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Global Path-Planning for Constrained
and Optimal Visual Servoing

Graziano Chesi, Senior Member, IEEE, and Y. S. Hung, Senior Member, IEEE

Abstract—Visual servoing consists of steering a robot from an
initial to a desired location by exploiting the information provided
by visual sensors. This paper deals with the problem of realizing
visual servoing for robot manipulators taking into account con-
straints such as visibility, workspace (that is obstacle avoidance),
and joint constraints, while minimizing a cost function such as
spanned image area, trajectory length, and curvature. To solve this
problem, a new path-planning scheme is proposed. First, a robust
object reconstruction is computed from visual measurements
which allows one to obtain feasible image trajectories. Second, the
rotation path is parameterized through an extension of the Euler
parameters that yields an equivalent expression of the rotation
matrix as a quadratic function of unconstrained variables, hence,
largely simplifying standard parameterizations which involve
transcendental functions. Then, polynomials of arbitrary degree
are used to complete the parametrization and formulate the de-
sired constraints and costs as a general optimization problem. The
optimal trajectory is followed by tracking the image trajectory
with an IBVS controller combined with repulsive potential fields
in order to fulfill the constraints in real conditions.

Index Terms—Path-planning, robot manipulator, trajectory
constraints, trajectory costs, visual servoing.

I. INTRODUCTION

VISUAL servoing via the “teaching-by-showing” approach
has received increasing attention in recent years. It con-

sists of steering an eye-in-hand robot from a current location to
a desired location via a feedback control law based on the image
projections of some reference features in the current and desired
view. See for example [1]–[3] for detailed classifications of vi-
sual servoing approaches. Several methods to deal with this task
have been proposed. Some examples are the position-based vi-
sual servoing (PBVS) where the feedback error is the camera
pose (see for example [4], [5]), and the image-based visual ser-
voing (IBVS) where the feedback error is the image error (see
for example [6], [7]). In the 2 1/2 D visual servoing [2], the feed-
back error contains both the camera pose and the image error.
Other methods exploit partitioning techniques [8]–[10], navi-
gation functions [11], invariance with respect to the intrinsic
parameters [12], image moments [13], and generation of cir-
cular-like trajectories [14].
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When controlling a robot, convergence and robustness are
not the only important issues. In fact, workspace limits should
be taken into account to ensure that the trajectory of the robot
does not collide with obstacles present in the scene. Joint
limits should be considered because the robot may not be
able to reach a certain location due to its particular structure.
Besides issues concerning the physical constraints, there are
also issues concerning the performance. In fact, when more
than one feasible robot trajectory exists, one may be interested
in finding the shortest trajectory, or the smoothest trajectory, or
the trajectory which maximizes the visibility margin.

This paper proposes a visual servoing design approach for
robot manipulators which allows one to take into account all
these issues. In particular, a new path-planning technique in the
image space is introduced, which allows one to consider con-
straints on visibility, workspace and joints, together with the ob-
jective of minimizing trajectory costs such as length, curvature,
and spanned image area. This is achieved by parameterizing in
the six-dimensional rigid motion space all the trajectories con-
necting the initial to the desired location which, although un-
known, can be computed up to a scale factor through an object
reconstruction from image measurements and, if available, also
the CAD model of the observed object. In order to deal with
calibration errors and image noise, a robust object reconstruc-
tion is proposed which allows one to obtain image trajectories
satisfying the boundary conditions. In order to obtain functions
that can be efficiently handled in optimization tools, the rota-
tion path is parameterized through an extension of the Euler pa-
rameters which yields an equivalent expression of the rotation
as a quadratic function of unconstrained variables. Polynomials
of arbitrary degree are then used to complete the parametriza-
tion. The so obtained optimization can be solved through any
tool such as gradient search and simplex, by simply evaluating
the roots of one-variable polynomials at each step. Once the
image trajectory is computed, the camera is steered to the de-
sired location by using an IBVS controller such as that pro-
posed in [15]. Finally, repulsive potential fields are combined
with the IBVS tracking control law in order to fulfill the con-
straints when the image trajectory cannot be exactly followed
due to calibration errors and image noise. It is worthwhile to
note that other path-planning methods have been proposed in
[15]–[18] which solve related problems by exploiting, in a dis-
cretized framework, optimal control formulations, screw mo-
tions, and geodesic paths modulated by repulsive potential fields
respectively. The approach in this paper proposes a new strategy
which consists of parameterizing all the possible trajectories sat-
isfying a number of constraints while minimizing a cost. This
is achieved by using a new approach based on parameter-de-
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pendent object reconstruction, extended Euler parameters, and a
combination of repulsive potential fields with the IBVS tracking
control law.

