For that purpose and for the ease of exposition and under-
standing, the classical TEP formulation which has been com-
monly used in the past decades is used in this paper. The OO
approach can be adopted by the planners to a formulation that
incorporates the issues and considerations relevant to individual
systems and to the development of models and performance in-
dexes that the OO approach requires.

A. Classical TEP Model

For simplicity, we use the classical optimization model in this
paper to represent the multiyear TEP problem. We assume that
the objective function of the exact TEP model is to minimize the
total cost, which is formulated as (1)

(1)

where represents total cost; represents the investment cost;
represents production cost under the optimal dispatching con-

dition; and represents the cost of loss of load as a result of
contingencies.

We assume that the expanded line capacities are added yearly
in a Y-year span and that the right-of-ways planned and autho-
rized for building new lines are already specified. The transmis-
sion planner has the option to decide on which right-of-ways to
use in order to build new lines and their capacities. Each combi-
nation of the lines built in one year is called a transmission ex-
pansion scheme for that year. The annual planning schemes over
the span of Y-years are illustrated in Table I. Assume there are

right-of-ways authorized for building new lines, the number
of lines built on the right-of-way in the
year is . Each column in the table

TABLE I
PLANNING SCHEMES IN Y-YEAR TRANSMISSION EXPANSION PLANNING

represents the expansion scheme of the year. The whole table
represents the expansion scheme of the whole planning span.

1) Investment Cost: The investment cost is calculated as the
total expansion investment over the planning span. It is formu-
lated as (2)

(2)

where symbol represents the expansion investment on the
right-of-way in year ; is the investment cost in year ;

is the discount rate; and is the investment value corresponding
to the beginning year of the investment. The Net Present Value
(NPV) approach is used here.

2) Production Cost: The commonly used quadratic function
(3) is used to represent the production cost function of a gen-
erator . The optimal hourly production cost can be ob-
tained by minimizing the total generation cost for each hour

8760, subject to the power balance (dc load flow)
and other operating constraints.

(3)

where represents the real power generation of the generator
on bus ; , , and are the constant coefficients of power
generation; is the total load in hour ; represents the
susceptance between node and ; represents the phase angle
of node ; and represent the upper and lower limits of line

; and represent the upper and lower limits of ; and
is the total number of nodes.

For year , the total production cost is the sum of for
8760 h

(4)
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The NPV of the production cost for the whole planning span
can be represented as (5)

(5)

3) Cost of Loss of Load: In the abnormal operation con-
ditions, a good network configuration may help to avoid load
shedding. Providing a reliable network under system contingen-
cies is one of the goals of transmission expansion planning. The
dispatch modes are different for different transmission network
configurations.

The loss of load cost (LOLC) depends on the cost of load
shedding due to a system contingency. The LOLC can be cal-
culated using one of the three loss-of-cost functions: exponen-
tial, quadratic, and hyperbolic functions [16]. In this paper, the
quadratic form as in (6) is used to represent LOLC

(6)

where represents LOLC at node in hour ; represents
the amount of lost load, , where is the
load at node in hour ; and is the load at node after the
contingency. is a rough-estimated cost assuming that half of
the total load is lost. In Europe, is usually assumed to be 30–60
times the regular electricity price [16].

The value of LOLC caused by the contingency in hour , ,
can be formulated as (7)

(7)

For the given probabilities of all contingencies, we can obtain
the expected hourly LOLC for all contingencies considered. The
expected hourly LOLC, is formulated as (8)

(8)

where is the size of the contingency set considered; and
is the probability of contingency . The yearly LOLC can be
formulated as the summation of , as shown in (9)

(9)

The total LOLC over the whole planning horizon can be ob-
tained by (10)

(10)

To solve the proposed TEP model, (1)–(10), both the normal
and abnormal operation modes of all hours of the whole plan-
ning span need to be calculated. Obtaining the exact solution
for a multiyear TEP problem will result in a huge computational
burden.

III. ORDINAL OPTIMIZATION

The ordinal optimization theory developed by Ho et al. [14],
[17]–[25] is for solving simulation-based complex optimization
problems. It has recently been applied to many areas in power
systems such as optimal power flow (OPF) with discrete control
[26] and bidding strategies of power suppliers in markets [27].
In this paper, the theory is applied to solve the multiyear trans-
mission expansion planning problem.

