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Single-Ensemble-Based Eigen-Processing
Methods for Color Flow Imaging—Part II. The

Matrix Pencil Estimator
Alfred C. H. Yu, Member, IEEE, and Richard S. C. Cobbold, Life Member, IEEE

Abstract—Parametric spectral estimators can poten-
tially be used to obtain flow estimates directly from raw
slow-time ensembles whose clutter has not been suppressed.
We present a new eigen-based parametric flow estimation
method called the matrix pencil, whose principles are based
on a matrix form under the same name. The presented
method models the slow-time signal as a sum of dominant
complex sinusoids in the slow-time ensemble, and it com-
putes the principal Doppler frequencies by using a general-
ized eigenvalue problem formulation and matrix rank reduc-
tion principles. Both fixed-rank (rank-one, rank-two) and
adaptive-rank matrix pencil flow estimators are proposed,
and their potential applicability to color flow signal pro-
cessing is discussed. For the adaptive-rank estimator, the
nominal rank was defined as the minimum eigen-structure
rank that yields principal frequency estimates with a spread
greater than a prescribed bandwidth. In our initial perfor-
mance evaluation, the fixed-rank matrix pencil estimators
were applied to raw color flow data (transmit frequency:
5 MHz; pulse repetition period: 0.175 ms; ensemble size:
14) acquired from a steady flow phantom (70 cm/s at cen-
terline) that was surrounded by rigid-tissue-mimicking ma-
terial. These fixed-rank estimators produced velocity maps
that are well correlated with the theoretical flow profile
(correlation coefficient: 0.964 to 0.975). To facilitate fur-
ther evaluation, the matrix pencil estimators were applied
to synthetic slow-time data (transmit frequency: 5 MHz;
pulse repetition period: 1.0 ms; ensemble size: 10) model-
ing flow scenarios without and with tissue motion (up to
1 cm/s). The bias and root-mean-squared error of the esti-
mators were computed as a function of blood-signal-to-noise
ratio and blood velocity. The matrix pencil flow estimators
showed that they are comparatively less biased than most
of the existing frequency-based flow estimators like the lag-
one autocorrelator.

I. Introduction

In ultrasound color flow imaging, estimation of the mean
or modal flow velocity over a sample volume (or map

pixel location) is often performed after the clutter in the
slow-time signal has been adequately suppressed. As such,
many forms of flow estimators are derived under the as-
sumption that the slow-time signal only comprises echoes
originating from moving blood scatterers and a filtered

Manuscript received January 17, 2007; accepted December 19,
2007.

A. C. H. Yu is with the University of Hong Kong, Department of
Electrical and Electronic Engineering, Pokfulam, Hong Kong.

R. S. C. Cobbold is with the University of Toronto, Institute of
Biomaterials and Biomedical Engineering, Toronto, Ontario, Canada
(e-mail: cobbold@ecf.utoronto.ca).

Digital Object Identifier 10.1109/TUFFC.2008.683

form of background white noise. Perhaps the most well
known of these estimators is the lag-one autocorrelator
that computes the mean velocity by estimating the mean
Doppler frequency from the lag-one autocorrelation value
of the slow-time signal [1], [2]. Alternatively, some stud-
ies have proposed other forms of flow estimators like the
time-domain cross-correlator [3] and the maximum likeli-
hood estimator [4], [5] that are based on target-tracking
principles. The potential drawback of these estimators is
that their performance inherently depends on the clutter
filter’s ability to suppress slow-time clutter without dis-
torting the blood echoes. In particular, estimation biases
can be expected whenever the clutter filter distorts parts
of the blood signal or fails to suppress clutter adequately.
Moreover, at low blood-signal-to-noise ratios (BSNR), fur-
ther estimation biases can be anticipated because the fil-
tered white noise (i.e., colored noise) becomes more sig-
nificant, and its presence can add further bias to the flow
estimates.

A. Review of Existing Parametric Flow Estimators

To account for the biasing effect of the clutter filter
properly, it may be advantageous to use estimation strate-
gies that can be directly applied to the raw (i.e., unfiltered)
slow-time signal. This rationale may have motivated the
development of parametric estimators that work by ana-
lyzing the principal Doppler spectral contents (i.e., they
are frequency-based estimators). For example, Ahn and
Park [6] have applied the autoregressive (AR) modeling
method to extract both the principal clutter and blood
Doppler frequencies simultaneously from the raw slow-
time signal. As reviewed by Vaitkus and Cobbold [7], this
approach works by computing the least-squares fit of a
regressive signal model onto the raw slow-time data and
solving for the characteristic spectral modes of the result-
ing model. However, as pointed out elsewhere [8], since the
least-squares fitting procedure assumes that the slow-time
data samples are free of noise perturbations, the accuracy
of the AR modeling method tends to degrade significantly
at low BSNR levels.

Another way of performing parametric spectral estima-
tion is to make use of eigen-analysis principles. In par-
ticular, Allam and Greenleaf [9] have suggested that a
form of eigen-analysis called multiple signal classification
(MUSIC) can be used to obtain flow estimates without
the prior use of clutter filters. Like the eigen-filter men-
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tioned in [10], the MUSIC approach begins by computing
the eigen-decomposition of the slow-time correlation ma-
trix found from averaging multiple slow-time ensembles. It
then solves for the principal Doppler frequencies by find-
ing the spectral modes in a pseudospectrum defined from
the reciprocal of the cross-correlation between noise eigen-
components and various complex sinusoids (the two are
orthogonal when the complex sinusoid frequency matches
any of the signal eigen-components). Such an eigen-based
formulation has also been adopted by Vaitkus and Cobbold
[11], who proposed the use of a closed-form parametric es-
timator called Root-MUSIC to estimate principal flow ve-
locities from raw slow-time data. Their approach, which
uses a rank-two eigenstructure to model the raw slow-time
signal, has been analyzed using in vivo color flow imaging
data whose clutter can be sufficiently modeled as a single
complex sinusoid [12].

