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Efficient Positive-Real Balanced Truncation of
Symmetric Systems Via Cross-Riccati Equations

Ngai Wong, Member, IEEE

Abstract—We present a highly efficient approach for realizing a
positive-real balanced truncation (PRBT) of symmetric systems.
The solution of a pair of dual algebraic Riccati equations in
conventional PRBT, whose cost constrains practical large-scale de-
ployment, is reduced to the solution of one cross-Riccati equation
(XRE). The cross-Riccatian nature of the solution then allows a
simple construction of PRBT projection matrices, using a Schur
decomposition, without actual balancing. An invariant subspace
method and a modified quadratic alternating-direction-implicit
iteration scheme are proposed to efficiently solve the XRE. A
low-rank variant of the latter is shown to offer a remarkably
fast PRBT speed over the conventional implementations. The
XRE-based framework can be applied to a large class of linear
passive networks, and its effectiveness is demonstrated through
numerical examples.

Index Terms—Alternating direction implicit (ADI), cross-
Riccati equation (XRE), positive-real balanced truncation
(PRBT), Schur decomposition, symmetric systems.

I. INTRODUCTION

V ERY LARGE scale integration (VLSI) interconnect and
package modelings typically involve massively coupled

RLC components. The enormous orders of the models thus
formed prohibit direct computer simulation. Model order re-
duction (MOR) has become a standard routine in simulators
wherein the original system is approximated by a reduced-
order model with little degradation in time/frequency-domain
accuracy. In addition, the reduced-order model must preserve
critical properties like stability and passivity [1] of the original
model to ensure a correct global simulation [2]–[4]. In par-
ticular, a passive system is one that does not generate energy
internally. A strictly passive system is a dissipative system and
is automatically stable. In linear systems, passivity is equivalent
to positive realness [1], [4], [5].

Numerous MOR schemes provide various tradeoffs between
accuracy and computation. Among them, balanced truncation
(BT) offers superior accuracy and closed-form error bounds
[3]–[11]. The key idea of BT is to align and sort the inter-
nal states of the original model based on their importance
in input–output state activities or energy transfer. The least
important states are then truncated with little impact on the
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system response. In a standard BT, the bottleneck is to solve
two linear matrix equations, which are called the Lyapunov
equations, for obtaining the controllability and observability
Gramians. The cross product of these Gramians is then used
to find low-order projection matrices to reduce (truncate) the
original system. However, the standard BT does not guarantee
passivity. Positive-real BT (PRBT) is another BT variant that
preserves both passivity and stability [5] and has no special
semidefiniteness constraints on the internal state-space matrices
[3]. However, it requires solving a pair of algebraic Riccati
equations (AREs) whose complexity is even higher than that
of the Lyapunov equations.

In the standard BT of single-input–single-output (SISO) or
symmetric multiple-input–multiple-output (MIMO) systems,
information in the cross product of the controllability and ob-
servability Gramians can be directly obtained by solving a lin-
ear matrix equation called the Sylvester equation [6], [11]–[13].
Since only one matrix equation is solved, computation is prac-
tically halved, with further advantages like better consistency
and numerical robustness [6], [11], [14]. The quadratic coun-
terpart of the Sylvester equation, which is called the cross-
Riccati equation denoted by XRE in this paper, appeared in
[15]–[19] on control topics like feedback control, bounded-real
systems, and discrete stochastic processes. Its integration with
the PRBT, however, has not been fully appreciated by the
Electronic Design Automation community. Moreover, a few
research works have been done on the computationally com-
petitive algorithms for solving large-scale XREs frequently
encountered in the VLSI MOR.

By collecting distributed results and introducing new tech-
niques, this paper generalizes, in the context of symmetric
MIMO systems, the cross-Gramian framework in the standard
BT [6] to the cross-Riccatian counterpart in the PRBT. To
begin with, a standard invariant subspace method [15], [20]
for solving the XRE, with new spectral characterization and
derivations in relation to the dual AREs, is described. A Schur
decomposition method, which is borrowed from the standard
BT procedure [6], then allows a simple construction of pro-
jection matrices to obtain equivalent PRBT-reduced models
without actual balancing. Next, to address the computational
bottleneck in solving the XRE, a recently proposed fast ARE
solver algorithm called the quadratic alternating-direction-
implicit (QADI) iteration [8]–[10] is extended to XQADI
(“X” for “cross” Riccati) which solves an XRE efficiently.
A linear-fractional-transformation (LFT) analysis shows that
the XQADI inherits the superlinear convergence of QADI
and enjoys simple coding. Nonetheless, the real benefit of the
XQADI comes from a mathematically equivalent but low-rank
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implementation of the XQADI called the LRXQADI (“LR”
for low rank or left–right). In parallel to the Cholesky-factor
QADI (CFQADI) [8]–[10], the LRXQADI exploits and utilizes
low-rank factored iterates to significantly speed up computation
and reduce memory storage during the iterative XRE solution.
The factored cross Riccatian (namely, the solution to the XRE)
further permits rapid construction of PRBT projection matrices.
The end result is a PRBT/XRE/LRXQADI flow that exhibits a
remarkable efficiency comparable with the moment-matching
projection-based algorithms such as PRIMA [2], but with the
superior global accuracy and deterministic error bound perti-
nent to the PRBT. Although the proposed approach applies
to symmetric systems only, its scope encompasses the large
class of passive linear networks, which are commonly used in
interconnect and package modelings, that always have sym-
metric admittance or impedance matrices due to reciprocity.
A reciprocal system is the one whose voltage and current
values at any two points in the network can be interchanged
[21], [22].

This paper is an extension of the earlier work in [20] and is
organized as follows. Section II briefly reviews the PRBT. The
use of the Sylvester equation in the standard BT of symmetric
systems is succinctly discussed. Section III presents the XRE
and a standard invariant subspace approach for solving it,
together with some new spectral characterizations. The Schur
decomposition method for constructing the projection matri-
ces and obtaining the PRBT-equivalent reduced-order model
is also described. Section IV introduces the XQADI and the
LRXQADI and shows how the low-rank nature of the latter
gives rise to significant computational savings. The proposed
PRBT/XRE flow is then applied to some practical examples in
Section V. Finally, Section VI draws the conclusion.