The goal of ordinal optimization is to find good enough so-
lutions for a complex optimization problem. A good enough
subset is the subset consisting of the top best solutions,
say, the top 5% in the solution space. However, it is difficult to
find the subset G for a simulation-based problem unless all the
solutions in the solution space are calculated and compared. The
OO method uses rough estimates from a crude model to rank the
solutions. However, even with the use of a crude model, estima-
tion of performance values for all solutions of a large solution
space may not be computationally feasible. Ordinal optimiza-
tion theory uses a representative set with N samples, , to rep-
resent the original solution space . If the elements of the rep-
resentative set are randomly selected, the probability of an event
where at least one of the N samples will fall within the top 5%
of the whole solution space is

If , then the probability that the top 5% good enough
solutions are not in the samples is

, which is extremely small (of the order
). In this paper, we will use samples to rep-

resent the solution space . However, calculating all
accurate solutions by computer simulations is still a formidable
task. The goal of ordinal optimization is to reduce the number
of necessary but computationally costly simulations.

A. Good Enough Subset and Selected Subset

Within the defined finite solution space ,
the number of top solutions is . The top
solutions compose the “good enough” subset G of . In the
later sections of this paper, is selected to be .

The multiyear TEP problem proposed in Section II can sym-
bolically be represented as finding the minimum performance
value T among all possible expansion schemes

(11)

where the variable corresponds to a set of line expansion
schemes. For example, building certain lines on the approved
right-of-ways in each year of the Y-year span is referred to
as an expansion scheme. Assuming there are 1000 potential
expansion schemes , then a high quality solution
could be found by calculating the performance values for 1000
schemes, , and choosing for the best one. Such an
exhaustive search method is what we want to avoid. Instead, we
reduce the search space to a small selected subset and
perform simulations within the selected subset.

The key to the determination of a selected subset is to be
sure that the selected subset intersects with the “good enough”
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Fig. 1. Five types of OPCs.

subset. The selected subset may be determined by using cer-
tain fast evaluation methods, such as mathematical algorithms,
heuristics, etc., based on the crude approximate models of the
system.

For example, we may first use a crude model to obtain a rough
estimate of the performance values for the po-
tential expansion schemes in problem (11). The
rough evaluation should take much less time than the accurate
calculation. Thus, the top 50 schemes found by the crude model
may not be the same as (i.e., not aligned to) the top 50 schemes
(subset G) obtained from the accurate model. However, if we se-
lect enough schemes (subset S) from the rough estimates, the se-
lected subset S will have a high probability of overlapping with
the elements in G. The number of overlapped elements with G
is called the alignment level . Our goal is to find a subset S in-
cluding at least elements of G. The probability of this event is
called the alignment probability .

For a given alignment probability and the alignment level ,
the size of the selected subset S is determined by the requirement
that the probability that S overlaps the good enough subset G
with at least elements is greater than

(12)

Obviously, the determination of the size of the selected
subset is dependent on the nature of the underlying optimiza-
tion problem. The ordinal optimization theory broadly divides
the optimization problems into several classes. The classi-
fication is accomplished by way of constructing an ordered
performance curve to be introduced below.

B. Ordered Performance Curve

The ordered performance curve (OPC) may be constructed
based on the estimated performance values obtained by the
crude model. The 1000 estimated performance values are ar-
ranged in an ascending order (for minimization problem). The
X axis of the resulting plot is the scheme labels; whereas the Y
axis represents the (estimated) performance values. The shape
of an OPC determines the nature of the underlying optimization
problem.

The shapes of OPC curves can be broadly categorized into
five classes: flat, u-shape, neutral, bell, and steep, as shown in
Fig. 1 [14], [17].

For a minimization problem, a smaller performance value
means a good scheme, and a bigger performance value means
a bad scheme. For a problem, if more small-value schemes are
found, then the problem has more good schemes. In Fig. 1,
the problem with a flat-shape OPC has more good schemes.
The five OPC curves in the figure represent five classes
of optimization problems: 1) flat—many good schemes, 2)
U-shape—many good and bad schemes, 3) neutral—good and

TABLE II
SIZE OF SELECTED SUBSET FOR FIVE OPC-BASED PROBLEMS

bad schemes equally distributed, 4) bell—many intermediate
schemes, and 5) steep—many bad schemes.