B. Motivations of Study

From the previous work on AR modeling and MUSIC,
it can be seen that parametric estimation strategies have
potential in obtaining modal flow estimates in the presence
of clutter. However, these parametric estimators have in-
dividual limitations that reduce their efficacy in color flow
data processing. In particular, as noted earlier, the least-
squares fitting procedure used by an AR estimator to per-
form the model regression is only effective at high BSNR.
As for MUSIC, its multi-ensemble averaging approach to
the estimation of the slow-time correlation matrix inher-
ently requires statistical stationarity among the slow-time
ensembles over the specified range of depth, and such ap-
proach is not always valid due to the spatially varying
nature of tissue and flow dynamics.

In this paper, we present a principal spectral compo-
nent estimator called the Matrix Pencil that is designed
to work with each slow-time ensemble individually and
describe how it can be used for flow estimation. This es-
timator works by exploiting the properties of an algebraic
form known as matrix pencil and in turn treating flow
estimation as a generalized eigenvalue (GE) problem. Its
resilience against background white noise is achieved by
making use of matrix rank reduction principles. To formu-
late discussion on the matrix pencil, the rest of the pa-
per is organized as follows. The next section first provides
a theoretical description of the matrix pencil estimation
framework. Section III then discusses how this paramet-
ric spectral estimator can be applied to color flow signal
processing. An in vitro case study aimed to facilitate ini-
tial assessment of the matrix pencil method is described
in Section IV. Further analysis results based on the use of
a simulation approach are described in Sections V and VI.
Highlights of the matrix pencil method are summarized in
Section VII.

II. Principles of the Matrix Pencil Method

Because it is a parametric spectral estimator, the ma-
trix pencil method is based on the modeling of the raw

slow-time signal as a summation of principal complex sinu-
soids. In particular, it is intended to work with a principal-
component signal model given by:

x = [x(0), x(1), . . . , x(ND − 1)]T

= b + c + w ≈
K∑

k=1

χkvCS(k) + w.
(1a)

In this equation, x(n) is the nth sample in a raw slow-
time ensemble, while x, b, c, and w, respectively, denote
the data ensemble (consisting of ND samples) for raw slow-
time signal, blood echoes, clutter, and white noise; also, K
is the number of principal components in the signal model,
while χk denotes the weight of the kth complex sinusoid
vector vCS(k). Note that vCS(k) can be expressed in the
following vector form:

vCS(k) =
[
1, zk, z2

k, . . . , z
(ND−1)
k

]T

for zk = ej2πfD,kTPRI ,
(1b)

where fD,k is the kth principal Doppler frequency and TPRI
is the pulse repetition interval (i.e., the slow-time sam-
pling period). It should be pointed out that, from a sub-
space perspective, this principal-component signal model
is equivalent to the eigen-structure of a raw slow-time sig-
nal whose rank is equal to K.

A. Basic Principles

In terms of its principles, the matrix pencil approach is
primarily based on the solution to the following generalized
eigenvalue (GE) problem:

A1q = λA0q ⇔ (A1 − λA0)q = 0, (2)

where A1 and A0 are singular matrices of the same dimen-
sion and q is the generalized eigenvector for a particular
eigenvalue λ. Note that the set of matrices A1 − λA0 cre-
ated from all values of λ is known in linear algebra as a
matrix pencil1. The GEs of A1 − λA0 are the particular
values of λ that yield non-zero solutions to the eigenvector
q. Such values can also be regarded as those that reduce
the matrix rank of A1−λA0 so that a non-empty nullspace
exists.

Fig. 1 summarizes the overall formulation of the matrix
pencil estimator, whose goal is to define A1 −λA0 in such
a way that their corresponding GEs can be used to find
the principal slow-time frequencies. As described by Hua
and Sarkar [13], one particular way to define this quantity
is to set A1 and A0 as lag-one subsets of a Hankel data
matrix A. Specifically, for a slow-time ensemble size ND,
the matrix pair [A1, A0] can be defined as follows:

1In mathematics, the term pencil generally refers to a set of entities
that share a common property, such as passage through the same
given point.
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Fig. 1. Block diagram of the matrix pencil estimator involving matrix rank reduction. During operation, this estimator is applied to the
slow-time signal of each sample volume.

Fig. 2. Illustrating how the data matrices A1 and A0 are formed in
the matrix pencil estimator for the case where ND = 8 and P = 3.

A =⎡
⎢⎢⎢⎣

x(0) x(1) · · · x(P − 1)
x(1) x(2) · · · x(P )

...
...

. . .
...

x(ND − P ) x(ND − P + 1) · · · x(ND − 1)

⎤
⎥⎥⎥⎦

(ND−P+1)×P

, (3a)

A1 = last (ND − P ) rows of A, (3b)
A0 = first (ND − P ) rows of A. (3c)

An example on the construction of this matrix pair is given
in Fig. 2. It is worth pointing out that, in A1 and A0, P
is a pencil dimension parameter that is similar to the one
defined for the Hankel data matrix given in (2) of [10]. For
a Kth-order signal eigen-structure, this parameter must
be set greater than K but less than ceil(ND/2) (i.e., the
smallest integer greater than or equal to ND/2).

B. Matrix Rank Reduction

As shown in Appendix A for the case without noise,
the K nonspurious GEs of the matrix pencil A1 − λA0
defined via (3b) and (3c) essentially correspond to the
signal modes zk of the principal-component signal model
shown in (1). However, since noise is generally present in
the acquired slow-time data, rank reduction needs to be
performed on the matrix pair [A1, A0] prior to the com-
putation of the GEs. The rank reduction can essentially be
carried out by using singular value decomposition (SVD)
to create A1 and A0 from only their K largest singular

components [13]. This approach is equivalent to a total-
least-squares formulation of the estimation problem from
a data fitting perspective [14]. Note that an efficient way
of achieving rank reduction is to first compute the rank-
reduced equivalent of A and then create the matrix pair
from lag-one subsets of the rank-reduced matrix [15]. The
rank-reduced data matrix Ã (assumed to be rank-K) and
its corresponding matrix pair [Ã1, Ã0] can be expressed
as follows:

Ã =
K∑

k=1

σkukvH
k , (4a)

Ã1 = last (ND − P ) rows of Ã, (4b)

Ã0 = first (ND − P ) rows of Ã, (4c)

where σk, uk, and vk are, respectively, the singular value,
left singular vector (of size ND −P +1), and right singular
vector (of size P ) for the kth SVD component of A. It
should be pointed out that the efficacy of rank reduction
improves in general when there is a large difference be-
tween the signal eigen-rank K and the matrix dimension
parameter P .

