
Title Real-time color-tunable electroluminescence from stacked
organic LEDs using independently addressable middle electrode

Author(s) Zhang, HM; Choy, WCH

Citation Ieee Photonics Technology Letters, 2008, v. 20 n. 13, p. 1154-
1156

Issued Date 2008

URL http://hdl.handle.net/10722/57478

Rights

©2008 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37893772?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1154 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 13, JULY 1, 2008

Real-Time Color-Tunable Electroluminescence
From Stacked Organic LEDs Using Independently

Addressable Middle Electrode
H. M. Zhang and Wallace C. H. Choy, Senior Member, IEEE

Abstract—Independently controllable stacked organic light
emitting devices (OLEDs) are fabricated by using interconnecting
electrode of Al(2 nm)/WO�(3 nm)/Au(16 nm) for connecting two
primary color OLED units of blue and red. The middle electrode
simultaneously functions as the cathode and anode for the bottom
and top units respectively with a feature of over 60% optical
transmission in a wide wavelength range from 500 to 700 nm
such that the color can be tuned in real time from red to blue
by changing the bias voltage to the two units. The undistorted
primary colors and high efficiency have been obtained through
optimizing structure and properly arranging the ordering of the
blue and red subpixels.

Index Terms—High optical transmission electrode, intermediate
electrode, real-time color tuning, stacked organic light-emitting de-
vices (SOLEDs).

I. INTRODUCTION

ORGANIC light-emitting devices (OLEDs) have gained
interest for their promising applications in full-color

flat panel display [1]–[3]. For making such full-color displays,
schemes such as multiple-emitting layers [4], microcavity struc-
ture [5], [6], voltage-controlled dye doping [7], and inserting
carrier blocking layers [8] for achieving color tunability have
been proposed. Among the methods, vertically stacked red,
green, and blue-emitting OLEDs have led to a threefold increase
in resolution and display fill factor as compared to the other
traditional side-by-side subpixel arrangement [4]. The emission
from a subpixel transmits through the vertically adjacent units
in the independently addressable stacked OLEDs (SOLEDs),
thus the high transparency of the interconnecting electrodes
with appropriate carrier injection properties are necessary.
Some attempts have been made on exploring high-performance
interconnecting electrodes. For the independently controllable
SOLEDs, the interconnecting layer should simultaneously
function as an anode for one unit and as a cathode for another
unit besides the necessity of good transmission. To realize
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the functions, at present a semitransparent metal layer or a
transparent indium-tin oxide (ITO), such as, Mg : Ag–indium
tin oxide (ITO) [9], CuPc–ITO [10], and LiF–Ca–Ag [11],
are generally used. However, there may be potential thin-film
damage by using sputtering of ITO. Meanwhile, the typically
low transmittance of the metal electrodes may limit the im-
provement of the device performance. Therefore, it is desirable
to develop the intermediate controllable metal electrodes with
the targets of not only improving the transmission but also
enhancing the efficiency of the SOLEDs; however, the studies
on the high transmission metal electrodes are limited.

In this letter, we shall use controllable middle electrodes of
Al(2 nm)/WO (3 nm)/Au(16 nm) to realize color-tunable inde-
pendently voltage-controlling SOLEDs. Besides the good trans-
mission of the middle electrodes of above 60% over a wide
wavelength range from 500 to 713 nm with a peak value of
62.5%, the metal Au layer on top of WO layer serves as the
hole-injection contact to the top unit and the thin metal Al serves
as the electron injecting contact for the bottom OLED. The
MoO treatment of the Au layer surface can provide a good hole
injection. As a consequence, each emitting unit in the SOLED
can be independently addressable such that the color of pixel
output can be continuously tuned from red through blue in real
time. The undistorted primary color and high efficiency have
been obtained through optimizing the structure and properly ar-
ranging the ordering of the blue and red subpixels. The effi-
ciency of each emitting unit is close to the measured efficiency
of the corresponding single-unit red and blue OLEDs.