C. Size of Selected Subset

In [17], through extensive simulations and statistical analysis,
a formula is derived to relate the size of the selected subset S to
i) the shape of the OPC, ii) the size of good enough subset G,
iii) the alignment level , iv) the alignment probability , and
v) the error bound between the performance values from the
crude model and the accurate model.

Assume the requirements for our TEP optimization problem
are

• size of representative set ;
• “good enough” subset G is defined as the top 5% solutions

of ; thus, ;
• alignment level of is , 2, 3, 4, or 5;
• alignment probability of is .
Assuming the error bound is 0.5, the size of the selected

subset for the optimization problems with the five different OPC
shapes are calculated based on the formula provided in [17],
and the results are tabulated in Table II. The size of the selected
subset for the case and is also given in Table II
for comparison.

From Table II, we find that, for an optimization problem with
a Bell shape OPC curve, the size of the selected subset is
(for ). This means that, after a rough estimation, if we
pick the best 12 schemes from the rough estimation to run the
exact evaluations, there is a 95% probability that at least one
scheme out of the 12 will fall in the “good enough”
subset G. If alignment level is set to be 2, then 15 schemes
need to be calculated for exact evaluations to guarantee that at
least two schemes will fall in the good enough subset G with the
probability of 95%.

Note from the rows of Table II that the size of the selected
subset decreases from a Flat shape to a Steep shape, that is, an
optimization problem with a Flat OPC shape requires more se-
lected schemes than a problem with a Steep OPC curve. This is
because for a Flat shape OPC, there are many schemes whose
performance values based on the crude model are more or less
equally good (small). The exact performance value of each in-
dividual scheme is the estimated value plus the error in the esti-
mation. The error terms are unknown. Adding such error terms
will change the order of the ranking of the schemes that are flat
(more or less the same performance) significantly. Therefore,
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more schemes need to be selected in order to capture enough
good enough schemes.

On the other hand, if the OPC is Steep, although fewer
schemes out of the 1000 are needed for an exact calculation, the
quality of the 1000 samples may be lower. In this case, it may
be prudent to increase the initial sample from 1000 to a larger
number in order to capture more “good enough” schemes.

IV. CRUDE MODEL FOR TEP PROBLEM

In this section, we propose crude models for the quick esti-
mation of investment cost, production cost, and loss of load cost
to be used in the ordinal optimization approach.

A. Investment Cost

The exact formula (2) for the investment cost does not require
much computation effort; therefore, it can be used directly.

B. Crude Model for Production Cost

The evaluation of production cost given in (5) for a span
of Y-years requires carrying out simulations (solving OPF) for

periods, which constitutes a considerable computa-
tional burden. A crude model is needed for the rough estimation
of production cost. For example, a possible crude model may
use a seasonal typical-day dispatch mode and production cost
to represent all the days in the season. The simulation times can
thus be reduced from to , al-
most a 100-fold reduction. In this paper, the symbol is used to
represent the rough estimate of the value from the crude model.
The estimated production cost from the crude model can be ex-
pressed as (13)

(13)

C. Crude Model for Loss of Load Cost

A piecewise linear approximation can be used to give a rough
estimate of the cost of loss of load, as expressed in (14)

(14)

In the approximation, a few load points between peak load
and off-peak load are chosen. For example, we can select the
base load level and the medium load level. The selected load
points divide the load curve into several pieces. By calculating
the LOLC of the selected load levels, we can use the linear ap-
proximation to roughly calculate the LOLC for all load levels.

D. Crude Model of TEP Cost

By combining (2), (13), and (14), a rough estimate of the total
cost of the TEP problem (1) can be obtained as in (15)

(15)

The rough estimates obtained from (15), of course, are different
from the accurate values obtained from the accurate simulation

TABLE III
ORIGINAL AND MAXIMUM TARGET NUMBER OF LINES

models (1)–(10). The difference is the error which can be re-
garded as a random variable [15]

(16)

The probability distribution of the random variable error is
usually assumed to follow a uniform distribution in
[17]. An estimate of the error bound w can be obtained by per-
forming a calculation of a small number of schemes for both the
exact and rough estimates of the performance values. will be
used in the calculation of the size of the selected subset.