C. Computation of Principal Frequencies

As shown in Appendix A, the GEs of the matrix pair
[A1, A0] (or [Ã1, Ã0]) can be found from the eigenvalues
of A+

0 A1 (or Ã+
0 Ã1), where the ‘+’ superscript denotes

a matrix’s pseudoinverse (i.e., the singular matrix equiva-
lent of a matrix inverse). Once the GEs are found, the K
principal Doppler frequencies can be calculated from the
phase of the GEs as follows:

fD,k =
1

2πTPRI
arg{λk}. (5a)

Subsequently, the frequency estimates can be classified as
to whether they correspond to clutter or blood echoes.
An intuitive approach to perform this classification is to
make use of the fact that blood echoes generally give rise
to higher Doppler frequencies. As such, it is possible to
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TABLE I
Three Types of Matrix Pencil Estimators for Color-Flow Data Processing.

Type Principal Main Use Limitation

Rank-One Obtain one principal Find mode frequency Cannot be applied
(K = 1) frequency estimate of filtered slow-time directly to raw slow-time

from a data ensemble data data to estimate flow

Rank-Two Extract two principal Find modal flow Estimates may be biased
(K = 2) frequencies from a estimates in presence when applied to data

data ensemble of narrowband clutter with wideband clutter

Rank-Adaptive Compute principal Find modal flow Assume clutter spans a
(K = Knom) frequencies using an estimates in presence prescribed bandwidth

eigen-rank found from of any type of clutter
spectral spread analysis

identify the modal blood Doppler frequency as follows from
the principal spectral estimate with the largest magnitude:

fD(est) = fD,kb
for kb = argmax

k
{|fD,k| ∀k ∈ [1, k]} ,

(5b)

which can then be converted into a velocity value via the
Doppler equation.

D. Relationship to Existing Eigen-Based Estimators

Following the same derivation given in Section II-C of
[10], it can be seen that the matrix pencil is similar to the
data-smoothed version of an eigen-decomposition-based
spectral estimator that involves the computation of GEs
for a rank-reduced matrix pair defined from the K largest
eigen-components. As described by Stoica and Soderstrom
[16], such an eigen-decomposition equivalent of the matrix
pencil can be considered as a data-smoothed form of an
eigen-processing strategy called “estimation of signal pa-
rameters via rotational invariance techniques” (ESPRIT)
[17]. It is worth pointing out that, besides data-smoothed
ESPRIT, a data-smoothed version of MUSIC also exists in
practice [16]. In color-flow data processing, this smoothed
MUSIC estimator seems to be more useful than the origi-
nal one described in [11] because multiple slow-time ensem-
bles with similar characteristics are generally not available
for the estimation of the correlation matrix of each sam-
ple volume. Its efficacy in color-flow signal processing will
be examined in our simulations as a comparison for the
matrix pencil method.

E. Computational Considerations

The matrix pencil estimator can be expected to have a
higher computational burden than the lag-one autocorre-
lator that is widely used in color-flow data processing. In
particular, the matrix pencil involves the use of SVD to
carry out rank reduction on the matrix pair [A1, A0], and
it also requires the use of an eigenvalue solver to compute
the principal frequency estimates. As shown elsewhere (see
Table 3-2 in [18]), the matrix pencil needs on the order
of P 3 floating point operations (flops) for each estimation

run. Therefore, this estimator is slightly more efficient than
the MUSIC estimator that generally requires on the order
of N3

D flops [12], but it is two orders of magnitude more
complex than the lag-one autocorrelator that only requires
on the order of ND flops (by inspection of the formula-
tion in [1]). To improve the computational efficiency of
the matrix pencil, it is possible to use more efficient SVD
algorithms and eigenvalue solvers that exploit the Hankel
matrices inherent in this estimator [19].

III. Applications of Matrix Pencil in

Color-Flow Data Processing

A. Rank-One Matrix Pencil

As outlined in Table I, the matrix pencil estimator has
several potential applications in color-flow data process-
ing. For example, by assuming a rank-one signal eigen-
structure (i.e., setting K = 1), this parametric estimator
can be used to compute the mode frequency of any filtered
slow-time signal. Note that the rank-one matrix pencil es-
timator can be considered as a generalized form of the lag-
one autocorrelator [1]. Specifically, the rank-one estimator
is a more advanced autocorrelator that has rank reduction
capabilities depending on the choice of the pencil dimen-
sion P . As such, when the pencil dimension is greater than
one (P > 1), the rank-one matrix pencil is less prone to
noise perturbations than the original lag-one autocorrela-
tor. On the other hand, when the pencil dimension is set
equal to one (i.e., when P = 1), the two estimators become
equivalent in their form as shown in Appendix B.

B. Rank-Two Matrix Pencil

Besides computing modal frequencies from filtered slow-
time data, the matrix pencil can also be used to obtain
flow estimates in the presence of clutter. In particular, by
assuming a higher-rank signal eigen-structure, the matrix
pencil can be applied directly to the raw slow-time data
to extract the modal Doppler frequency of blood echoes.
One type of higher-rank matrix pencil estimator that is
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useful in color-flow data processing is the rank-two ap-
proach that models the raw slow-time signal as a sum of
two principal complex sinusoids (i.e., it assumes K = 2).
The rank-two matrix pencil, which is similar to second-
order AR modeling and rank-two MUSIC, assumes that
one of the principal complex sinusoids corresponds to clut-
ter and the other corresponds to blood echoes. In turn,
it obtains the modal frequency of blood echoes from the
larger (magnitude-wise) of the two principal frequencies.
In terms of its use in flow studies, this rank-two estima-
tor is suitable for finding the modal frequency of blood
echoes in studies where the clutter is narrowband in na-
ture with respect to the Doppler spectral resolution. Note
that, as shown in Appendix B, the rank-two matrix pen-
cil essentially degenerates to a second-order AR estimator
when the pencil dimension is set equal to two (i.e., when
P = 2).

