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A Recursive Frequency Estimator Using Linear
Prediction and a Kalman-Filter-Based

Iterative Algorithm
Z. G. Zhang, S. C. Chan, Member, IEEE, and K. M. Tsui

Abstract—This paper proposes a new Kalman-filter-based
recursive frequency estimator for discrete-time multicomponent
sinusoidal signals whose frequencies may be time-varying. The
frequency estimator is based on the linear prediction approach
and it employs the Kalman filter to track the linear prediction
coefficients (LPCs) recursively. Frequencies of the sinusoids
can then be computed using the estimated LPCs. Due to the
coloredness of the linear prediction error, an iterative algorithm
is employed to estimate the covariance matrix of the prediction
error and the LPCs alternately in the Kalman filter in order to
improve the tracking performance. Simulation results show that
the proposed Kalman-filter-based iterative frequency estimator
can achieve better tracking results than the conventional recursive
least-squares-based estimators.

Index Terms—Iterative method, Kalman filter, linear prediction,
recursive frequency estimation.

I. INTRODUCTION

THE frequency estimation of real-valued sinusoidal signals
has found important applications in speech processing [1],

biomedical engineering [2], and many other areas. The problem
is to estimate the frequencies of a sinusoidal signal from its dis-
crete-time noisy measurements

(1)

where are the discrete-
time samples of the noise-free real-valued sinusoidal signal,
where , , and are the am-
plitude, frequency, and phase of the th frequency component,
respectively. is the additive white Gaussian noise (AWGN)
with zero mean and variance . For simplicity, we assume that
the number of sinusoids is known and the frequencies are
distinct, i.e., when .

A number of methods were proposed to solve the above fre-
quency estimation problem for the discrete-time data samples.
These include the Yule–Walker method [3], the maximum-like-
lihood method [3], subspace-based approaches such as the
MUSIC algorithm and the ESPRIT algorithm [3], and the
classical linear prediction (LP) approach [4]. In the automatic
control community, an adaptive notch filter-based method was
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also studied extensively for online frequency estimation of
continuous-time signals [5], [6].

In [7], it was shown that the prediction residuals of the LP
approach are correlated and colored so that a weighted least-
squares (WLS) frequency estimator was proposed to whiten the
residuals. The frequency components and the weighting ma-
trix were estimated alternately until convergence and an iter-
ative WLS algorithm was proposed. The algorithm in [7] was
intended for batch processing of a block of observations, and it
works well for stationary signals with fixed frequencies. How-
ever, when the frequencies of a sinusoidal signal change consid-
erably with time, the performance of the batch-processing algo-
rithm will degrade substantially.

Recently, a new time-recursive QR-decomposition (QRD)-
based frequency estimator using the LP approach in [7] was
proposed in [8]. It reduces the arithmetic complexity for online
applications and improves the numerical property of the algo-
rithm in finite word-length implementation. This QRD-based
weighted recursive least-squares (WRLS) algorithm was shown
to work well for tracking of static and slowly varying frequency
components.

In this paper, we propose a new frequency estimator and
extend the approach in [8] by incorporating state dynamics
into the linear prediction coefficients (LPCs) based on the
Kalman filter. The advantage of the LP approach is that the
prediction residuals are linear function of the LPCs. Therefore,
the conventional Kalman filter with appropriately chosen noise
parameters can be employed to estimate the LPCs. The Kalman
filter is a generalization of the WRLS algorithm and it allows
prior information of the state dynamics to be incorporated into
the estimation process. The Kalman filter has been proved to
be an optimal estimator in the minimum mean-square-error
(MMSE) sense when the signal and noise are jointly Gaussian
[9], [10].

In the proposed Kalman-filter-based frequency estimation al-
gorithm, the LPCs are assumed to be the system state, which
can be described by some models such as an autoregressive
(AR) process. A linear state-space model can then be estab-
lished, and the Kalman filter is employed to track the LPCs and
hence the frequencies recursively. Since the LP residuals are
colored, the covariance matrix of the LP residuals, which are
the measurement noise in the Kalman filter framework, has to
be updated recursively. Therefore, an iterative algorithm based
on the Kalman filter is developed to estimate the LPCs and mea-
surement noise covariance matrix iteratively so as to further im-
prove the tracking performance. Simulation results show that the
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proposed algorithm gives better tracking capabilities than the
WRLS method in nonstationary environment because the latter
is more sensitive to the changes of noise variance [11], [12].

This paper is organized as follows. In Section II, the LP
approach and the WLS algorithm for frequency estimation
are revisited. The Kalman-filter-based frequency estimator
for time-varying frequency components is introduced in
Section III. Section IV studied the noise covariance estimation
in the Kalman-filter-based frequency estimator and proposed
an improved iterative Kalman-filter-based frequency estimator.
Simulation results and comparison are presented in Section V.
Finally, conclusions are drawn in Section VI.