II. BACKGROUND AND PRELIMINARIES

A. PRBT

Consider the state space of a minimal and passive MIMO
square system

ẋ =A0x + B0u (1a)

y =C0x + D0u (1b)

where A0 ∈ R
n×n, B0, CT

0 ∈ R
n×m, D0 ∈ R

m×m, and usu-
ally, m � n. The transfer function/matrix is G(s) = D0 +
C0(sI − A0)−1B0. The input u and output y are assumed
power conjugated. For every entry of u that is a node voltage
(branch current), the corresponding entry of y is a branch
current (node voltage) so that uT y represents a power metric.
We assume that A0 is asymptotically stable, i.e., its spectrum
is in the open left half-plane, denoted by spec(A0) ⊂ C−.
Let M > 0(≥ 0) denote a positive definite (positive semidef-
inite) matrix M . We assume without loss of generality that
D0 + DT

0 > 0 (i.e., the system is strictly PR or strictly passive
[1]); otherwise, the algorithm in [23] is used to achieve so in
a reduced-order embedded system. In addition, an impulse-
free system in the descriptor form [4] with a singular E0

before ẋ can be put into the regular form in (1) [3]. The PR

lemma [1], [4] states that the linear system (1) is passive if
and only if there exists an X(∈ R

n×n) > 0 satisfying the linear
matrix inequality[

AT
0 X + XA0 XB0 − CT

0

BT
0 X − C0 −(D0 + DT

0 )

]
≤ 0. (2)

By Schur complement, (2) is equivalent to

AT
0 X+XA0+

(
XB0−CT

0

) (
D0+DT

0

)−1 (
BT

0 X−C0

)
≤0.

(3)

Setting (3) to an equality results in an ARE. In the PRBT, the
unique stabilizing solutions [1] Xc(> 0) and Xo(> 0) to the
dual AREs

A0Xc + XcA
T
0 +

(
XcC

T
0 − B0

)
×

(
D0 + DT

0

)−1 (
C0Xc − BT

0

)
= 0 (4a)

AT
0 Xo + XoA0 +

(
XoB0 − CT

0

)
×

(
D0 + DT

0

)−1 (
BT

0 Xo − C0

)
= 0 (4b)

are solved. Their existence is guaranteed by the passivity as-
sumption. To simplify notations, we define

B := B0

(
D0 + DT

0

)−1/2
, C :=

(
D0 + DT

0

)−1/2
C0

A := A0 − B0

(
D0 + DT

0

)−1
C0 (5)

where “:=” denotes assignment, such that (4) also reads

AXc + XcA
T + XcC

T CXc + BBT = 0 (6a)

AT Xo + XoA + XoBBT Xo + CT C = 0. (6b)

Following the standard BT terminology in Section II-B, we
call Xc the controllability Riccatian and Xo the observability
Riccatian (although they are also sometimes known as the
PR Gramians). By factoring out Xc and Xo in (6) for their
coefficient matrices, we define

Ac := A + XcC
T C (7a)

Ao := A + BBT Xo. (7b)

Stabilizability of solutions implies that spec(Ac)=spec(Ao)⊂
C− [7]. Let Xc = LcL

T
c and Xo = LoL

T
o , where Lc, Lo ∈

R
n×n, be any matrix square-root decompositions. Compute the

singular value decomposition

LT
c Lo = UΣV T , where Σ = diag(σ1, . . . , σn). (8)

Here, Σ is a diagonal matrix with descending singular values

σ1 ≥ σ2 ≥ · · · ≥ σr � σr+1 ≥ · · · ≥ σn. (9)

By defining the matrices

TR := LcUΣ− 1
2 and TL := T−1

R = Σ− 1
2 V T LT

o (10)
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and using “→” to denote the corresponding similarity trans-
form, we get the PR-balanced model (Â0, B̂0, Ĉ0,D), namely

(A0, B0, C0,D0) → (Â0, B̂0, Ĉ0,D)

= (TLA0TR, TLB0, C0TR,D0). (11)

Moreover, in this PR-balanced state space, the controllability
and observability Riccatians are simultaneously diagonalized

Xc → TLXcT
T
L = Σ and Xo → TT

R XoTR = Σ (12)

which satisfy

Â0Σ+ΣÂT
0 +

(
ΣĈT

0 −B̂0

) (
D0+DT

0

)−1
(
Ĉ0Σ−B̂T

0

)
=0

(13a)

ÂT
0 Σ+ΣÂ0+

(
ΣB̂0−ĈT

0

) (
D0+DT

0

)−1
(
B̂T

0 Σ−Ĉ0

)
=0.

(13b)

The state variables in (Â0, B̂0, Ĉ0,D0) are aligned in de-
scending importance in energy transfer [3]. Express Σ =
diag(Σb,Σs), where Σb ∈ R

r×r holds the “bigger” singular
values, and Σs ∈ R

(n−r)×(n−r) holds the “smaller” ones. Par-
tition columns of TR and rows of TL accordingly so that with
respect to (12)

Xc = TRΣTT
R = [TRb TRs]

[
Σb

Σs

] [
TT

Rb

TT
Rs

]
(14a)

Xo = TT
L ΣTL = [TT

Lb TT
Ls]

[
Σb

Σs

] [
TLb

TLs

]
. (14b)

The PRBT-reduced model is then obtained from the rank-r
subspace projection

(Âr, B̂r, Ĉr,D) = (TLbA0TRb, TLbB0, C0TRb,D0) (15)

where Âr ∈ R
r×r and B̂r, ĈT

r ∈ R
r×m. It is easily checked

that the system in (15) is passive and stable. In addition, the
transfer matrix Gr(s) = D0 + Ĉr(sI − Âr)−1B̂r has an H∞-
norm approximation error bound determined by the truncated
subsystem [5].

B. Sylvester Equation in Symmetric-System Standard BT

The standard BT involves a pair of dual Lyapunov equations

A0Wc + WcA
T
0 + B0B

T
0 = 0 (16a)

AT
0 Wo + WoA0 + CT

0 C0 = 0 (16b)

whose solutions Wc and Wo are the controllability and ob-
servability Gramians, respectively. The rest of the standard BT
procedure is the same as in the PRBT except that Xc and Xo

are replaced with Wc and Wo, respectively. Previous work has
studied the use of the cross Gramian in the standard BT of the
symmetric MIMO systems (which trivially include the SISO
systems) [11], [12], [14]. Specifically, the cross Gramian of a
symmetric system Wco is solved from the Sylvester equation

A0Wco + WcoA0 + B0C0 = 0 (17)

where Wco has the important property W 2
co = WcWo. Sub-

sequently, the range or image of Wco(WT
co) also spans the

reachable (observable) space of (1). Moreover, it can be easily
shown that the eigenvalues of Wco are invariant under similarity
transforms and that their magnitudes are exactly the Hankel
singular values of (1). In other words, the dominant left and
right eigenspaces of Wco capture most of the input–output en-
ergy transfer defined in the sense of the Hankel norm [1] (with
the input and output energy measures defined by

∫ 0

−∞ uT udt

and
∫ ∞
0 yT ydt, respectively). This fact allows the standard BT

to proceed directly by utilizing the eigenvector bases of Wco

without solving the two Lyapunov equations [6].