C. Rank-Adaptive Matrix Pencil

The rank-two matrix pencil estimator inherently as-
sumes that clutter in the raw slow-time signal can be ad-
equately modeled as a single complex sinusoid. However,
such assumption may not always be valid because tissue
motion can give rise to clutter with wideband characteris-
tics. Consequently, the rank-two matrix pencil may some-
times give modal flow estimates that are inconsistent with
the actual flow dynamics. This problem is generally more
significant for slow-time data acquired using higher fre-
quencies or longer ensemble periods because the Doppler
spectral resolution is finer in these cases.

To address the theoretical limitation of the rank-two
matrix pencil, it is worthwhile to consider the development
of an algorithm for the matrix pencil to select its eigen-
structure rank adaptively based on the Doppler spectral
characteristics. One way of designing such algorithm is to
analyze the spectral spread of the matrix pencil frequency
estimates obtained for different eigen-structure ranks. In
particular, it can be expected that, for cases with dom-
inating wideband clutter, the spectral spread of lower-
rank matrix pencil estimates should be smaller because
the most dominant frequencies would likely correspond to
clutter. Hence, as illustrated in the flowchart in Fig. 3, the
rank selection algorithm can involve a search for the min-
imum eigen-structure rank that yields matrix pencil esti-
mates with spectral spread greater than a certain threshold
∆fthr. The nominal rank Knom obtained from this algo-
rithm can be expressed as:

Knom = arg min
K

(
max {fD,1, fD,2, . . . , fD,K}

− min {fD,1, fD,2, . . . , fD,K} > ∆fthr

)
. (6)

The efficacy of this rank selection algorithm primarily de-
pends on the choice of the spectral spread threshold ∆fthr,
which is a quantity analogous to the stopband of a clutter
filter. Once the rank has been adaptively estimated, the
modal frequency of blood echoes can then be set equal to

Fig. 3. Flowchart of the rank selection algorithm used for rank-
adaptive matrix pencil. The algorithm is based on analyzing the
spectral spread of matrix pencil frequency estimates obtained for
each eigen-structure rank.

Fig. 4. Illustrating the physical setup used in the in vitro flow phan-
tom study.

the frequency with largest magnitude in the set of Knom
matrix pencil estimates.

IV. In Vitro Imaging Experiment

As a preliminary assessment of the matrix pencil esti-
mators, an in vitro imaging study was performed using a
commercial flow phantom with known flow conditions. As
shown in Fig. 4, the imaging view of this experiment is an
in-plane slice of a Gammex-RMI phantom (Model 1425A,
Middleton, WI) that has a 5 mm-diameter flow tube sur-
rounded by rigid tissue-mimicking material and angled at
50◦ with respect to the surface. Note that the bottom-
center of the imaging view was aligned with the flow phan-
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TABLE II
Parameters in the Flow Phantom Study.

Parameter Value

Flow Phantom Parameters

Acoustic speed 1540 m/s
Beam-flow angle 50◦

Tube inner diameter 5 mm
Flow profile Steady, parabolic flow

Centerline flow velocity 70 cm/s
Clutter-to-blood-signal ratio In the range 20-30 dB

Data Acquisition Parameters

Transmit pulse frequency 5 MHz
Transmit pulse duration 1.2 µs (6 cycles)
Pulse repetition interval 0.175 ms
Slow-time ensemble size 14
Number of data frames 5

Image Size Parameters

Lateral field of view −19.2 to +19.2 mm
Number of beam lines 257

Axial field of view +24.5 to +50.0 mm
Number of depth samples (per beam) 166 (non-overlapping)

tom’s distal tube wall during the data acquisition. Also,
the flow settings on the user interface of the Gammex-
RMI system were adjusted to generate a steady flow profile
with a centerline velocity of 70 cm/s. Given this setup, five
frames of raw color-flow data were acquired for offline pro-
cessing using an experimental scanner (ZONARE Medical
Systems, Mountain View, CA) that can simultaneously ac-
quire data over multiple beam lines via a zone-based data
acquisition strategy [20]. A summary of the data acquisi-
tion parameters used in this in vitro study is provided in
Table II.

A. Signal Processing Procedure

As a preprocessing step, the slow-time ensembles of each
data frame were first derived from the RF data stored
internally in the scanner’s channel domain memory [20].
Subsequently, the rank-one and rank-two matrix pencil es-
timators were applied to each slow-time ensemble to obtain
flow estimates for all the sample volumes within the imag-
ing view. It should be pointed out that the rank-adaptive
matrix pencil estimator was not considered in this study
because the slow-time clutter produced by the flow phan-
tom was known to be relatively narrowband. Instead, the
lag-one autocorrelator [1] was considered and used for com-
parison with the rank-one and rank-two matrix pencil esti-
mators. Note that, for the autocorrelator and the rank-one
matrix pencil estimator, a fifth-order projection-initialized
IIR filter was used to suppress slow-time clutter prior to
flow estimation (other types of filters may be used instead
to obtain similar performance insights for these two esti-
mators). Also, for both matrix pencil estimators, the pencil
dimension parameter P was set to ND/2 (i.e., the maxi-
mum possible value).

Prior to display, the computed flow estimates over the
imaging view were passed through a 5 × 5 median filter
and a 5 × 5 mean filter to reduce the estimation variance.
The smoothed velocity estimates were then converted into
color pixels based on the unaliased velocity range and were
superimposed onto a B-mode image for duplex display.
Note that, in displaying the velocity maps, we made use
of the filtered signal power as the color display gain cri-
terion (i.e., velocity pixel is displayed only if the filtered
signal power is above a threshold). For the rank-two matrix
pencil estimator, which does not involve clutter filtering,
this power quantity was estimated from the squared sum
of singular values for SVD component orders greater than
and equal to two. Such an estimation approach is funda-
mentally based on (7) in [10], where in this case the clutter
eigen-space dimension was assumed to be one (since clutter
was modeled as a single complex sinusoid by the rank-two
matrix pencil).