II. EXPERIMENT

Fig. 1(a) shows the schematic diagrams of SOLEDs
used in this letter. In the SOLEDs, the two emissive units
consist of ITO/MoO (8 nm)/NPB(100 nm)/DSA-Ph : MADN
(40 nm)/Alq (10 nm)/LiF(1 nm)/Al(2 nm)/WO (3 nm)/Au
(16 nm)/MoO (5nm)/NPB (60 nm)/Alq : DCJTB
(30 nm)/Alq (30 nm)/LiF (1 nm)/Al (150 nm). Apart from
sequencing red top and blue bottom units as the SOLED, the
red and blue units were also exchanged to study the effect
of device sequence. All devices were fabricated on indium
tin oxide (ITO) coated glass with a sheet resistance of 10
and thermally deposited LiF–Al was used as a cathode.
ITO substrate was cleaned and treated by O plasma. The
deposition was carried out at pressure less than 3 10 Pa
without vacuum breaks. The organics and metal oxide were
evaporated at the rate in a range of 0.2–0.3 nm/s, and the metals
were evaporated at the rate of 0.8-1 nm/s. The devices have
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Fig. 1. (a) Schematic diagram of independently voltage controllable SOLEDs.
(b) Transmittance spectrum of Al(2 nm)/WO3(3 nm)/Au(16 nm).

an emissive area of 16 mm . The current-voltage-brightness
characteristics were recorded using a computer-controlled
sourcemeter (Keithley 2400) and multimeter (Keithley 2000)
with a calibrated silicon photodiode. The EL spectra were
measured by JY SPEX CCD3000 spectrometer. All the
measurements were carried out in ambient atmosphere at room
temperature.

III. RESULTS AND DISCUSSION

The SOLED is operated by common grounding the middle
Al–WO –Au electrode as shown in Fig. 1(a). The top Al
electrode and bottom ITO electrode are biased negatively
and positively and , respectively, with respect to the
Al–WO –Au electrode. The output spectra from the SOLED at
various drive voltages applied to the red and blue units are mea-
sured through the glass substrate and shown in Fig. 2(a). The
top unit (red light), bottom unit (blue light), and corresponding
(red and blue) single-unit control devices were biased at 11,
7, 10, and 6 V, respectively, the peak wavelength of the red
(621 nm) and blue (461 nm) units match their corresponding
single-unit control OLEDs as shown in Fig. 2(b). The device
emission spectrum can be varied by a linear combination of the
red and blue colors through independently varying the driving
voltage of each unit at the ratio of the drive voltage
without the formation of exciplex [3]. Fig. 2(a) clearly shows
that the emission spectrum from each unit in the SOLED can be
tuned independently. For the blue and red emission as shown
in Fig. 2(b), the full-width at half-maximum (FWHM) of the
red and blue emission spectra from SOLED is 65 nm (red)
and 58 nm (blue) with respect to the corresponding single-unit
control device of 70 nm (red) and 52 nm (blue) without any

Fig. 2. (a) Emission intensity versus wavelength under various operating volt-
ages at normal direction. (b) The emission spectra of the red light unit in the
SOLEDs and the corresponding control devices biased at 11 and 10 V, respec-
tively. The inset is the emission spectra of the blue light unit of the SOLEDs
and the corresponding control devices biased at 7 and 6 V, respectively.

Fig. 3. The CIE color coordinates of the spectra in Fig. 2(a) with conditions
A–G stated in Fig. 2(a).

significant change or obvious microcavity effect [12]. Fig. 3
shows the Commission Internationale de l’Eclairage (CIE) dia-
gram of color tunable SOLEDs which indicates the continuous
color tuning between the colors offered by the individual units
in real time.