V. ILLUSTRATIVE EXAMPLES

The six-node Garver system [1] is used to demonstrate
the proposed ordinal optimization approach to the multiyear
TEP problem. The data of the Garver system are given in
the Appendix. There are 11 right-of-ways available for trans-
mission line expansions. The time span for the expansion is
assumed to be five years.

The network configuration of the original Garver system and
the numbers of the target expansion lines are given in Table III.
The index numbers of the right-of-ways in the first row are the
same as that in the Appendix.

Assume the annual growth rate of the system peak-load is
20% and the discount rate is 8%. The N 1 security criterion
is used for the contingency analysis to calculate the loss of load
cost. The outage probabilities of existing lines are set to be 0.01,
while that of the new lines are assumed to be 0.005. It is fore-
casted that, at the end of the planning horizon, the system peak
load will reach 1530 MW. The load curve of the seasonal typ-
ical-day is chosen as the daily load curves for all days in the
season.

A. Create the Representative Set

There are 746 496 possible ways to add new lines to the
11 right-of-ways. For five years, the number comes out to be
3 732 480. After eliminating infeasible schemes, the number
will still be staggering. As suggested by the ordinal optimiza-
tion theory, a representative set of 1000 samples may be used
to represent the original solution space. The 1000 samples
are selected randomly. However, each expansion scheme is
tested for each year for feasibility (i.e., to see if it satisfies
the yearly peak load requirement without violating operating
constraints). If the requirement is not satisfied, the scheme will
not be selected as a sample. The procedure is repeated until
1000 feasible samples are selected.

B. Ordered Performance Curve

Based on the crude model given in (15), the total cost of each
sample scheme is calculated roughly. The ordered performance
curve can be drawn based on the rough estimates, as shown in
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Fig. 2. Ordered performance curve for rough estimation.

Fig. 2. In comparison to the five OPC shapes in Fig. 1, we find
that the OPC curve of the proposed TEP problem is a Bell shape
curve.

To obtain the error bound , 30 samples are selected for ac-
curate calculations. The standard deviation of the normalized
error of the 30 samples is found to be . We use

as the error bound and as one of the parameters
in the determination of the size of selected subset.

C. Size of Selected Subset

Based on the requirement listed in Section III-C, suppose we
want to have at least “good enough” solution in the se-
lected subset, we find that the size of selected subset for Bell
shape OPC is according to Table II.

D. “Good Enough” Solutions

The top 12 schemes obtained by (15) are selected as be-
longing to the selected subset . In Table IV, the index numbers
of the schemes in are listed according to the ascending order
of the objective values . They are selected from
samples. After calculating the 12 schemes accurately, it is
found that the best solution in the selected set is scheme no.
865, which is ranked as the eighth by the rough estimation.
The “good enough” subset G (top 5% of ) is calculated and
listed in Table IV. The squared index numbers with shadows
are the schemes that fall in both S and G. As described in (12),
there is a 95% probability that at least one element will
fall in both G and S, . In this case, the number of the
elements in is much higher than the required alignment
level . The results of this case are much better than
expected; all elements in S fall into G, however, with different
ordering in rankings. The cases for and are also
calculated and listed in Table IV.

The results of the expansion plans for the three best schemes:
no. 865, no. 854, and no. 291, are listed in Table V

For comparison, the case of the top 1% good enough solutions
is calculated and the results are listed in Table VI.

When Table VI is compared with Table IV, the following are
found.

TABLE IV
PLANNING SCHEMES IN THE SELECTED SUBSET AND “GOOD ENOUGH” SUBSET

(SUBSET G IS TOP 5% OF � )

• More schemes are required for an accurate calculation to
obtain the top 1% good enough solutions.

• In Table VI, all top 10 good enough schemes are captured
in the selected subset; while the results of Table IV missed
the top no. 5 scheme, which has scheme no. 189.

• The results of Table VI are more accurate than
that of Table IV and more accurate calculations
are required to obtain the accuracy.

E. Comparison of Rough and Accurate Evaluations

For each of the 1000 sample expansion schemes, we carry out
the accurate evaluation of (1)–(10) based on the exact simulation
model. The rough estimated values and the exact values are
plotted in Fig. 3. The sample indexes are ranked according to
the ascending order of accurate simulation results (the smooth
curve).