III. HAMILTONIAN-BASED SYMMETRIC-SYSTEM PRBT

We first define system symmetry. The MIMO system
(A0, B0, C0,D0) in (1) is symmetric if G(s) = G(s)T or

D0+C0(sI−A0)−1B0 =DT
0 +BT

0

(
sI−AT

0

)−1
CT

0 (18)

for all s ∈ C \ spec(A0), where “\” denotes set subtraction.
This necessitates D0 = DT

0 . An alternative but equivalent de-
finition for a symmetric system is that D0 = DT

0 and all of the
system Markov parameters are symmetric, namely

C0A
i
0B0 =

(
C0A

i
0B0

)T = BT
0

(
AT

0

)i
CT

0 (19)

for all integers i ≥ 0. The symmetry and minimality of the
system means that (A0, B0, C0) is similar to (AT

0 , CT
0 , BT

0 ),
which is denoted by (A0, B0, C0) ∼ (AT

0 , CT
0 , BT

0 ), through
a nonsingular and symmetric T = TT ∈ R

n×n (e.g., [14] and
[15], Th. 6.2–4 in [24]) such that

AT
0 = T−1A0T, CT

0 = T−1B0, and BT
0 = C0T. (20)

It can be checked that the second and third equalities in (20)
imply one another. On the other hand, for the matrices defined
in (5), we readily have T = TT and

AT = T−1AT, CT = T−1B, and BT = CT. (21)

In other words, (A,B,C) ∼ (AT , CT , BT ). Analogous to (16)
and (17), we formulate, with respect to (6), the XRE

AXco + XcoA + XcoBCXco + BC = 0. (22)

Here, Xco is called the cross Riccatian as in [16] and [17].
The XRE-based PRBT of symmetric systems consists of two
steps, namely, solving the XRE and constructing the projection
matrices, which are described in the following.

A. XRE Solution Via Stable Invariant Subspace Identification

We first present a standard way, based on (21) and the
Hamiltonian-like approach in [15], for solving (22) that arises
from a symmetric system. We also give some new analyt-
ical derivations and results regarding the spectral properties
of the XRE solution thus obtained [20]. First, define two
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Hamiltonian matrices [1] Hc and Ho corresponding to (6a) and
(6b), respectively

Hc :=
[

AT CT C
−BBT −A

]
, Ho :=

[
A BBT

−CT C −AT

]
. (23)

The spectral structure of a Hamiltonian matrix and the so-
lutions of (6a) and (6b) by identifying the stable invariant
subspaces of Hc and Ho, respectively, are well studied [1],
[7]. We note that Hc and Ho share the same spectrum since

Hc =
[

0 I
I 0

]
(−Ho)

[
0 I
I 0

]
. In [7], it has been shown that

when the stable and unstable subspaces of Ho are separated
(passivity implies no purely imaginary eigenvalues), i.e.,

Ho

[
X11 X12

X21 X22

]
=

[
X11 X12

X21 X22

] [
Φ− 0
0 Φ+

]
(24)

with Φ− ∈ R
n×n and Φ+ ∈ R

n×n corresponding to the stable
and unstable eigenvalues, respectively, of spec(Ho), then the
stabilizing solution to (6b) is Xo = X21X

−1
11 and that to (6a)

is Xc = X12X
−1
22 . Now, we show that this invariant subspace

approach is also applicable to solving (22). First, define

Hco :=
[

A BC
−BC −A

]
. (25)

It can be seen that spec(Hco) = spec(Ho) = spec(Hc) since

Hco =
[

I 0
0 T

]
Ho

[
I 0
0 T−1

]
. (26)

By applying (26) to (24), we get

Hco

[
X11 X12

TX21 TX22

]
=

[
X11 X12

TX21 TX22

] [
Φ− 0
0 Φ+

]
.

(27)

Then, by noting

[
0 I
I 0

]
Hco

[
0 I
I 0

]
= −Hco, (27) is broken

into two equations

Hco

[
X11

TX21

]
=

[
X11

TX21

]
Φ− (28a)

Hco

[
TX22

X12

]
=

[
TX22

X12

]
(−Φ+). (28b)

Simple algebra shows that TX21X
−1
11 = TXo and

X12X
−1
22 T−1 = XcT

−1 both solve (22). From the Hamiltonian
structure, we further have spec(Φ−) = spec(−Φ+). Thus,
using span(◦) to denote the span (image) of a matrix

span

([
X11

TX21

])
= span

([
TX22

X12

])
(29)

which implies that TXo = XcT
−1 =: Xco is a solution to (22)

found by identifying the stable invariant subspace of Hco. The
choice of the actual basis is immaterial as long as the spectrum
restricted to it is the same, and from this, the uniqueness of Xco

follows. Such invariant subspace identification for solving Xco

is usually done by the Schur decomposition which, in general,
requires O((2n)3) work and O((2n)2) memory space.

Recalling (6) and (7), we generalize “stabilizability” in this
symmetric-system cross-Riccatian sense. By factoring out Xco

from both sides in (22) for the coefficient matrices and by
noting Xco = XcT

−1 = TXo and (20), we get

A + XcoBC = Ac and A + BCXco = Ao. (30)

It is readily seen that spec(Ac) = spec(Ao) = spec(Φ−) ⊂ C−,
and therefore, we call Xco the stabilizing solution to (22)
analogously. Similar to the results in Section II-B, we have

X2
co = XcXo (31)

and the actual T in (20) or (21) is immaterial. With the same
notion as in Section II-A, the effect of the similarity transform
on Xco (in fact, for arbitrary TR and TL = T−1

R ) is

Xco → TLXcoTR (32)

thus, spec(Xco) is invariant. Since there exists a similar system
in which Xc and Xo are both diagonal [cf. (12)], we have

|λi(Xco)| = σi, i = 1, 2, . . . , n (33)

where σi’s are the singular values in (9), and λi(◦) denotes
the ith eigenvalue in descending magnitude without loss of
generality. By contrasting with Section II-B, it can be concluded
that Xco plays the same role in the PRBT as Wco does in the
standard BT. A difference is that the input and output energy
measures in the PRBT, by noting that u and y are power
conjugated, are

∫ 0

−∞ uT ydt and −
∫ ∞
0 uT ydt, respectively (see

[25] for the physical interpretation).

B. Constructing the Projection Matrices

The system balancing in the PRBT, corresponding to (8), (9),
(10), and (11), can sometimes be numerically ill conditioned.
This is particularly so for large-scale systems with nearly sin-
gular Xc and/or Xo, i.e., some states are nearly uncontrollable
and/or unobservable [6], [11], [14]. To avoid ill conditionings,
we borrow results from [6] on the standard BT and give an
alternative way for obtaining a reduced-order model with the
same transfer function as the PRBT-reduced model. From (31)

span(Xco) = span(Xc), span
(
XT

co

)
= span(Xo). (34)

Therefore, the cross Riccatian Xco carries both the controllable
and observable subspaces. By (14) and (31)

X2
co = [TRb TRs]

[
Σ2

b 0
0 Σ2

s

] [
TLb

TLs

]
. (35)

Knowing (33), Xco is block diagonalized into V −1XcoV =
diag(Xb

co,X
s
co), where V ∈ R

n×n is nonsingular [this V
should not be confused with the one in (8)]. Here, Xb

co ∈
R

r×r and Xs
co ∈ R

(n−r)×(n−r) hold the bigger and smaller
eigenvalues, in terms of magnitude, respectively. This block
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diagonalization generally takes the O(n3) work. Next, partition
the columns of V and the rows of W = V −1 compatibly