B. Data Analysis Protocol

As an analysis benchmark, a simulated color-flow map
of the imaging view was first generated based on the fact
that a parabolic flow profile with a centerline velocity of
70 cm/s was used in this in vitro study. This flow map,
which is shown in Fig. 5(a), was then used to evaluate
the ability of both matrix pencil flow estimators to re-
construct the flow dynamics of the phantom. To facilitate
quantitative evaluation, we computed the correlation co-
efficient between the theoretical flow profile and each flow
velocity map obtained from the estimators. Such perfor-
mance measures can be expected to be close to unity if
the reconstructed flow maps were similar to the simulated
flow map.

C. Color Flow Image Results

Figs. 5(b) through (d), respectively, show the velocity
maps obtained from the lag-one autocorrelator, the rank-
one matrix pencil, and the rank-two matrix pencil for a
representative frame in the in vitro dataset. These images
indicate that all three estimators seem capable of recon-
structing velocity maps that are in reasonable qualitative
agreement with the simulated theoretical flow profile (at
least they have indicated a presence of flow only within
the same spatial region depicted in the theoretical pro-
file). Nevertheless, as suggested by its higher correlation
coefficient, the rank-two matrix pencil estimator appears
to show a better resemblance of the phantom’s parabolic
flow gradient. On the other hand, among the two esti-
mators that involve clutter filtering, the rank-one matrix
pencil estimator seems to give a somewhat more consistent
flow map than that provided by the lag-one autocorrela-
tor (whose correlation coefficient is 0.015 lower). Although
these results are of qualitative nature, they do suggest that
the matrix pencil method has potential in obtaining flow
estimates that are less prone to the biasing effect of the
clutter filter.
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Fig. 5. The simulated flow profile of the phantom [as seen in (a)] and
the corresponding velocity maps [(b), (c), and (d)] obtained for one
of the five frames in the color flow dataset. The correlation coeffi-
cients of the velocity maps are also provided. These velocity maps
were obtained using the processing parameters described in Sec-
tion IV-A. Their unaliased velocity range was between −61.6 cm/s
and +75.3 cm/s, and they had the same color display gain.

TABLE III
Simulation Parameters.

Parameter Value

Fixed Parameters

Acoustic speed, co 1540 m/s
F-number, Fnum 4

Pulse carrier frequency, fo 5 MHz
Pulse repetition interval, TPRI 1.0 ms

Beam-flow angle, θb 60◦

Beam-tissue angle, θc 0◦

Slow-time ensemble size, ND 10
Dynamic range 14 bits

Number of realizations per dataset 10000
Clutter-to-blood signal ratio, CBR 30 dB

Average noise strength, κw 10 dB
Tissue vibration frequency, fvib 5 Hz

Variable Parameters

Blood velocity, vb 0 to valias
Blood-signal-to-noise ratio, BSNR −20 to +30 dB
Maximum tissue velocity, vc,max 0 or 1 cm/s

Responding Parameters

Aliasing velocity, valias 15.4 cm/s
Ensemble period, NDTPRI 10.0 ms

Max. instantaneous clutter phase, φc,max 0 or 13.0 radians
Maximum clutter frequency 0 or 70 Hz

V. Simulation Methods

To further investigate the performance of the matrix
pencil method, we carried out a series of simulation studies
using the synthesis model described in Section III of [10].
In particular, two rounds of simulations were conducted to
analyze the efficacy of the matrix pencil quantitatively un-
der various flow scenarios and noise levels. The first round
of simulations, which involved the modeling of a flow sce-
nario with no tissue motion, aimed to evaluate the perfor-
mance of rank-one and rank-two matrix pencil estimators
at different pencil dimensions, BSNRs, and flow velocities.
With the insights gained from the initial simulations, a
second round of simulations based on a flow scenario with
moving tissue was then performed to study the efficacy
of a rank-adaptive matrix pencil and the spectral spread
criterion proposed for rank selection.

A. Simulation Parameters

The data synthesis parameters used in the simulations
are listed in Table III. For this study, slow-time datasets
(each with 10 000 realizations) were synthesized for blood
velocities (vb) ranging from zero to the aliasing limit
(15.4 cm/s) as well as BSNRs ranging from −20 to 30 dB
to assess the performance of the matrix pencil estimator.
Note that, to simulate scenarios with and without tissue
motion, the maximum tissue velocity (vc,max) was set to
either 0 or 1 cm/s. In terms of the major fixed parameters,
the ultrasound frequency (fo) and the pulse repetition in-
terval (TPRI) were, respectively, set to 5 MHz and 1.0 ms
to model data acquisition in a typical low-velocity vascu-
lar imaging scenario. As well, the average strength of slow-
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time clutter was defined to be 30 dB greater than that of
blood, and a slow-time ensemble size of ten samples was
used for the synthesized datasets.

B. Analysis Protocol

Flow estimation was performed using four different
frequency-based methods: lag-one autocorrelator [1], the
matrix pencil, AR modeling (using a forward-backward fit-
ting approach) [6], and data-smoothed Root-MUSIC [16].
The estimation process was carried out on all the syn-
thesized slow-time datasets to assess the performance of
each method. For the autocorrelator and the rank-one ma-
trix pencil estimator, the same filter type as used in the
flow phantom study (i.e., fifth-order IIR filter, projection-
initialized) was applied to suppress clutter prior to flow
estimation. As for the rank-adaptive matrix pencil esti-
mator, a two-way spectral spread threshold of 150 Hz was
used for the rank selection algorithm. It should also be
pointed out that, to avoid aliasing problems during the
analysis, all flow estimates were partially unwrapped in ve-
locity so that they are bounded within the range vb±valias,
where valias is the aliasing velocity. This partial unwrap-
ping procedure ensures that, if an estimator is unbiased,
the distribution of velocity estimates is centered about vb

with no discontinuity.
In our analysis, two performance measures were used to

assess an estimator’s performance quantitatively: 1) the
mean estimation bias, and 2) the root-mean-squared
(RMS) estimation error. The mean estimation bias was
computed by finding the average difference between the
estimated velocity and the actual blood velocity used to
synthesize the slow-time signal. It is well established from
estimation theory that a low bias is an indication of high
estimation accuracy. On the other hand, the RMS estima-
tion error was calculated by taking the square root of the
average squared difference between the estimated velocity
and the true blood velocity. For an estimator to have high
accuracy and precision, its RMS estimation error should
be low in general.