II. LINEAR PREDICTION APPROACH

It was observed by Prony [3] that the current sample of
in (1) can be expressed as a linear combination of its past
samples based on the idea of LP, that is

(2)

where , , are called the LPCs. By the sym-
metric property of the LPCs of real sinusoids, and

, (2) can be rewritten as

(3)

Using the observations from (1) and , an
overdetermined system can then be set up as follows:

(4)

where and and are defined as shown at
the bottom of the page.
is the prediction residual vector with entries

for (5)

If is a zero-mean independent identically distributed
(i.i.d.) Gaussian random process, then the maximum-likelihood
estimator (MLE) of is identical to the least-squares (LS) esti-
mator with the cost function

(6)

However, it can be seen from (5) that is obtained from
linear combinations of ’s and hence it is correlated. A WLS
algorithm should therefore be used to improve the estimation
accuracy [7]. More precisely, let be a zero mean Gaussian
process with probability density function (p.d.f.) given by

(7)

where is the covariance matrix of . The like-
lihood function is maximized when is mini-
mized. Thus, we have the following WLS problem:

(8)

As a result, the LS cost function (6) should be modified to a
WLS cost function as

(9)

where is the weighting matrix. The corresponding
WLS solution is

(10)

Since is unknown during the estimation of , an
iterative WLS algorithm is employed to estimate the parameters
successively. More precisely, is estimated initially by the LP
approach in (10) with . Using the estimated , we can
construct using the algorithm mentioned in [7] and then
take the inverse to obtain . is then updated again and the
two processes are performed alternately until convergence.

After the LPC is estimated, the frequen-
cies are computed by solving the polynomial equation [13]

(11)

...
...

. . .
...

...
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where and . is obtained
using the symmetric property of the LPCs: . Note
that is extended to include the case . This implies that
the phases of the roots of (11) are the frequencies. For real
sinusoids, only positive frequencies are needed.

III. KALMAN-FILTER-BASED FREQUENCY ESTIMATOR

The LP-based frequency estimation introduced in the pre-
vious section is a batch processing algorithm, where the fre-
quencies are obtained using all of the observations available. As
a result, the WLS algorithm is unsuitable for recursive tracking
of time-varying frequencies, and its complexity grows with the
number of measurements. To solve these problems, a new fre-
quency estimator based on the Kalman filter is proposed.

At each time instant , we consider a data segment consisting
of past samples, . If we assume
that the frequencies of the sinusoidal signal does not change
within the data segment , then and can be derived
from and the LP approach can be used to estimate the time-
dependent LPCs from

(12)

More precisely, let us rewrite
. Then, one obtains the equation shown at the

bottom of the page.
, , and the residual error

with entries

(13)

Let be the covariance matrix of the correlated residual
. The p.d.f. of can be written as

(14)
which suggests the following LS estimate:

(15)

where is a forgetting factor to forget samples in the distant
past for tracking purposes.

A time-recursive frequency estimator based on the WRLS al-
gorithm was proposed in [8] to estimate and the Cholesky
factor of . The conventional RLS algorithm can be
regarded as the WRLS algorithm with . For the
LP-based frequency estimator problem, the RLS method will
be degraded due to the colored noise.

The Kalman filter can also be used to estimate of (12)
recursively, if we assume that follows a simple one-order
AR model with smoothness priors [14]. Consequently, the LPCs
can be described as the state equation in (16a). Combining the
state equation with the LP equation in (12) gives the following
linear state-space model:

(16a)
(16b)

where is the system state. For simplicity, the state transi-
tion matrix is chosen as an identity matrix and the variation
of the LPCs is modeled by the state noise vector , which
is assumed to be zero mean Gaussian distributed random vector
with covariance matrix . The correlated residual is
the measurement noise with covariance .

The optimal state estimator for in the MMSE criterion
for the state-space model (16) can be computed by the standard
Kalman filter recursions as

(17a)

(17b)

(17c)

(17d)

(17e)

(17f)

where , ( or ) represents the
estimator of given the measurements up to time ,
is the autocorrelation matrix of , and is the Kalman
gain. To ensure at least one measurement is included, the data
length of should satisfy .

IV. NOISE COVARIANCE ESTIMATION AND AN ITERATIVE

FREQUENCY ESTIMATOR

In the proposed Kalman-filter-based frequency estimator
above, the covariance matrices of the measurement and state

...
...

. . .
...

...
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noise, and , play an important role. Since they
are not known a priori, they should be estimated. Here, we
will discuss the recursive estimation of the noise covariance
matrices and develop a Kalman-filter-based iterative frequency
estimator to improve the estimation accuracy.