Xco = [Vb Vs]
[

Xb
co 0
0 Xs

co

] [
Wb

Ws

]
. (36)

We have that TRb and Vb span the same (right) eigenspace
corresponding to Xb

co, whereas TRs and Vs span the same
(right) eigenspace corresponding to Xs

co. Therefore, there exist
nonsingular M1 ∈ R

r×r and M2 ∈ R
(n−r)×(n−r) such that

[TRb TRs] = [Vb Vs]
[

M1 0
0 M2

]
. (37)

By taking inverse on both sides, we also get[
TLb

TLs

]
=

[
M−1

1 0
0 M−1

2

] [
Wb

Ws

]
. (38)

By using (37) and (38), the reduced-order model by projection
onto the “more significant” subspaces of (36)

(Ãr, B̃r, C̃r,D) = (WbA0Vb,WbB0, C0Vb,D0) (39)

is easily shown to be similar to (15), thereby producing the
same transfer function as the PRBT-reduced model. In other
words, an equivalent PRBT-reduced model can be obtained
from the block diagonalization of Xco without actually bal-
ancing the system. To make this paper self-contained, such
diagonalization process is included in Appendix I.

IV. QADI-BASED SYMMETRIC-SYSTEM PRBT

The recent work in [8]–[10] generalizes the ADI iteration
[26]–[28], which is a highly efficient solver for the Lyapunov
equations, to a QADI algorithm for the fast solution of AREs.
Consider the ARE

AT X + XA + XBBT X + CT C = 0 (40)

where A is assumed stable, and a stabilizing solution X ≥ 0
exists such that spec(A + BBT X) ⊂ C−. The bounded real
lemma [1] states that such an X exists if and only if
sup σ̄(C(jω − A)−1B) < 1, ∀ω ∈ R, where σ̄(◦) denotes the
largest singular value. In its original form, the QADI solves (40)
by iterating on two half-steps(

AT + XT
j−1BBT + pjI

)
XT

j− 1
2

= −CT C − XT
j−1(A − pjI) (41a)(

AT + Xj− 1
2
BBT + pjI

)
Xj

= −CT C − Xj− 1
2
(A − pjI) (41b)

where X0 = 0, and the shifts pj ∈ C−, j = 1, 2, . . ., are either
real or complex conjugate pairs. For complex conjugate pj’s,
real-value arithmetic, and thus higher numerical efficiency and
robustness, is maintained by combining two runs of (41) into
one [9]. Furthermore, it has been shown that Xj converges to
the stabilizing X superlinearly [8]–[10].

A. XRE Solution Via XQADI

By assuming the existence of a stabilizing solution to (22)
and by comparing it to (40), we modify QADI to XQADI that
solves an XRE with the following two half-steps:(

AT + XT
j−1(BC)T + pjI

)
XT

j− 1
2

= −(BC)T − XT
j−1(A

T − pjI) (42a)(
A + Xj− 1

2
BC + pjI

)
Xj

= −BC − Xj− 1
2
(A − pjI) (42b)

where X0 = 0, and pj ∈ C−, j = 1, 2, . . ., are either real or
complex conjugate pairs. Now, define the (lower) LFT [1] as

Fl

([
P11 P12

P21 P22

]
,∆

)
= P11 + P12∆(I − P22∆)−1P21

where the matrix dimensions and the matrix inverse are implic-
itly assumed compatible and well defined, respectively. As in
[9], we recognize that (42a) and (42b) are expressible as LFTs.
Specifically, let Sj := (A + pjI)−1 and Tj := (A − pjI)

Xj− 1
2

=Fl

([
−BCSj −Tj +BCSjBC

Sj −SjBC

]
,Xj−1

)
(43a)

Xj =Fl

([
−SjBC Sj

−Tj +BCSjBC −BCSj

]
,Xj− 1

2

)
. (43b)

The LFTs in (43) can be nested, using the Redheffer Star
Product [9], to get

Xj =Fl

([
M

(j)
11 M

(j)
12

M
(j)
12 M

(j)
11

]
,Xj−1

)

=M
(j)
11 + M

(j)
12 Xj−1

(
I − M

(j)
11 Xj−1

)−1

M
(j)
12 (44)

where

M
(j)
11 = − 2pjSjB(I − CSjBCSjB)−1CSj

= − 2pjSjB
(
I − CSjBBT ST

j CT
)−1

CSj (45a)

M
(j)
12 = I − 2pjSj(I − BCSjBCSj)−1

= I − 2pjSj + SjBCM
(j)
11 . (45b)

To arrive at (45a), we have used the properties that ST
j =

T−1SjT and TT
j = T−1TjT [cf. (21)], and therefore, CSjB =

(CSjB)T , while the matrix inversion lemma has been used
in the simplification of (45b). The matrix inverse in (45a) is
well defined since the existence of a stabilizing solution to
(22), or equivalently to (40) [see (46)], ensures σ̄(CSjB) < 1
due to the bounded real lemma. Our deployment of XQADI
consists of an implementation of (44) and (45), for which the
matrix inverse in finding Sj has O(n3) complexity but that

in (I − M
(j)
11 Xj−1)−1 is O(n2) (or, more precisely, O(n2m),

where m is fixed) by exploiting the usually low-rank M
(j)
11 via

matrix inversion lemma. Storage of the Xj iterates, on the other
hand, requires O(n2) memory space.

The convergence of Xj to Xco in XQADI can be drawn
from that of QADI [8], [10]. To see this, we note that the
QADI computes the stabilizing solution, which is denoted by
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Xo [see (6b)], to (40). From Section III, we also learn that for
a symmetric system, there exists a nonsingular T ∈ R

n×n such
that (21) holds and the stabilizing solution to (22) is related to
the stabilizing solution of (40) by Xco = TXo. Subsequently

AT Xo + XoA + XoBBT Xo + CT C = 0
⇔ T−1ATXo + XoA + XoBCTXo + T−1BC = 0
⇔ A(TXo) + (TXo)A + (TXo)BC(TXo) + BC = 0
⇔ AXco + XcoA + XcoBCXco + BC = 0. (46)

Similar trick also shows that (41a) ⇔ (42a) and (41b) ⇔ (42b)
by transforming Xj−1, Xj−(1/2), and Xj in (41) into TXj−1,
TXj−(1/2), and TXj , respectively. As a result, the XQADI
inherits all the properties, including the well posedness and
convergence, of the QADI [8], [10]. In particular, following the
same techniques as in [10], it can be shown that

‖Xj − Xco‖F ≤Kck(p)2‖Xco‖F

k(p) = max
∀λi∈spec(Hco)∩C−

∣∣∣∣∣
j∏

k=1

pk − λi

pk + λi

∣∣∣∣∣ (47)

where Kc is a positive constant, and ‖ ◦ ‖F denotes the
Frobenius norm. To achieve fast convergence using, for exam-
ple, L shifts (usually used in a cyclic manner [27]), they are
chosen (or approximately chosen) according to the minimax
problem

min
{p1,p2,...,pL}

(
max

∀λi∈spec(Hco)∩C−

∣∣∣∣∣
L∏

k=1

pk − λi

pk + λi

∣∣∣∣∣
)

(48)

(see [8]–[10] for details). After getting the converged Xco, the
construction of the projection matrices can be done in the same
manner as in Section III-B.