VI. Simulation Results

A. Flow Scenario with Clutter from Motionless Tissue

1. Efficacy of Rank Reduction: Fig. 6 shows the bias
and the RMS error of this estimator for different pen-
cil dimensions as a function of BSNR. Results are pro-
vided for both the rank-one and rank-two matrix pencil
when the slow-time ensemble size is 10 samples, and they
were obtained by processing slow-time data synthesized
with a 5 cm/s blood velocity and clutter generated by
motionless tissue. It can be seen that the estimation bias
of both the rank-one and rank-two matrix pencil drops
significantly at medium and low BSNRs with increasing
pencil dimension. In addition, the RMS error either re-
mains similar or decreases gradually when the pencil di-
mension becomes larger. These observations suggest that
rank reduction can improve the matrix pencil method’s

estimation performance. They also indicate that the flow-
estimation performance is generally better at larger pencil
dimensions: a result that can be expected because larger
pencil dimensions give rise to more entries in the Hankel
data matrix and in turn the rank reduction performance
should be improved. Based on these grounds, it appears
that the dimension parameter for the matrix pencil esti-
mator should be set to the maximum possible value (i.e.,
ND/2).

2. Comparative Assessment at Different BSNRs: In
Fig. 7, the estimation performance of matrix pencil at
various BSNRs is compared against the lag-one autocor-
relator, the second-order AR estimator, and the rank-two
Root-MUSIC estimator (with data smoothing). The shown
results are based on slow-time data synthesized with blood
velocities of 5 and 10 cm/s (i.e., mean blood Doppler fre-
quencies of 162 and 325 Hz). In other words, these re-
sults correspond, respectively, to cases where the blood
frequency contents are near and away from the stopband
of the clutter filter. Note that, when using the matrix pen-
cil estimator to process the synthesized slow-time data,
the pencil dimension was defined as ND/2 to maximize
the rank reduction performance. Likewise, when using the
data-smoothed MUSIC estimator, a window size of ND/2
was chosen to form the slow-time correlation matrix.

From Fig. 7, it can be seen that the rank-one matrix
pencil (black dashed line) is less biased than the autocor-
relator (gray dashed line) for all BSNRs. The rank-one
matrix pencil also appears to be more precise than the au-
tocorrelator when the blood frequency contents are close
to filter stopband (as seen for the case where the blood ve-
locity is 5 cm/s). Both of these findings are consistent with
our previous observations on the efficacy of rank reduction
in the matrix pencil estimator. Another observation worth
noting is that, for the 5 cm/s blood velocity case, distor-
tions from the clutter filter cause both the rank-one ma-
trix pencil and the lag-one autocorrelator to remain biased
even at high BSNRs. On the other hand, all three rank-
two flow estimators that do not involve clutter filtering
are not prone to these distortions. In comparison between
the rank-two estimators, the rank-two matrix pencil (black
solid line) is significantly more accurate than the second-
order AR estimator (gray dotted line) at medium and low
BSNRs, and it appears to share similar performance trends
with the rank-two Root-MUSIC estimator (gray solid line).
This result can be expected because the matrix pencil and
Root-MUSIC both involve an orthogonal decomposition
(either through SVD or eigen-decomposition) in their the-
oretical formulation to help separate signal components
from noise (as noted in Section II-C).

3. Comparative Assessment at Different Blood Veloci-
ties: Fig. 8 shows the bias and the RMS error of vari-
ous frequency-based flow estimators as a function of the
blood velocity for BSNRs of 0 and 10 dB. As can be seen,
the rank-one matrix pencil and the lag-one autocorrelator
both exhibit substantial estimation bias at low blood ve-
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Fig. 6. Estimation performance of rank-one and rank-two matrix pencil estimators in the flow scenario with clutter from motionless tissue.
In (a) and (b), the estimation biases and the RMS errors are shown for the rank-one estimator at various BSNRs and pencil dimensions.
The corresponding results for the rank-two estimator are shown in (c) and (d). Note that the true blood velocity used to synthesize the
slow-time data is 5 cm/s.

locities because of clutter filter distortions on the blood
signal (in the form of partial or complete attenuation). In
fact, their bias is at a maximum for blood velocities near 4
to 5 cm/s, corresponding to blood Doppler frequencies in
the range of 130 to 160 Hz. Note that the blood spectral
components at these velocities are mainly located inside
the clutter filter’s transition region. On the other hand, the
rank-two matrix pencil and rank-two Root-MUSIC both
have significantly lower biases than the other estimators
at any blood velocity. This observation is in agreement
with our results presented for different BSNR levels. It is
also worth pointing out that, at higher blood velocities, the
precision of the rank-one matrix pencil and the autocorre-
lator appears to be slightly better. This phenomenon can
be explained by recognizing that, for these two estimators,
the clutter filtering step prior to flow estimation has more
or less suppressed some of the background white noise and
hence the estimation variance is inherently lower.