The paper is organized as follows. Section II introduces the
problem formulation. Section III presents the proposed path-
planning scheme. Section IV illustrates some constraints and
costs that can be considered, and describes the strategy proposed
to track the found trajectory. Section V presents some simula-
tion results in ideal and in real conditions. Lastly, Section VI
ends the paper with some final remarks.

II. PRELIMINARIES

Let us introduce the following notation. Let denote the real
number set, the set of rotation matrices in , and

the Cartesian product . We denote with
the th component of the vector , the identity matrix,

the null vector, the vector with all elements
equal to 1, the th column of , and the skew-symmetric
matrix of . Also, given the camera frames , with
pose with respect to the absolute
frame, we define the pose of with respect to as

(1)

Moreover:
— : upper triangular intrinsic parameters matrix;
— : initial and desired camera frames with pose;
— with respect to the absolute

frame (taken to be );
— : th point in the three-dimensional space ex-

pressed with respect to the absolute frame;
— : projections in

pixel coordinates of the th point on and according
to

(2)

where are the point depths.
Let us suppose that a set of

object point correspondences is available. The problem consists
of steering the camera from the initial to the desired location:

1) satisfying visibility, workspace, and joint constraints;
2) optimizing a certain trajectory cost.

III. PATH-PLANNING

The strategy proposed in this paper consists of generating
image trajectories of the object points and then tracking them
by using IBVS controllers. We indicate the image trajectory of
the th point as where is the trajectory abscise,
with indicating the initial location and the desired
location. The vector must satisfy the boundary conditions

(3)

The above conditions are not the only constraints that
must satisfy. In fact, the set of , , must be

such that there exists a parameter-dependent camera frame from
which the observed object points match the for all

. In order to cope with this problem as well as allow one
to deal with constraints and trajectory costs defined outside the
image space, we introduce a new parametrization as described
in Sections III-A–D.

A. Trajectory Parametrization

Let us define the camera pose of with respect to as

(4)

Given , , and the CAD model of the object (that is the set of
physical points ), one can calculate the camera pose
by solving (2)–(4) through linear least-squares techniques.

If the CAD model of the object is not available, can be
computed only up to a scale factor which stands for the unknown
distance between the initial and desired frame origins. Indeed,
the normalized camera pose with
can be computed through the essential matrix algorithm or the
homography matrix algorithm relative to a virtual plane in the
case of non coplanar features supposing . If the features
are known to be coplanar, the camera pose can be computed
through the homography matrix algorithm supposing .
See [19] and [20] for details. For pure rotation motion, i.e.,

, the normalized translation is defined as .
We will henceforth assume that the camera pose has been

estimated as , being either the physical translation
or the normalized translation . Let be the camera
frame along the reconstructed camera trajectory, and define the
pose of with respect to as

(5)

At the extreme points of the trajectory, this pose must satisfy

(6)

In ideal conditions, that is in the absence of calibration errors
and image noise, the trajectory of the th object point can be
expressed in terms of and as

(7)

where is the parameterized point depth and is the th
physical point in the camera frame , referred to as object
reconstruction. This object reconstruction can be computed by
solving the system

(8)

which amounts to calculating an SVD by eliminating the point
depths . Hence, the sought trajectory can be ex-
pressed as the solution of the constrained minimization problem
shown in (9) at the bottom of the next page, where ,

, indicate the constraints that the camera must satisfy
along the trajectory, and is the cost function to be minimized
by the trajectory.
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In order to establish if is positive for all ,
one must evaluate, at each step of the optimization procedure,
each function at , at , and at the points in

where its derivative vanishes in order to find all the global
minima. However, this turns out to be difficult and computation-
ally intensive with standard parameterizations because ,
and consequently , contains transcendental terms (for ex-
ample exponential coordinates, x-y-z angles, etc.).