B. XRE Solution Via LRXQADI

Similar to the CFQADI in [8]–[10], it turns out that a low-
rank version of XQADI can also be derived which enables,
by utilizing the low-rank iterates, further acceleration and
memory savings. The algorithm called LRXQADI, in which
“LR” simultaneously stands for low rank and left–right, directly
iterates on Z

(j)
L and Z

(j)
R , where Xj = Z

(j)
L Z

(j)
R . In particular,

by making use of (44) and (45) and by setting Z
(0)
L = 0 and

Z
(0)
R = 0, for j = 1, 2, . . .,

M
(j)
11L =

√
−2pjSjB

(
I−CSjBBT ST

j CT
)− 1

2 (49a)

M
(j)
11R =

√
−2pj

(
I−CSjBBT ST

j CT
)− 1

2 CSj (49b)

M
(j)
12 = I−2pjSj +SjBCM

(j)
11LM

(j)
11R (49c)

Z
(j)
L =

[
M

(j)
11L M

(j)
12 Z

(j−1)
L

(
I−Z

(j−1)
R M

(j)
11LM

(j)
11RZ

(j−1)
L

)− 1
2

]
(49d)

Z
(j)
R =


 M

(j)
11R(

I−Z
(j−1)
R M

(j)
11LM

(j)
11RZ

(j−1)
L

)− 1
2
Z

(j−1)
R M

(j)
12


 .

(49e)

Note that Z
(j−1)
R M

(j)
11LM

(j)
11RZ

(j−1)
L ≥ 0 in (49d) and (49e)

since we always have M
(j)
11RZ

(j−1)
L = (Z(j−1)

R M
(j)
11L)T , as

proved in Appendix II. Well posedness of the matrix inverses
in (49) also parallels the proof in the QADI [8], [10]. It can
be easily seen that each sweep of (49) increases the number of
columns in Z

(j)
L or rows in Z

(j)
R by m, i.e., the number of input

or output ports. Low-rank B and C also allow the use of matrix
inversion lemma in (49) to reduce the computation.

A good stopping criterion for the LRXQADI is the cross-
product metric in [29], which monitors the computation-
ally simple Frobenius norm update in Z

(j)
R Z

(j)
L . To see this,

basic matrix algebra dictates that spec(Z(j)
R Z

(j)
L ) ∪ {0} =

spec(Z(j)
L Z

(j)
R ), and with reference to (36), the LRXQADI

should be terminated once the eigenvalue update is smaller
than a preset tolerance. By using (47) and similar techniques
as in [29], it is straightforward to show that Z

(j)
R Z

(j)
L → Xco

asymptotically. For practical circuits, the iterates Z
(j)
L and

Z
(j)
R usually converge in just several to tens of runs of (49)

(see numerical examples later); thus, these low-rank factors
can provide further computational and memory savings [14].
The matrix inverse operation in Sj , assuming that no struc-
tures are exploited, still costs O(n3) work and constitutes the
most expensive step in the LRXQADI, but other than that,
the remaining operations are just matrix vector multiplications
and small size matrix inverses. Moreover, the factored iterates
consume only an O(nm) memory space, thus representing a
significant reduction over the invariant subspace and XQADI
approaches.

C. Projection Matrices From Low-Rank Factors

Suppose that Z(j)
L and Z

(j)
R in LRXQADI converge to ZL and

ZR, respectively. Then, Xco can be numerically equated to, or
closely approximated by, the product ZLZR, where ZL ∈ R

n×k

and ZR ∈ R
k×n and, often, k � n. In other words

span(Xco) = span(ZL), span
(
XT

co

)
= span

(
ZT

R

)
. (50)

This section presents an effective way, by exploiting the low-
rank nature of ZL and ZR, to construct the projection matrices
without actual balancing. From the results in Section III-B,
the projection bases are, in fact, the dominant (left and right)
eigenspaces of Xco or, equivalently, those of X2

co. Suppose that
the cross product ZRZL ∈ R

k×k is block diagonalized, using
the same mechanics as in Section III-B and Appendix I (but
with the much less O(k3) work), such that

ZRZL = V̂ diag
(
X̂b

co, X̂
s
co

)
Ŵ

= [V̂b V̂s]
[

X̂b
co 0
0 X̂s

co

] [
Ŵb

Ŵs

]
(51)

where Ŵ = V̂ −1, and V̂bX̂b
coŴb represents the “more signifi-

cant” eigendecomposition of ZRZL. Then

X2
co = ZLZRZLZR ≈ ZLV̂b

(
X̂b

co

)−1 (
X̂b

co

)2

ŴbZR.

(52)
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Note that since spec(Z(j)
R Z

(j)
L ) ∪ {0} = spec(Z(j)

L Z
(j)
R ),

(X̂b
co)

2 is holding the “more significant” eigenvalues of X2
co.

By defining W ′
b := ŴbZR and V ′

b := ZLV̂b(X̂b
co)

−1, it is
straightforward to verify that W ′

bV ′
b = I . Thus, the projection

matrices corresponding to the dominant eigenspaces of X2
co are

captured in W ′
b and V ′

b, respectively. Moreover, similar to (39),
the PRBT-reduced model can be obtained by

(Ãr, B̃r, C̃r,D) = (W ′
bA0V

′
b,W ′

bB0, C0V
′
b,D0) . (53)

Therefore, besides the reduced computation and storage due
to the low-rank iterates in the LRXQADI, further savings can
be achieved in the projection phase because usually, only a
low-dimensional matrix decomposition is required in (51) in
contrast to the full decomposition in (36).

V. NUMERICAL EXAMPLES

In the context of symmetric systems, the proposed XRE-
based PRBT approaches described in Sections III and IV are
implemented and compared with the conventional PRBT re-
alizations wherein two AREs are solved. All experiments are
done in the Matlab R2006a environment and executed on a
1.8-GHz notebook with 2-GB memory. The AREs are solved
with the Matlab routine aresolv with eigen flag enabled
(generally faster than its schur option) and also the SLICOT
[30] Fortran routine slcares (which is faster than its gener-
alized Schur counterpart slcaregs) invoked through a Matlab
gateway. Moreover, the recent PRBT/CFQADI flow [8], [10],
in which the dual AREs are solved by the CFQADI (coded
with Matlab m-script files), is contrasted. For the proposed
XRE-based PRBT flow, we first solve (22) by identifying the
stable invariant subspace as in Section III-A, and the projection
matrices were constructed through a block diagonalization of
Xco as in Section III-B. Both steps essentially make use of the
Matlab routine schur. As for the XQADI implementations,
the original version in (44) and the LRXQADI in (49) are
coded and run as Matlab m-script files. The construction of
the projection matrices from Xco out of XQADI follows that
in Section III-B, whereas that from ZLZR out of LRXQADI
makes use of the procedures in Section IV-C. The LRXQADI
iteration is stopped once the update of eigenvalues in Z

(j)
R Z

(j)
L

is insignificant, as discussed in Section IV-B. For simplicity,
a single shift p is used in CFQADI, XQADI, and LRXQADI.
The effect of multiple shifts follows from the results in [9] but
is not elaborated since this is beyond the theme of this paper.
The popular PRIMA algorithm [2], which is expanded at s = 0,
is also included for comparison. We note that PRIMA is a
passivity-preserving moment-matching Krylov-subspace MOR
scheme that poses semidefiniteness constraints on the state-
space matrices (see [3, Section II-C]) which are unnecessary
in the PRBT. Moreover, unlike the automated process in the BT
schemes (once an error tolerance is specified), the final model
order and the moment-matching frequency expansion points
in PRIMA need to be determined a priori and may require
nontrivial algorithms [31].