B. Flow Scenario with Clutter from Moving Tissue

1. Efficacy of Adaptive Rank Selection: To demonstrate
the need for adaptive rank selection when using the ma-
trix pencil, we first studied the estimation performance of

a rank-two matrix pencil in the flow scenario with clutter
generated by moving tissue. In this study, the flow esti-
mates of a rank-two matrix pencil were evaluated for cases
with blood velocities of 5 and 10 cm/s as well as a BSNR
of 10 dB. The upper half of Fig. 9 shows the correspond-
ing distribution for 10 000 estimates of the blood Doppler
frequency (prior to velocity conversion) in the two cases.
As can be seen, a number of rank-two matrix pencil esti-
mates are biased toward zero: a result that is inconsistent
with the flow dynamics because blood velocities of 5 and
10 cm/s, respectively, give rise to mean blood Doppler fre-
quencies of 162 and 325 Hz. In fact, when the blood ve-
locity is 5 cm/s, it was found that 19.2% of the flow es-
timates in this dataset have a magnitude lower than the
approximate clutter range of ±70 Hz; likewise, when the
blood velocity is 10 cm/s, 13.9% of the estimates were less
than the peak clutter frequency. In contrast to the rank-
two estimation results, the bottom half of Fig. 9 shows
the distribution of blood Doppler frequencies found from
a rank-adaptive matrix pencil estimator that uses a spec-
tral spread threshold of 150 Hz during rank selection. Al-
though favorable results were not observed (some overes-
timation was seen) for the case with 5 cm/s velocity, the
histogram for the higher velocity case (10 cm/s) revealed
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Fig. 7. Estimation performance of various frequency-based flow estimators in the flow scenario with clutter from motionless tissue. In (a)
and (b), the estimation bias and the RMS error at various BSNRs are shown for the case where the actual blood velocity is 5 cm/s. The
corresponding results for the 10 cm/s blood velocity case are shown in (c) and (d). Note that a pencil dimension of P = ND/2 was used for
the matrix pencil estimators.

that the rank-adaptive matrix pencil is able to obtain flow
estimates that are relatively centered at the mean blood
frequency of the synthesized slow-time data. As such, the
rank-adaptive matrix pencil appears to have better esti-
mation accuracy than the rank-two counterpart at high
blood velocities.

2. Comparative Assessment at Different Blood Veloc-
ities: For various blood velocities and two BSNR val-
ues, Fig. 10 compares the bias and the RMS error of the
rank-adaptive matrix pencil (solid line) against those of
the autocorrelator (dash-dotted line) as well as the rank-
one (dotted line) and rank-two matrix pencil estimators
(dashed line). It can be seen that in the higher blood ve-
locity range (>1/2 valias), the rank-adaptive matrix pencil
is the most accurate (i.e., lowest bias) among the four
estimators. However, in the lower blood velocity range
(<1/2 valias), the rank-adaptive matrix pencil appears to
suffer a significant drop in the estimation precision. Such
result is to be expected because the rank selection algo-
rithm used in this study assumes that the slow-time clut-
ter spans a prescribed bandwidth and therefore exhibits
performance characteristics similar to the stopband of a
clutter filter. In fact, as can be seen from Fig. 10, the es-

timation precision of the rank-adaptive matrix pencil is
quite similar to that for the autocorrelator and rank-one
matrix pencil, both of which involves the use of a clutter
filter. It is also worth pointing out that the better accu-
racy and precision seen for a rank-two matrix pencil at
lower velocities is a somewhat misleading result since this
estimator gives flow estimates that are always biased to-
ward zero, and hence it tends to yield lower estimation
errors when the actual blood velocity is low. Note that
the use of a rank-two matrix pencil in flow scenarios with
clutter arising from moving tissue can be considered as
being analogous to applying a correlation-based estimator
to color flow data whose clutter has not been adequately
suppressed.

VII. Conclusion

It has been the intent of this paper to investigate the
use of the matrix pencil estimation framework in color-flow
data processing under various BSNRs and flow conditions.
In our theoretical formulation, we have first considered a
type of fixed-rank matrix pencil estimator called rank-one
matrix pencil and have shown that it is a generalized form
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Fig. 8. Estimator performance as a function of blood velocity in the flow scenario with clutter from motionless tissue. In (a) and (b), the
estimation bias and the RMS error are shown for the case where the BSNR is 10 dB. In (c) and (d), similar results are shown for a BSNR
of 0 dB. For the matrix pencil estimators, a pencil dimension of P = ND/2 was used.

of the lag-one autocorrelator that is often used in color-
flow data processing. To realize the potential of the matrix
pencil in obtaining flow estimates directly from the raw
slow-time data, we have considered the use of a rank-two
matrix pencil estimator and have shown that it is suit-
able for use in flow scenarios where the slow-time clutter
can be sufficiently modeled as a single complex sinusoid.
Besides fixed-rank matrix pencil estimators, we have also
developed an adaptive-rank matrix pencil estimator that
can be used to obtain flow estimates in the presence of
wideband slow-time clutter. The rank selection algorithm
used in rank-adaptive matrix pencil is based on a search
of the minimum eigen-structure rank that yields a matrix
pencil spectral spread greater than a certain bandwidth.

Our performance analysis has demonstrated that the
rank-one matrix pencil is more accurate and precise than
the lag-one autocorrelator at various BSNRs. Results have
also shown that, in flow scenarios with narrowband slow-
time clutter, the rank-two matrix pencil is even more ac-
curate than the rank-one matrix pencil because the former
does not suffer from potential biases due to clutter filter-
ing. On the other hand, in flow scenarios with slow-time

clutter arising from moving tissue, the rank-adaptive ma-
trix pencil has shown to be more useful because it can give
velocity estimates that are more consistent with the actual
flow dynamics, provided that the blood spectral compo-
nents are outside the specified clutter bandwidth. These
findings indicate that the matrix pencil framework is po-
tentially useful in color-flow signal processing.

Appendix A

Theoretical Details of the Matrix Pencil

Method

A. Relationship Between Generalized Eigenvalues
and Principal Frequencies

To appreciate how the matrix pencil A1 − λA0 gives
GEs that correspond to the principal frequencies, it is
necessary to consider the decomposition properties of the
two data matrices. In particular, with reference to the sig-
nal model given in (1), the data matrices A1 and A0 in
the absence of noise can be decomposed into the following
forms [12]:
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Fig. 9. Histograms of the blood frequency estimates obtained from the rank-two and rank-adaptive matrix pencil estimators for the flow
scenario with clutter from moving tissue. Results for the rank-two estimator are shown in (a) and (b), while the ones for the rank-adaptive
estimator are shown in (c) and (d). They correspond to cases where the blood velocity is 5 or 10 cm/s. Note that the flow estimates are
displayed over the unaliased Doppler spectral range, and there are 10 000 estimates in each histogram.