The errors between the rough estimates and the exact values
are calculated according to the following:

Fig. 3 shows that 1) the errors arising from the calculations
based on the crude model seem to be biased downward, and 2)
the errors get larger when the cost is higher. The error bias is at-
tributed to the way the crude model is constructed in which the
congestion costs that occur mainly at peak loading were largely
uncaptured. The high cost cases are mostly due to the contri-
butions from the loss-of-load costs which are more sensitive to
whether exact operating constraints can be satisfied.
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TABLE V
(a) LINE EXPANSION OF SCHEME NO. 865 (UNIT: 10 000$). (b) LINE

EXPANSION OF SCHEME NO. 854 (UNIT: 10 000$). (c) LINE EXPANSION

OF SCHEME NO. 291 (UNIT: 10 000$)

TABLE VI
PLANNING SCHEMES IN THE SELECTED SUBSET AND “GOOD ENOUGH”

SUBSET (SUBSET G IS TOP 1% OF � )

Fig. 3. Ordered performance curve for the Garver system.

It should be pointed out that though the OO theory assumes
that errors are random, biased errors do not render the theory in-
valid. This is because the assumption concerning the error terms
is used in two occasions. The first occasion is in the proof that
the OPCs with or without errors (i.e., based on a crude or the
exact models) belong to the same type (relative to the five types
in Fig. 1). Clearly, biased errors would not change the shape of
OPC either. The second occasion is when the error term is used
in the selection of the size of the “selected subset S”, where
the “error bound” is one of the parameters in the selection for-
mula. The error bound used in the theory was assumed to be
“two-sided,” whereas the biased error may be “one-sided.” The
use of a two-sided error bound in the formula in this case may
be a little conservative (the size of S is unnecessarily large)
when the errors are one-sided. In our example, errors seem to
be biased. This may be part of the reason why our results are
better (they capture all the good enough solutions, rather than
just some of them) than the OO theory predicted.

The distribution of errors of the rough estimation is illustrated
in Fig. 4. Comparing the exact results and rough estimations of
the 1000 samples, we found that scheme no.75 has the max-
imum error. The error of this scheme is listed in Table VII. The
maximum error is only 0.94%. The small errors between the
crude model and the exact model may explain the reason why
all elements in the selected subset in Table IV are from the good
enough subset.

The normalized errors for samples have a standard
deviation of , which is in fact smaller than that of
the 30 samples we used to determine subset size .

The average time of exact computation of a sample scheme
is about 1.04 h. We used three computers to calculate the 1000
samples. It took about 15 days to obtain the exact results for all
1000 samples on three computers. However, the ordinal opti-
mization approach takes only 2.12 hours on one computer. The
computation time has been reduced to about 0.5%. The com-
puters used have a Pentium 4 microprocessor, a 2.4 GHz CPU,
and 512 MB of memory.

VI. CONCLUSION

Transmission expansion planning in the restructured industry
is not standardized. However, its complexity makes simulation
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Fig. 4. Standardized error distribution for N = 1000 sample

TABLE VII
ERROR OF SCHEME NO. 75 (UNIT: 10 000$)

Fig. 5. Original six-node Garver system.

TABLE VIII
BASIC DATA FOR THE MODIFIED GARVER SYSTEM

the only viable approach to evaluate the performance of alterna-
tive planning schemes. We submit that ordinal optimization can
be effectively applied for the simulation-based multiyear TEP
problem. The goal of this paper is not to document how to apply

TABLE IX
QUADRATIC GENERATION COST FUNCTION ($)

TABLE X
QUADRATIC LOSS OF LOAD COST FUNCTION ($)

the technique to a particular system. Rather, it is to demonstrate
that the OO approach is effective in the sense that it is able to
pick a “selected subset” in which enough “good enough” so-
lutions can be found, and therefore simulations may be con-
fined to the elements of a small selected subset. This was done
based on the calculations made on a crude model. The classical
TEP problem is used for demonstration. Furthermore, a brief
and self-contained exposition of the ordinal optimization theory
is presented. The approach can be adopted by planners with a
proper selection of the crude and exact models of the specific
TEP problem.

APPENDIX

The original six-node Garver system is shown in Fig. 5. Table
VIII has the basic data for the modified Garver system, Table IX
has the quadratic generation cost function ($), and Table X has
the quadratic loss of load cost function ($).
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