We try out five real-life examples [7], [8]. The first is a
transmission-line model on the order of 256, the second is

TABLE I
CPU TIMES (IN SECONDS) FOR VARIOUS PRBT

IMPLEMENTATIONS AND PRIMA

a spiral inductor on the order of 500, and the rest are RLC
ladders on the orders of 800, 2000, and 3000. The CPU times
for various PRBT implementations are shown in Table I. We
remark that ARE or XRE solutions are unavailable in some
high-order cases due to memory exhaustion, and in the XQADI
approach, the large-size Matlab matrix multiplications and
inversions are too slow that convergence cannot be sought in
practical time. Since the ARE solvers slcares and aresolv
and the invariant subspace method are all based on the Hamil-
tonian matrix or alike, it is not surprising that the latter is the
fastest among the three as only one matrix equation needs to be
solved. In fact, when the time measurements are available, the
PRBT/XRE/invar time is approximately half that of the stan-
dard PRBT/ARE/aresolv flow. Nonetheless, these Hamiltonian-
based schemes still suffer from a prohibitive computation
compared with PRIMA, particularly for large systems. Gener-
ally, faster PRBT times are observed in the PRBT/XRE/XQADI
method, but they are still relatively expensive and do not scale
well with model orders.

The real breakthrough of the PRBT complexity barrier
actually comes from the low-rank implementations, namely,
CFQADI and LRXQADI, primarily due to their utilization
of the low-rank iterates and the fast-decaying singular values
inherent in many physical systems. From Table I, it can be
seen that the speed gain of PRBT/XRE/LRXQADI is more
significant for large systems, and in the third example, its speed
is even faster than that of PRIMA. This is inferred by Fig. 1
which shows the quick attenuating cross-Riccatian singular
values [cf. (33)] in all the test examples. In our experiments, we
terminate CFQADI, XQADI, and LRXQADI once the update
of singular values (or eigenvalue magnitudes) drops below
10−5 ∼ 10−10; thus, the number of iterations and ranks of the
low-rank factors is consistently on the order of tens. Fig. 2
shows ‖Xj − Xco‖F /‖Xco‖F [see (47)] for the XRE solution
by XQADI or, equivalently, LRXQADI in some test examples.
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Fig. 1. Cross-Riccatian singular value decay in the examples.

Fig. 2. LRXQADI: Convergence of Xj to the stabilizing Xco at several
orders.

Linear convergence of LRXQADI can be observed from these
virtually straight curves.

Figs. 3(a)–5(a) show the frequency responses of the original
systems and the reduced-order models, whereas Figs. 3(b)–5(b)
show the relative errors. The plots for the higher order RLC
ladders are similar to Fig. 5 and, hence, omitted. It is seen that
the PRIMA curves are consistently less accurate, which high-
lights the superior global accuracy of the PRBT. In addition, the
curves from the XRE-based approaches practically overlap with
those from the conventional PRBT, thereby verifying the valid-
ity of the proposed methods in generating equivalent PRBT-
reduced response. In fact, in experiments not reported here,
we have further tried multipoint moment matching by PRIMA.
Besides the extra computation (in expansion-point selection and
Krylov iterations) and higher order reduced models, it has been
found that the approximation accuracy of multipoint PRIMA is
still incomparable to that of the PRBT.

Some remarks are in order.
1) Due to finite arithmetic or possible early termination of

XQADI or LRXQADI, the cross-Riccatian Xco or ZLZR

thus obtained may not be exact, thus leaving the question
as to whether the reduced-order model is passive. This

issue, however, remains with every numerical imple-
mentation of iterative algorithms for the PRBT. Indeed,
even with “noniterative” algorithms like the Hamiltonian-
based approaches, there are inner iterations which may
terminate early in case of ill-conditioned data, resulting
in potential problems. This is why passivity check and
enforcement, if necessary [32], [33], are still required
in practical implementations. To this end, we note the
following.
a) The passivity “check” is usually fast because only the

low-order reduced models are involved. The conven-
tional checking procedure is to form a Hamiltonian
matrix and then search for imaginary axis eigenvalues
[32], [33].

b) The passivity “enforcement” is much more expensive
as it involves finding regions of passivity violation and
performing passivity compensation, for example, by
first-order perturbation or convex programming [32]–
[34]. Moreover, the compensation process will always
introduce errors to the approximation accuracy of the
reduced-order model and, therefore, should be kept to
be as sparing as possible.

Consequently, for algorithms that do not tend to guarantee
passivity [like standard BT, Padé via Lanczos, etc.], there
can be multiple frequency bands of passivity violation.
The “enforcement” step must be invoked iteratively to
ensure a passive model at least for the frequencies of
interest, and then, the approximation error thus incurred
can be high. The PRBT theoretically guarantees a passive
reduced model and tends to achieve so in practice. In
fact, in our numerical examples, all the reduced-order
models are found to be strictly passive. Therefore, in
most PRBT implementations, even when nonpassivity is
present, passivity enforcement requires only minor cor-
rection, and the disturbance on approximation accuracy
would be small.

2) For simplicity, only a single shift has been used in
CFQADI, XQADI, and LRXQADI in our examples. Re-
ferring to (48), we have chosen p = −

√
ρ(Hco)/ρ(H−1

co )
[7], [9], where ρ(◦) denotes spectral radius. When com-
puting the shifts pj’s, one often makes use of the power
iterations of Hco and its inverse for approximating the
maximal and minimal eigenvalues in spec(Hco). When
B and C are of low ranks, it is easy to see that the
multiplication of Hco onto a vector, which is a basic
operation in power iteration, scales by O(n2) rather than
O((2n)2). We can also make use of the matrix inversion
lemma to verify that

H−1
co =

[
I −A−1BC
0 I

] [
A−1 0
0 S−1

] [
I 0

BCA−1 I

]
S−1 = (−A + BCA−1BC)−1

= − A−1 − A−1BCA−1B

× (I − CA−1BCA−1B)−1CA−1

thus allowing the power iteration of H−1
co to be done

efficiently with only an O(n2) work.
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Fig. 3. (a) Frequency responses of the transmission line (order = 256) and reduced models (order = 36). (b) Relative error from the original response.