A1 = ZLDΦZR, (A1)
A0 = ZLDZR, (A2)

where the matrices ZL, ZR, D, and Φ are defined in (A3)–
(A6) (see next page). Given these decomposed forms, the
matrix pencil A1 − λA0 can be expressed as:

A1 − λA0 = ZLD[Φ − λI]ZR. (A7)

From the Φ − λI term in the above expression, it can be
seen that if λ equals to any of the main diagonal entries in
Φ (i.e., any of zk), then the rank of A1 − λA0 is reduced
by one. Hence, in the absence of noise, values of the set
{zk} are indeed the GEs of A1 − λA0. Note that, as re-
viewed by van der Veen et al. [13], the solution for Φ in
(A7) is equivalent to finding a rotational matrix operator
such that the rotation is invariant from a subspace per-
spective (i.e., the two data matrices A1 and A0 span the
same subspace). As such, the matrix pencil estimator can
be considered as an estimation method that is based on
rotational invariance principles.

B. Mathematical Solution for Generalized Eigenvalues

To solve for the GEs of the matrix pair defined by (3) or
(4), we can first rewrite the GE equation in (2) as a stan-
dard eigenvalue equation. This algebraic manipulation can

be done by multiplying both sides of the GE equation with
AH

0 and moving all matrix terms to one side of the equa-
tion. The resulting eigenvalue equation is then given by:

(
AH

0 A0
)−1

AH
0 A1q = λq ⇔

[
A+

0 A1 − λI
]
q = 0,

(A8)

where the ‘+’ superscript refers to a pseudo-inverse oper-
ation (i.e., the singular matrix equivalent of a matrix in-
verse). From this expression, it can be seen that the GEs of
A1 −λA0 (or Ã1 −λÃ0) are essentially the eigenvalues of
A+

0 A1 (or Ã+
0 Ã1). Hence, it is possible to use a standard

eigenvalue solving algorithm such as QR factorization or
power iterations to compute the GEs [19].

Appendix B

Relationship Between Matrix Pencil and

Existing Estimators

A. Rank-One Matrix Pencil

When P = 1, the rank-one matrix pencil estimator is
equivalent to the lag-one autocorrelator. This equivalence
can be shown by noting that, for a given filtered slow-
time signal y(n), the matrices A1 and A0 in the matrix
pencil estimator degenerate to the following vectors (of
size ND − 1) in the limiting case:
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Fig. 10. Estimation performance of flow estimators in the flow scenario with clutter from moving tissue. In (a) and (b), the estimation bias
and the RMS error as a function of blood velocity are shown for the case where the BSNR is 10 dB. Similar results for a BSNR of 0 dB are
shown in (c) and (d). A pencil dimension of P = ND/2 was used for matrix pencil.

ZL =⎡
⎢⎢⎢⎣

1 1 · · · 1
z1 z2 · · · zK

...
...

. . .
...

z
(ND−P−1)
1 z

(ND−P−1)
2 · · · z

(ND−P−1)
K

⎤
⎥⎥⎥⎦

(ND−P )×K

∣∣∣∣∣∣∣∣∣∣
zk=ej2πfD,kTPRI

,
(A3)

ZR =

⎡
⎢⎢⎢⎢⎣

1 z1 · · · z
(P−1)
1

1 z2 · · · z
(P−1)
2

...
...

. . .
...

1 zK · · · z
(P−1)
K

⎤
⎥⎥⎥⎥⎦

K×P

∣∣∣∣∣∣∣∣∣∣
zk=ej2πfD,kTPRI

, (A4)

D = diag{χ1, χ2, . . . , χK}, (A5)

Φ = diag{z1, z2, . . . , zK}
∣∣
zk=ej2πfD,kTPRI . (A6)
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a1 = [y(1), y(2), . . . , y(ND − 1)] , (B1)
a0 = [y(0), y(1), . . . , y(ND − 2)] . (B2)

From the expressions given in (5), a1 and a0 would form
a matrix pencil that gives the following modal frequency
estimate:

fD(est) =
1

2πTPRI
arg{λ} for λ =

aH
0 a1

aH
0 a0

=
Ry(1)
Ry(0)

,
(B3)

where Ry(0) and Ry(1) are, respectively, the lag-zero and
lag-one autocorrelation functions of the filtered slow-time
signal. Since Ry(0) is always a real quantity (it is simply
the squared-norm of a0), (B3) is essentially equivalent to
the formulation presented in [1], thereby confirming the
equivalence between the rank-one matrix pencil and the
lag-one autocorrelator when the pencil dimension is equal
to one.

B. Rank-Two Matrix Pencil

When P = 2, the rank-two matrix pencil estimator is
equivalent to a second-order AR estimator. To show this
equivalence, we can first note that the matrix pair [A1, A0]
for the matrix pencil and the solution matrix A+

0 A1 would
take on the following forms when P = 2 [12]:

A1 =

⎡
⎢⎣

x(1) x(2)
...

...
x(ND − 2) x(ND − 1)

⎤
⎥⎦ , (B4)

A0 =

⎡
⎢⎣

x(0) x(1)
...

...
x(ND − 3) x(ND − 2)

⎤
⎥⎦ , (B5)

A+
0 A1 =

[
0 c1
1 c2

]
, (B6)

where c1 and c2 are, respectively, the product coefficients
between A+

0 and the last column of A1. Note that the ma-
trix shown in (B6) is the same as the companion matrix
of a second-order AR polynomial, and its two eigenval-
ues are indeed the roots of the AR polynomial. Therefore,
when P = 2, the rank-two matrix pencil and the second-
order AR estimator are equivalent in formulation. On the
other hand, by using a larger pencil dimension (i.e., set-
ting P > 2), the rank-two matrix pencil can be made less
sensitive to noise perturbations through matrix rank re-
duction (just like the rank-one formulation). It is worth
mentioning that, to achieve the same advantage with AR
modeling, an SVD truncation step may be included in the
least-squares fit between the regressive signal model and
the raw slow-time data [21]. Nevertheless, Hua and Sarkar
[15] have shown that the SVD-based AR modeling method
is not as effective as the matrix pencil.
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