Fig. 4 shows the current efficiency versus current density
curves of the red and blue emission from SOLEDs, where each
unit was biased individually in the measurement. The perfor-
mance of the bottom red unit and top red unit of the two se-
quence of SOLEDs and the control device with the same struc-
ture as the top red unit have been studied. The inset of Fig. 4
shows the blue devices. It is clearly seen that the current effi-
ciency of each unit from SOLEDs [7.2 cd/A (red) and 3.5 cd/A
(blue)] is close to that of the corresponding single-units red
(7 cd/A) and blue (4 cd/A) OLED, when the red OLED is ar-
ranged as the top unit of the SOLED. In fact, the blue OLED
should be arranged as the bottom unit because the blue OLED
as the bottom unit has higher efficiency, as shown in the inset of
Fig. 4, and the current efficiency of the red-emitting device has a
minor change. Regarding the sequence of the blue and red units
in SOLEDs, the transmission properties of the Al–WO –Au has
to be investigated, as shown in Fig. 1(b). It is clearly shown that
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Fig. 4. The current efficiency verse current density characteristics of red
light unit (top and bottom) in the two sequences of SOLEDs with the
structure: NPB(60 nm)/Alq3 : DCJTB(30 nm)/Alq3 (30 nm) (top) and
NPB(100 nm)/Alq3 : DCJTB(30 nm)/Alq3(30 nm) (bottom); The inset is that
of the blue light unit (top and bottom) in the two sequences of SOLEDs with the
same structure: NPB (60 nm)/MADN : DSA-ph(3%) (40 nm)/Alq (10 nm).

Fig. 5. The current efficiency verse applied voltage characteristics of red light
unit (top and bottom) with the same structures as Fig. 4. The inset is that of the
blue light unit (top and bottom) with the same structures as in Fig. 4.

the Al–WO –Au structure exhibits a good transmittance in the
green–red region of 500 to 700 nm of over 60%, favoring the red
OLED as the top unit of the SOLED with lower absorption loss.
The low transmittance of 52% at 450 nm makes the efficiency
of blue OLED as the top unit of SOLED reduces (see the inset of
Fig. 4), apart from the possible reabsorption of blue light in the
red bottom unit in the blue-top and red-bottom SOLED. Fur-
thermore, in many SOLEDs, the interconnecting layer is used
to generate electrons and holes at an electric field. It is typically
considered that the electrons are injected into bottom device and
the holes are injected into top device, thus playing the role of
change generation layer. Here, Al–WO –Au may be considered
as a capacitor, since a layer of WO between Al and Au layers
serves as a dielectric layer. There is no direct contact between
the Au and Al; thus the positive charges exist at the Au anode
and the negative charges exist at the Al cathode for assisting the
injection of the carriers. As a result, the efficiency is further en-
hanced due to the formation of more excitons in Al–WO –Au
SOLEDs.

Fig. 5 and the inset figure show the current efficiency versus
driving voltage curves of the red and blue emission from
SOLED and the control device with the same arrangement as
in Fig. 4. It can be seen that although the applied voltage is
higher, the current efficiency of bottom red emission unit is
slight higher than that of the upper unit and the control device.
Besides, as shown in the inset of Fig. 5, the driving voltage of
the blue bottom unit is lower than that of the blue top unit and
the control device. As a result, putting the blue OLED as the
bottom unit is reasonable for providing better performance.

IV. CONCLUSION

In summary, an effective interconnecting structure for high
efficiency SOLEDs is reported. The connecting structure is
composed of a thin metal oxide sandwiched between Al and
Au metals. It is clearly seen that such a connecting struc-
ture permits effective electrons and holes injection into the
two adjacent emitting units. The utilization of metal oxide
between Al and Au provides the interconnecting layer an
over 60% transmittance in a wide wavelength range from
500 to 700 nm, for a better transmission of red light from
the blue-bottom and red-top SOLED. Furthermore, such a
connecting structure can be easily fabricated by thermal evap-
oration for achieving real-time color-tunable SOLEDs through
independently changing the biases to the two units, thus re-
alizing high-resolution, independently addressable, stacked
red–green–blue pixels for application of color displays.
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