Fig. 4. (a) Frequency responses of the spiral inductor (order = 500) and reduced models (order = 9). (b) Relative error from the original response.

3) In practice, the time for PRBT/LRXQADI is approxi-
mately of the same order as that for PRIMA, but the
reduced-order model from the PRBT always has supe-
rior accuracy. Although a two-stage reduction based on
PRIMA and then PRBT is possible [3], [7], any first-
stage reduction by PRIMA would cause irremediable loss
of approximation accuracy (because PRBT can then at
most preserve the fidelity of the intermediate PRIMA-
reduced model), and it is hard to determine the interme-
diate order to switch from PRIMA to PRBT. Given that
PRBT/LRXQADI largely reduces the PRBT computation

to an extent comparable to PRIMA, it is justifiable to
deploy PRBT/LRXQADI directly on the initial model.

4) PRBT/LRXQADI scales well with the problem size as
the termination of LRXQADI is determined by the drop
of singular values (eigenvalue magnitudes of the cross
Riccatian) pertinent to a physical system, and it is fairly
independent of the modeling order. In the same vein,
the XRE and the LRXQADI formulations also provide
a theoretical tool for analyzing the eigenvalue decay in
the cross Riccatian, whose physical importance parallels
its Lyapunov counterpart [35].
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Fig. 5. (a) Frequency responses of the RLC ladder (order = 800) and reduced models (order = 8). (b) Relative error from the original response.

VI. CONCLUSION

This paper has presented a computationally efficient cross-
Riccatian PRBT implementation applicable to symmetric
MIMO systems such as linear passive electrical networks.
Instead of solving two AREs in the conventional PRBT, only
one XRE has to be solved, which results in good numerical
robustness and reduced computation and storage. Theoretical
connection between the XRE and the PRBT has been elab-
orated. An invariant subspace approach, an iterative XQADI
algorithm, and an LRXQADI scheme have been described to
efficiently solve the XRE. A simple construction of the PRBT
projection matrices through the Schur block diagonalization has
been adapted to avoid the possibly ill-conditional PR balanc-
ing. Application examples have demonstrated the remarkable
efficacy of the PRBT/XRE/LRXQADI integration over the
traditional PRBT realizations.

APPENDIX I
BLOCK DIAGONALIZATION AND FURTHER PROPERTIES

The block diagonalization of Xco follows closely from the
work in [6]. To arrive at (36), we first compute an intermediate-
ordered real Schur form of Xco, namely

Xco = [Qb Qs]
[

Xb
co Ω
0 Xs

co

] [
QT

b

QT
s

]
(54)

where Xb
co ∈ R

r×r contains the r bigger magnitude eigenvalues
of Xco, and Xb

co and Xs
co are block upper triangular. Next, solve

for Γ ∈ R
r×(n−r) in the Sylvester equation

Xb
coΓ − ΓXs

co + Ω = 0. (55)

It can be easily verified that

Xco = [Qb QbΓ + Qs]
[

Xb
co 0
0 Xs

co

] [
QT

b − ΓQT
s

QT
s

]
.

(56)

Therefore, with respect to (36), the projection matrices are
Vb = Qb and Wb = QT

b − ΓQT
s , respectively. Moreover, by

using the notations as in Section III-B and supposing that
X̃c, X̃o ∈ R

r×r are the controllability and observability Ricca-
tians of (Ãr, B̃r, C̃r,D) in (39), some interesting properties in
the standard BT [6] can be generalized to this cross-Riccatian
framework

X̃c =M1ΣbMT
1 = WbXcW

T
b (57a)

X̃o =M−T
1 ΣbM−1

1 = V T
b XoVb. (57b)

The proof is similar to that in [6] and is therefore omitted.

APPENDIX II
POSITIVE-SEMIDEFINITENESS PROOF IN LRXQADI

Referring to the LRXQADI steps in Section IV-B and (49),
we now show that Z

(j−1)
R M

(j)
11LM

(j)
11RZ

(j−1)
L ≥ 0, j = 2, 3, . . ..

Obviously, it is sufficient to prove that (M (j)
11L)T (Z(j−1)

R )T =
M

(j)
11RZ

(j−1)
L . Again, using (21) on (49), we have for all j’s

(
M

(j)
11L

)T

=
√

−2pj

(
I − CSjBBT ST

j CT
)− 1

2 BT ST
j

=
√

−2pj

(
I − CSjBBT ST

j CT
)− 1

2 CTT−1SjT

= M
(j)
11RT (58)

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 5, 2009 at 00:54 from IEEE Xplore.  Restrictions apply.



480 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 3, MARCH 2008

and similarly

(
M

(j)
12

)T

= T−1M
(j)
12 T. (59)

Since Z
(1)
L = M

(1)
11L and Z

(1)
R = M

(1)
11R, we have (Z(1)

R )T =
T−1Z

(1)
L . By using the aforementioned results, it is easy to

prove that for j = 2, (M (2)
11L)T (Z(1)

R )T = M
(2)
11RZ

(1)
L . Subse-

quently, we have Z
(1)
R M

(2)
11LM

(2)
11RZ

(1)
L ≥ 0 and

(
Z

(2)
R

)T

=
[(

M
(2)
11R

)T

(
M

(2)
12

)T (
Z

(1)
R

)T(
I−Z

(1)
R M

(2)
11LM

(2)
11RZ

(1)
L

)− 1
2

]

=T−1Z
(2)
L

which, in turn, implies that (M (3)
11L)T (Z(2)

R )T = M
(3)
11RZ

(2)
L and

Z
(2)
R M

(3)
11LM

(3)
11RZ

(2)
L ≥ 0. The proof continues this way and

extends to all j’s.

REFERENCES

[1] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Upper
Saddle River, NJ: Prentice-Hall, 1996.

[2] A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: Passive reduced-
order interconnect macromodeling algorithm,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 17, no. 8, pp. 645–654, Aug. 1998.

[3] J. R. Phillips, L. Daniel, and L. M. Silveira, “Guaranteed passive balanc-
ing transformations for model order reduction,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 22, no. 8, pp. 1027–1041,
Aug. 2003.

[4] Z. Bai, P. M. Dewilde, and R. W. Freund, “Reduced-order modeling,” in
Numerical Analysis Manuscript No. 02-4-13. Murray Hill, NJ: Bell Lab.,
Mar. 2002.

[5] X. Chen and J. T. Wen, “Positive realness preserving model reduction
with H∞ norm error bounds,” IEEE Trans. Circuits Syst., vol. 42, no. 1,
pp. 23–29, Jan. 1995.

[6] R. W. Aldhaheri, “Model order reduction via real Schur-form decomposi-
tion,” Int. J. Control, vol. 53, no. 3, pp. 709–716, Mar. 1991.

[7] N. Wong, V. Balakrishnan, C.-K. Koh, and T. S. Ng, “Two algorithms
for fast and accurate passivity-preserving model order reduction,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25, no. 10,
pp. 2062–2075, Oct. 2006.