In order to cope with this problem, we will derive in the se-
quel a special parametrization of the trajectories for which the
functions are polynomial in . In fact, the roots of poly-
nomials can be easily found. Polynomial trajectories have been
used in [21] for the problem of following a straight line.

B. Robust Object Reconstruction

In the presence of calibration errors and image noise, the
system (8) may admit no solution for . Clearly, a least-squares
solution can still be computed through SVD, but this solution
cannot allow the image trajectory provided by (7) to sat-
isfy the image boundary conditions (3), even if the CAD model
of the object is available (if this model is available one can obtain
more accurate estimates of , as explained in Section III-A,
and then use these estimates in the following procedure).

Therefore, we look for a robust object reconstruction which
minimizes the effect of uncertainties on our robot control. In
particular, we introduce a parameter-dependent object recon-
struction satisfying

(10)

for some point depths . Among all possible solu-
tions for the above system, we select the linear solution
because it is the simplest and because it is the closest to the ideal
constant in (8). Hence, let us write as

(11)

Fig. 1 illustrates the idea of robust object reconstruction for
path-planning.

Since we are interested in the solution closest to the constant
one, we aim to find the with the smallest which satis-
fies (10), that is

(12)

In order to solve (12), let us observe that, by eliminating the
point depths , , (10) can be rewritten as

(13)

Fig. 1. (a) Observed point ��� and camera framesF andF . (b) Robust object
reconstruction u (w) for the point ��� as function of the trajectory abscise in the
presence of calibration errors and image noise.

where

(14)

and , , are the columns of . The solution of (12) can be
found through the Lagrange’s multipliers and is given by

(15)

where

(16)

The robust object reconstruction is finally given by

(17)

We observe that the above expression is well-posed because the
matrix is always nonsingular, being

(18)

Lastly, the image projection along the trajectory is given
by the solution of

(19)

C. Rotation Parameter

The proposed approach aims to derive a simple parametriza-
tion for the rotation to enable the optimization to be formulated
as easily as possible. In particular, we look for rational parame-
terizations of the rotation since they can be more easily handled
than others such as irrational or trigonometrical.

We start by considering the representation of rotation ma-
trices through the Euler parameters (see for example [22]). Ac-
cording to this representation, any rotation matrix can be rep-

(9)
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resented as shown in (20) at the bottom of the page for some
satisfying . Also, is a rotation matrix for

any satisfying . The Euler parameters corresponding
to can be found as where

(21)

where and , , are respectively the
rotation angle and axis in the exponential coordinates of , i.e.,

.
Hence, one could parameterize the rotation through (20) and

the vector . However, is not free due to the constraint
. Clearly, one could then parameterize in order to ensure this

constraint, but this would require the introduction of irrational
or trigonometrical functions.

Therefore, in order to get rid of the constraint and
obtain a rational parametrization of the rotation, we introduce
the following extended Euler parametrization:

(22)

This parametrization is complete, in fact for any rotation matrix
there exists such that . In particular

(23)

Moreover, is a rotation matrix for all (through
limit operations one can see that is a rotation matrix also
for but this limit is not unique).

We observe that we have gotten rid of the constraint
at the expense of the denominator in (22). As it will become
clear in Section IV, this denominator does not affect the opti-
mization problem.

D. Polynomial Parametrization

Let us parameterize the rotation of the camera frame
as

(24)

where is a parameterized extended Euler parameter.
The camera pose along the trajectory is, hence, described by

and . Let us express these vectors as polynomials
according to

(25)

where and are coefficient ma-
trices. In order to satisfy the rotation boundary conditions in (6),
we impose

(26)

(clearly, one can equivalently impose the same quantity scaled
by the same factor with ). Then, taking into account
(25), one has that the pose boundary conditions (6) are satisfied
if and only if

(27)

which imply that the matrices and can be parameterized
as

(28)

where and are free matricial
parameters. Therefore, the camera pose along the trajectory is
parameterized by the matrices and , and the optimization
problem (9) can be rewritten as

(29)

Let us observe that the boundary conditions (6) and (3) are im-
plicitly satisfied in (29). In fact, the pose boundary conditions
(6) are ensured by (25)–(28), while the image boundary condi-
tions (3) are ensured by (17)–(19).