First of all, we consider the covariance matrix of the
measurement noise , which will be estimated from

. If we assume that is ergodic, then its
ensemble average can be replaced by time average. Hence, the
covariance of can be estimated recursively as

, where a forgetting factor
is introduced in the recursive update. If all of the errors in

a window of length are used to reduce the variance in esti-
mating the covariance matrix, the calculation of can fur-
ther be modified to

(18)

where is the covariance matrix of the residual error ma-
trix .

A similar approach based on (16a) suggests the state noise
estimate . Therefore, the state noise
covariance matrix can be estimated
recursively from

(19)

where is the forgetting factor, and is the covariance
matrix of with an estimation
window of length .

Note that the forgetting factors and should be slightly
less than one so that the effects of previous estimations/obser-
vations can be gradually neglected. However, the optimal for-
getting factor selection is beyond our scope, and thus we set all
of these forgetting factors to 0.95 in the simulations.

In [8], and were estimated iteratively in the
WRLS-based frequency estimator so that a better result can be
achieved when the linear prediction error is colored. A
similar iterative algorithm can be applied to the above Kalman
filter-based algorithm to improve the estimation accuracy of

and hence .
The detailed procedure of this Kalman-filter-based iterative

algorithm is summarized in Table I. Compared with the WRLS-
based iterative algorithm of [8], the Kalman-filter-based itera-
tive algorithm is more convenient because can be di-
rectly incorporated in the Kalman gain matrix. Simulation re-
sults show that the Kalman-filter-based iterative algorithm usu-
ally converges in three to five iterations and it can improve con-
siderably the tracking accuracy.

At each time instant, the major arithmetic complexity of the
proposed algorithm comes from the matrix inversion, which
requires a complexity of , for computing the
Kalman gain in (17b). Hence, the total complexity is approx-
imately , which is comparable to the
WRLS iterative algorithm in [8]. For the WLS algorithm in
[7], its order of complexity is up to , and therefore
the complexity grows significantly with the total number of
measurements.

TABLE I
KALMAN-FILTER-BASED ITERATIVE FREQUENCY ESTIMATOR

V. SIMULATION RESULTS

The performance of the proposed Kalman-filter-based fre-
quency estimator is evaluated using computer simulations. Four
different frequency estimators are tested for different sinusoidal
signals: 1) RLS-based estimator; 2) WRLS-based iterative
estimator ( ); 3) the Kalman-filter-based estimators
without iterations ( ); and 4) the Kalman-filter-based
estimators with iterations ( ), .

The length of the input signal is and the sam-
pling rate is 1. The sinusoidal signals are assumed to consist of
two components ( ) and their amplitudes and phases are

and , respectively. The forgetting
factor of the RLS- and WRLS-based algorithms is chosen as
0.95. The length of data segment is set as
to reduce the arithmetic complexity. The parameters for the
noise covariance matrix estimation (18) and (19) are chosen as

and .
The MSE criterion is used to evaluate the perfor-

mances of the estimation, and it is given by
, where is the estimated

frequencies. The MSE results shown in the figures are averages
of 1000 independent Monte Carlo runs.

The first experiment uses stationary sinusoids with fixed fre-
quencies to demonstrate the performance of these frequency es-
timators. The two frequencies are chosen randomly from
(0,0.5). The test signals are corrupted by a zero-mean AWGN
with a SNR of 10 dB. In Fig. 1(a), the Kalman-filter-based fre-
quency estimators achieve better tracking results than the RLS-
and WRLS-based estimators. It can also be seen that more it-
erations in the Kalman-filter-based algorithm will improve the
tracking accuracy and the convergence rate.
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Fig. 1. (a) MSE of frequency estimators for sinusoid signals with static frequencies. (b) MSE of frequency estimators for sinusoid signals at different SNRs. (c)
MSE of frequency estimators for signals with different chirp rates.

Next, we compare the performances of these frequency esti-
mators for stationary sinusoids whose frequencies are also ran-
domly chosen in the range (0,0.5) and are contaminated with
AWGNs of different SNRs. Fig. 1(b) shows the steady-state
MSE results of various algorithms at time instant 1000. We can
see that the Kalman-filter-based algorithm with five iterations
provides the best performance, while that of the RLS-based
method is the worst. It is also noted that the performance of
the iterative WRLS estimator is slightly better than the Kalman-
filter-based estimator without iteration when SNR is sufficiently
high ( dB) due to its long effective window length. There-
fore, more iteration processes for estimating the noise covari-
ance are particularly useful when the additive noise is small.

VI. CONCLUSION

A Kalman-filter-based iterative algorithm for tracking time-
varying frequencies of sinusoidal signals was presented. This
algorithm was based on the linear prediction approach and the
LPCs were estimated using the Kalman filter recursively. More-
over, an iterative algorithm for refining the LPCs and the mea-
surement noise covariance matrix was employed to improve the
tracking performance. Simulation results showed that the pro-
posed Kalman-filter-based frequency estimator had a better per-
formance than the RLS- and WRLS-based algorithms for sig-
nals at different SNRs and frequency variations.
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