[8] N. Wong and V. Balakrishnan, “Fast balanced stochastic truncation via a
quadratic extension of the alternating direction implicit iteration,” in Proc.
Int. Conf. Comput.-Aided Des., Nov. 2005, pp. 801–805.

[9] N. Wong and V. Balakrishnan, “Multi-shift quadratic alternating direction
implicit iteration for high-speed positive-real balanced truncation,” in
Proc. IEEE Des., Autom. Conf., Jul. 2006, pp. 257–260.

[10] N. Wong and V. Balakrishnan, “Fast positive-real balanced truncation via
quadratic alternating direction implicit iteration,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 26, no. 9, pp. 1725–1731,
Sep. 2007.

[11] A. C. Antoulas, D. C. Sorensen, and S. Gugercin, “A survey of model
reduction methods for large scale systems,” Contemp. Math., vol. 280,
pp. 193–219, 2001.

[12] K. V. Fernando and H. Nicholson, “On the structure of balanced and other
principal representations of SISO systems,” IEEE Trans. Autom. Control,
vol. AC-28, no. 2, pp. 228–231, Feb. 1983.

[13] K. V. Fernando and H. Nicholson, “On the cross-Gramian for symmetric
MIMO systems,” IEEE Trans. Circuits Syst., vol. CAS-32, no. 5, pp. 487–
489, May 1985.

[14] D. C. Sorensen and A. C. Antoulas, “The Sylvester equation and approx-
imate balanced reduction,” Linear Algebra Appl., vol. 351/352, pp. 671–
700, Aug. 2002.

[15] L. Fortuna, A. Gallo, C. Guglielmino, and G. Nunnari, “On the solution of
a nonlinear matrix equation for MIMO realizations,” Syst. Control Lett.,
vol. 11, no. 1, pp. 79–82, Jul. 1988.

[16] J. A. Ramos and E. I. Verriest, “A note on a cross Riccatian and related
properties for symmetric stochastic realizations,” IEEE Trans. Autom.
Control, vol. 34, no. 5, pp. 548–551, May 1989.

[17] L. Fortuna, A. Gallo, and G. Nunnari, “A new scheme for the approxima-
tion of linear systems with bounded stable symmetric transfer matrix,” in
Proc. Int. Symp. Circuits Syst., 1989, pp. 523–526.

[18] L. Fortuna, A. Gallo, and G. Nunnari, “New results about the symmetric
systems with bounded real transfer matrix,” in Proc. Int. Symp. Circuits
Syst., 1990, pp. 1760–1763.

[19] L. Fortuna, G. Muscato, and G. Nunnari, “On H∞-control for symmetric
systems,” in Proc. IEEE Conf. Decis. Control, 1992, pp. 3723–3725.

[20] N. Wong, “Fast positive-real balanced truncation of symmetric systems
using cross Riccati equations,” in Proc. Des., Autom. Test Eur., Apr. 2007,
pp. 1496–1501.

[21] R. W. Freund and P. Feldmann, “Reduced-order modeling of large passive
linear circuits by means of the SyPVL algorithm,” in Proc. Int. Conf.
Comput.-Aided Des., Nov. 1996, pp. 280–287.

[22] B. N. Sheehan, “ENOR: Model order reduction of RLC circuits using
nodal equations for efficient factorization,” in Proc. IEEE Des., Autom.
Conf., Jun. 1999, pp. 17–21.

[23] H. Weiss, Q. Wang, and J. L. Speyer, “System characterization of positive
real conditions,” IEEE Trans. Autom. Control, vol. 39, no. 3, pp. 540–544,
Mar. 1994.

[24] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
[25] J. C. Willems, “Dissipative dynamical systems II: Linear systems with

quadratic supply rates,” Arch. Ration. Mech. Anal., vol. 45, no. 5, pp. 353–
393, Jan. 1972.

[26] A. Lu and E. L. Wachspress, “Solution of Lyapunov equations by alter-
nating direction implicit iteration,” Comput. Math. Appl., vol. 21, no. 9,
pp. 43–58, 1991.

[27] T. Penzl, “A cyclic low rank Smith method for large sparse Lyapunov
equations with applications in model reduction and optimal control,”
SIAM J. Sci. Comput., vol. 21, no. 4, pp. 1401–1418, 2000.

[28] J. Li and J. White, “Low-rank solution of Lyapunov equations,” SIAM
Rev., vol. 46, no. 4, pp. 693–713, 2004.

[29] V. Balakrishnan, Q. Su, and C.-K. Koh, “Efficient balance-and-truncate
model reduction for large scale systems,” in Proc. Amer. Control Conf.,
Jun. 2001, pp. 4746–4751.

[30] P. Benner, V. Mehrmann, V. Sima, S. Van-Huffel, and A. Varga,
“SLICOT—A subroutine library in systems and control theory,” Appl.
Comput. Control, Signals, Circuits, vol. 1, pp. 499–539, 1999.

[31] E. Chiprout and M. S. Nakhla, “Analysis of interconnect networks using
complex frequency hopping (CFH),” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 14, no. 2, pp. 186–200, Feb. 1995.

[32] S. Grivet-Talocia, “Passivity enforcement via perturbation of Hamiltonian
matrices,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9,
pp. 1755–1769, Sep. 2004.

[33] D. Saraswat, R. Achar, and M. S. Nakhla, “Fast passivity verification
and enforcement via reciprocal systems for interconnects with large or-
der macromodels,” IEEE Trans. VLSI Syst., vol. 15, no. 1, pp. 48–59,
Jan. 2007.

[34] C. P. Coelho, J. R. Phillips, and L. M. Silveira, “A convex programming
approach for generating guaranteed passive approximations to tabulated
frequency data,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 48, no. 9, pp. 293–301, Sep. 2004.

[35] A. C. Antoulas, D. C. Sorensen, and Y. Zhou, “On the decay rate of
Hankel singular values and related issues,” Syst. Control Lett., vol. 46,
no. 5, pp. 323–342, Aug. 2002.

Ngai Wong (S’98–M’02) received the B.Eng. (with
first class honors) and Ph.D. degrees in electrical
and electronic engineering from The University of
Hong Kong, Hong Kong, China, in 1999 and 2003,
respectively.

He was an Intern with Motorola, Inc., Hong Kong,
from 1997 to 1998, specializing in product testing.
He was a Visiting Scholar at Purdue University,
West Lafayette, IN, in 2003. Currently, he is an
Assistant Professor with the Department of Electrical
and Electronic Engineering, The University of Hong

Kong. His research interests include very large scale integration (VLSI) model
order reduction and simulation, digital filter design, sigma–delta modulators,
and optimization problems in communication and VLSI applications.

Dr. Wong was the recipient of the P. K. Yu Memorial Scholarship in 2000, the
Sir Edward Youde Memorial Fellowship, and the Leung Wai Sun Fellowship
in 2002.

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 5, 2009 at 00:54 from IEEE Xplore.  Restrictions apply.