Remark 1: Problem (9) may not admit any solution, for ex-
ample if the desired pose is out of the workspace. This is de-
tected in problem (29) by a minimum cost equal to infinity. Let
us also observe that, if there exists a solution to (9) with contin-
uous derivatives along the trajectory, then there exist matrices

approximating arbitrarily well this solution from standard
arguments of functions representation via polynomial series.

Remark 2: The solution of (29) may not be unique, that is the
same optimal cost may be achieved by different trajectories. For
example, this is the case when, minimizing the trajectory length,
there exist different feasible trajectories with the same projection
on the translational space. Let us observe that one does not need
to distinguish among these solutions, that is one can simply adopt
the solution returned by the solver, since all these solutions sat-
isfy the imposed constraints and achieve the same cost.

(20)
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IV. CONSTRAINTS, COSTS, AND TRACKING

A. Visibility Constraint

Let us write the image projection as
. In order to guarantee that the image projec-

tions along the trajectory remain in the field of view of the
camera, we have to introduce the visibility constraint

(30)

where are the screen limits. This
can be done as follows.

By eliminating the point depth in (19) one obtains

(31)

Taking into account the parametrization of in (22), one
has for

(32)

As we can see, the denominator in (22) does not affect the image
projections, which means that in the optimization problem the
rotation is equivalently parameterized by a simple quadratic ex-
pression, namely , which depends quadratically on the
parameter and, according to (25)–(28), depends quadrat-
ically on the parameter . Let us observe that is uncon-
strained and, hence, is as well. This allows one to simplify
(29) because it does not require the introduction of additional
constraints on .

Let us introduce the polynomials

(33)

It follows that

(34)

Hence, the constraint (30) can be rewritten as

(35)

Let us observe that the inequality has been included
in order to ensure that the object remains in front of the camera

for the whole trajectory. This allows us to get rid of the denom-
inator and obtain only the polynomial inequalities in (35). Each
of these inequalities represents one inequality in (29).

B. Workspace Constraints

Due to obstacles present in the scene, the robot is not allowed
to reach certain positions of the three-dimensional space. This
means that the camera center can assume values in a subset of

only. In our path-planning, the camera center is represented
by the translation vector as pose with respect to the initial
frame . Therefore, workspace constraints correspond to con-
straints on this vector.

Now, depending on the information available for the robot
control problem we are considering, two kinds of workspace
constraints can be taken into account.

1) Absolute Workspace Constraints: If the CAD model of the
object is available, one can calculate the nonnormalized trans-
lation between and as explained in Section III-A. This
means that one can constrain the optimization problem (29) so
that the camera center of the generated trajectories belongs to
an absolute set referred to either the initial or the desired camera
frame. Since the desired camera frame usually represents a ref-
erence location for the robot, we consider for instance the case
of this absolute set referred to . Let be the current camera
frame and let us define

(36)

The absolute set can be expressed as

(37)

where are polynomials. Then, since

(38)

one can constrain the trajectories in (29) so that the camera
center belongs to by imposing

(39)

2) Scaled Workspace Constraints: If the CAD model of the
object is not available, one can calculate only the normalized
translation between and . This means that only
scaled constraints on the camera center can be imposed in the
optimization problem (29). In particular, these constraints have
the form (39) but in this case they define the set

(40)

As we can see, this set depends on the initial camera pose
through the term . Although less general than the absolute
workspace constraints, the scaled workspace constraints can,
however, model typical situations in which the robot works.

Finally, let us observe that:
1) one can consider also workspace constraints on the camera

orientation by defining

(41)

where are polynomials;

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 03:18 from IEEE Xplore.  Restrictions apply.



CHESI AND HUNG: GLOBAL PATH-PLANNING FOR CONSTRAINED AND OPTIMAL VISUAL SERVOING 1055

2) workspace constraints on the links of the manipulator
cannot be directly considered through inequalities such
as (39), however, one can introduce more conservative
workspace constraints on the camera center in order to
keep the links sufficiently far away from the forbidden
region.

C. Joint Constraints

Workspace constraints are not the only constraints which limit
the set of positions that the robot can reach. In fact, this set is lim-
ited also by the physical limits of the joints of the robot. In prin-
ciple, one can impose joint constraints through the workspace
constraints defined in the previous section, but this may result
in a complex system of inequalities required to define
the set . A more direct way consists of exploiting the kinematic
relations of the robot if these are available. In particular, let

be the vector of robot joints, and consider the problem
of imposing the condition that belongs to the set

(42)

Let be the kinematic function describing the
pose of the camera frame as

(43)

Suppose that the nonnormalized translation between and
can be calculated (as explained in Section III-A this requires ad-
ditional information such as the CAD model of the object) and,
hence, . Then, one can impose on the trajectories
of problem (29) by imposing that

(44)

However, one cannot include this constraint in (29) if the inverse
kinematic function is nonpolynomial.

This problem can be dealt with by introducing polynomial
functions satisfying

(45)

where is a bounded subset of denoting the region of
interest for the robot. One can now impose by requiring
that

(46)

We observe that the proposed strategy can also deal with the
case of uncertain inverse kinematic function. In fact, suppose
that is not exactly known and, hence, so is . By in-
troducing the functions and satisfying the constraint
(45) for all admissible values of the uncertainties, one can en-
sure that the planned trajectories belong to for all considered
uncertainties.

In some cases depending on the structure of the robot, it can
be complicated to compute the functions and . In
these cases one can compute the trajectory in the joint space at
each iteration of the solver for (29) and establish if this trajectory
remains in as in [15].

D. Costs

One can consider several cost functions in (29) depending on
the specific problem. Some of the most useful are the following.

1) Spanned Image Area: Here we consider the problem of
minimizing the area spanned by the image trajectory. This can
be done by defining the cost function where

(47)

where denote the coordinates of
the boundary box of the image trajectory according to

(48)

In order to compute these coordinates, let us consider first
. Since in (34) is a rational function whose de-

nominator is positive for all , one can compute
by evaluating each at the extremes point of the trajectory
and at the points in where its derivative vanishes, as shown
in (49) at the bottom of the page. Therefore, the computation of

requires just the computation of the roots of a one-vari-
able polynomial. The other coordinates
are analogously calculated.

2) Trajectory Length: Another useful cost is the length of the
camera trajectory in the three-dimensional space, which can be
imposed as

(50)

The integral can be computed through finite difference approx-
imations in order to speed up the calculation.

(49)
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3) Curvature: Also, one can minimize the curvature of the
trajectory given by

(51)

This can be done by defining

(52)

This cost function can be simply computed by finding the
maxima of in the interval , operation that amounts to
evaluating at , at , and at the points where its
derivative vanishes as is done for in (47).

E. Tracking the Computed Image Trajectory

Once the problem (29) has been solved and the optimal values
of and are available, one can compute the planned image
trajectory as

(53)

where and are given by (34) with and
defined as in (25)–(28) for the optimal values of

and . In order to track this trajectory, one can use an IBVS
controller similar to that proposed in [15]. Specifically, let

be the vector containing the image
projections in the current camera frame . Define the error
function

(54)

where is a full rank matrix. We have that
where

(55)

in which is the camera pose vector, is
the interaction matrix between and the camera pose (see for
example [15]), and is the robot Jacobian linking
the camera velocity to the joint velocities. Define the following
control law in the joint space:

(56)

where is a control gain, and and are the pseudoin-
verse of and . It follows that

(57)

Let us select and consider the case of a 6 degree-of-
freedom (DOF) robot, hence, implying that . It fol-
lows that

(58)

Hence, the tracking system is asymptotically stable provided
that is a Hurwitz matrix, that is a matrix whose eigenvalues
have negative real part. For example, this can be achieved by
selecting and .

Let us observe that, in the presence of image noise and cal-
ibration errors, the real image trajectory will differ from the
planned one, and the constraints may not be satisfied. In order
to cope with this problem, one can consider more conservative
constraints (that is, larger safety margins) in the planning phase
in order to facilitate their fulfillment by the real camera trajec-
tory. Moreover, one can add repulsive components to the control
law (56) based on potential field methods. In particular, for the
visibility constraint one can proceed in a way similar to [9] and
add the repulsive component- to the -component of the trans-
lational velocity, with

if

otherwise
(59)

where is the thickness of the potential field and

(60)

(61)

For the joint constraint we can proceed in a way similar to [15]
and define the potential field

if

if
otherwise

(62)

where is analogous to , and similarly we can define for
the workspace constraint. Then, the control law (56) becomes

(63)

where , , are positive scalar gains and is the
column of identifying the position of the -component of the
translation in the camera pose vector .

V. EXAMPLES

In this section, we illustrate the proposed approach by simu-
lation examples. We present two types of simulations:

• simulations in ideal conditions;
• simulations in real conditions, that is in the presence of

image noise and uncertainties on the intrinsic and extrinsic
parameters.

Moreover, we also simulate a 6 DOF robot in order to derive
the control signal in the joint space. In particular, we consider
the industrial Cartesian robot XRS-0047RH shown in Fig. 2(b)
and schematically represented in Fig. 2(a) with a 3 DOF wrist
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Fig. 2. (b) Industrial Cartesian robot XRS-0047RH and (a) its schematic repre-
sentation with the camera in the desired frame F coinciding with the absolute
frame. (c) Camera orientation.

mounting the camera. The work area of the XRS-0047RH is
65 60 15 cm. The robot is located with respect to the abso-
lute frame so that the camera pose in (36) is described by
the kinematic functions

(64)

where are the translation and orientation joint vari-
ables shown in Fig. 2(a)–(c) constrained by

cm cm cm (65)

Then, we adopt the PULNiX CCD camera considered in [23]
with 6 mm lens and screen size 640 480 pixels, whose in-
trinsic parameters are calculated as

(66)

The real conditions are characterized as follows.
• (RC1) Image noise: each image projection is randomly

shifted, with uniform distribution, in a square with side
equal to 1 pixel centered on the point itself.

• (RC2–RC3) Calibration errors: the matrices and are
supposed coarsely estimated as

(67)

where and account for errors in the
coordinate transformation and are selected as

cm (68)

• (RC4) Nonperfect IBVS control: the matrix in (56) is
not exactly known as it depends on the point depths in

the current camera frame . In particular, we select to use
the point depths in the camera frame . We note
that this choice may not be the best choice and that better
results could be obtained by calculating the point depths
by estimating at each iteration the camera pose .

The problem (29) is solved for simple polynomials and
in (25) of degree 2 by using the function “fminsearch” of

Matlab and the criteria described in Sections III–IV for evalu-
ating the fulfillment of the constraints and the value of costs. The
initial camera pose is estimated through the simple es-
sential matrix algorithm. Once the image trajectory is computed,
the IBVS control law (56) is applied by selecting
and the trajectory abscise equal to where

. The visibility constraint is imposed in the planning
phase with a margin of 50 pixels, and the same margin is used to
define the potential field extension for the visibility constraint.
Joint and workspace constraints are considered in Examples 2
and 3, respectively.

A. Example 1

Consider the situation depicted in Fig. 3(a) where a set of
balls represents the object observed by the camera in the initial
and desired frames and . Fig. 3(b) shows the centers of
the balls in both initial and desired camera views. It is supposed
that the CAD model of the object is not available.

Consider the problem to steer the camera from to
minimizing the trajectory length. Fig. 3(c)–(d) shows the re-
sults obtained by planning the image trajectory through (29)
and then tracking this trajectory with (56) in ideal conditions.
Fig. 3(e)–(h) shows the results obtained by performing both
planning and tracking phases in the real conditions RC1–RC4.
Let us observe that some image projections reach the area of the
potential field for the visibility constraint in Fig. 3(g), producing
the deformation of the camera center trajectory according to the
backward motion generated by this potential field in (63).

Let us also observe that, although the image trajectory in real
conditions is different from that in ideal conditions, the trajec-
tory length is quite similar, being 85.9 and 85.4 cm, respectively.

B. Example 2 (Joint Constraint)

Consider the situation depicted in Fig. 4(a) where the same
object of Example 1 is observed from a different initial frame

, and the problem to steer the camera minimizing the spanned
image area. Fig. 4(c)–(d) shows the results obtained without the
joint constraints in (64)–(65). Along this trajectory the camera
goes above the horizontal plane which is not allowed
since and .

In order to take into account the bound on , one can proceed
as described in Section IV-C and impose the constraint

(69)

(let us observe that the CAD model of the object is not re-
quired since the inequality is proportional to the translation).
Fig. 4(e)–(f) shows the results obtained in ideal conditions,
whereas Fig. 4(g)–(j) shows the results in the real conditions
RC1–RC4. As we can see, the constraint is satisfied
along the trajectory. Also, the potential field for the visibility
constraint is not required in this example.
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Fig. 3. Example 1. (a)-(b) Initial configuration. (c)-(d) Results in ideal condi-
tions. (e)-(h) Results in real conditions with the joints in (g)-(h). In the camera
views, the cross represents the a point in the initial view, the circle a point in the
desired view, and the dashed line the potential field area.

C. Example 3 (Obstacle Avoidance)

Consider the situation depicted in Fig. 5(a) where the large
white spots of three dices are observed by the camera. Fig. 5(b)
shows the centers of the spots in both initial and desired camera
views. The hanging ball at cm represents an obstacle
which limits the robot workspace.

Consider the problem to steer the camera minimizing the cur-
vature of the trajectory. Fig. 5(c)–(d) shows the results obtained
without considering the workspace constraint imposed by the
obstacle. As we can see, the trajectory of the camera intersects
the obstacle.

In order to take into account this constraint, we can proceed
as described in Section IV-B if the CAD model is available.

Fig. 4. Example 2. (a)-(b) Initial configuration. (c)-(d) Results for uncon-
strained joints: the camera goes above the plane y = 0 which is not allowed
by (65). The arrow in (c) links the camera trajectory and its projection on the
plane y = 0. (e)-(f) Results in ideal conditions taking into account the joint
constraint. (g)-(j) Results in real conditions.

In particular, we can model the obstacle through a surrounding
ellipsoid. We select a conservative ellipsoid in order to prevent
the camera passing above the object (not allowed by the joint

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 9, 2009 at 03:18 from IEEE Xplore.  Restrictions apply.



CHESI AND HUNG: GLOBAL PATH-PLANNING FOR CONSTRAINED AND OPTIMAL VISUAL SERVOING 1059

Fig. 5. Example 3. (a)-(b) Initial configuration. (c)-(d) Results for uncon-
strained workspace: the camera collides with the obstacle. (e)-(f) Results in
ideal conditions taking into account the workspace constraint. (g)-(j) Results
in real conditions.

constraints (65)) or behind the obstacle (this would occlude the
object). In particular, we select the allowed region as

(70)

Fig. 5(e)–(f) shows the results obtained in ideal conditions,
whereas Fig. 5(g)–(j) shows the results in the real conditions
RC1–RC4 (the initial camera pose is estimated from the CAD
model through a least-squares solution). As we can see, the
camera avoids the obstacle.

Let us also observe that the image trajectory in real conditions
is significantly different from that in ideal conditions though
the trajectories of the camera center in the three-dimensional
space are very similar. This is due to the existence of quite
different solutions satisfying the imposed constraints (visibility
and workspace constraints) and achieving similar costs (curva-
ture of the trajectory).

VI. CONCLUSION

A new path-planning scheme has been proposed for con-
strained and optimal visual servoing. The contribution is to
provide a global parametrization of the trajectories that the
robot can follow in order to pick up, with simple computations,
the one minimizing a general cost under a number of possible
constraints including obstacle avoidance. In particular, all the
trajectories connecting the initial to the desired location are
parameterized in the six-dimensional rigid motion space. This
is achieved by introducing a new object reconstruction which
allows one to obtain image trajectories satisfying the boundary
conditions even in the presence of calibration errors and image
noise. In order to obtain functions that can be efficiently han-
dled in optimization tools, the rotation path is parameterized
through an extension of the Euler parameters which allows one
to obtain an equivalent expression of the rotation as a quadratic
function of unconstrained variables. Polynomials of arbitrary
degree are used to complete the parametrization and formulate
a general optimization where a number of constraints such
as visibility, workspace, and joint constraints, and a number
of costs such as spanned image area, trajectory length, and
curvature, can be considered. Thanks to this parametrization,
establishing the fulfillment of the constraints in the optimiza-
tion procedure reduces to the simple calculation of the roots of
a one-variable polynomial, hence, largely simplifying standard
parameterizations which involve transcendental functions.
Once the image trajectory is computed, the camera is steered
to the desired location by using an IBVS controller combined
with repulsive potential fields in order to fulfill the constraints
in real conditions. Future work will deal with the problem to
achieve robustness against all possible calibration errors.
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