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Abstract—Selfish behaviors of individual machines in a Grid can potentially damage the performance of the system as a whole.
However, scrutinizing the Grid by taking into account the noncooperativeness of machines is a largely unexplored research problem. In
this paper, we first present a new hierarchical game-theoretic model of the Grid that matches well with the physical administrative
structure in real-life situations. We then focus on the impact of selfishness in intrasite job execution mechanisms. Based on our novel
utility functions, we analytically derive the Nash equilibrium and optimal strategies for the general case. To study the effects of different
strategies, we have also performed extensive simulations by using a well-known practical scheduling algorithm over the NAS
(Numerical Aerodynamic Simulation) and the PSA (Parameter Sweep Application) workloads. We have studied the overall job
execution performance of the Grid system under a wide range of parameters. Specifically, we find that the Optimal selfish strategy
significantly outperforms the Nash selfish strategy. Our performance evaluation results can serve as a valuable reference for designing

appropriate strategies in a practical Grid.

Index Terms—Grid computing, noncooperative games, virtual organizations, selfish behaviors, online scheduling, Nash equilibrium,
optimal strategies, performance evaluation, NAS workload, parameter sweep application (PSA).

1 INTRODUCTION

HE lofty goal of Grid computing [14], [17], [18] is to

leverage on the interconnection of a large number of
geographically distributed machines to solve computa-
tional problems faster at a gigantic scale [6]. However,
this goal is based upon the premise that the intercon-
nected machines are cooperative in the sense that they are
willing to execute remote jobs. We believe that, as the
Grid scales up, this premise may no longer hold. Notice
that the Grid is a large-scale peer-to-peer (P2P) system at
the server-level (rather than at the desktop level as in file-
sharing P2P applications). Thus, the “peers,” i.e., the Grid
sites, owned and managed by different organizations, may
not always want to cooperate with each other. Indeed, the
various computers within a Grid site may not even
cooperate with each other. This scenario resembles the
situation of the noncooperation among states of a large
country, or the noncooperation among departments in a
large organization.

Thus, modeling the Grid and its constituents by taking
into account the potential noncooperativeness at various
levels is an important research problem. With such
modeling, we can then study the impact of selfishness and
subsequently design proper strategies to avoid its adverse
impacts. This can, in turn, lead to a much more efficient
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utilization of the Grid processing resources. However,
despite that there have been several recent attempts in
scrutinizing the Grid from a so-called “market” oriented
perspective [10], [15], [16], [46] (as detailed in Section 2), the
modeling problem of the Grid with realistic selfishness
concepts is relatively unexplored.

In this paper, we propose a new game theoretic
modeling of the Grid and present our analytical as well
as simulation performance results. Specifically, we make
three contributions:

1. A Hierarchical Game Theoretic Grid Model. We
consider that to manage the scalability of a Grid, a
hierarchical structure must be used. Essentially, the
hierarchy consists of three levels: the global schedul-
ing level, the intersite level, and the intrasite level.
We believe that this hierarchical structure matches
well with the physical administrative structure of
Grid sites.

Based on this hierarchy, we introduce three
different game theoretic scenarios: the intrasite job
execution game, the intrasite bidding game, and the
intersite bidding game. In this paper, we focus on
the intrasite job execution game. The other games,
and most importantly, the interplay among the three
games, are presented elsewhere [26].

2.  Mathematical Analysis of the Intrasite Job Execu-
tion Game. We first propose a novel but realistic
utility function for each participating machine within
a Grid site. We then formally derive the equili-
brium strategies and the optimal strategies. Based
on these analytical results, we design algorithms
for the machines to achieve a high utility as well as
high performance, despite the fact that the ma-
chines are selfish.

Published by the IEEE Computer Society
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3. Extensive Performance Evaluation of the Model.
We conducted extensive simulations to study the
behaviors of the Grid under different strategies:
heterogeneous strategies, Nash strategies, and
optimal strategies. Specifically, based on a well-
known practical scheduling algorithm, namely the
MinMin algorithm [8], we studied the utility and job
execution performance (in terms of makespan and
slowdown ratio) of the Grid system under a wide
range of parameters. Our performance evaluation
results can serve as a valuable reference for design-
ing appropriate strategies in a practical Grid.

The rest of the paper is organized as follows: Section 2
presents a brief review of related work. In Section 3, we
describe our proposed hierarchical Grid model and the
associated game theoretic research problems. We then
describe in detail our modeling and analytical formulations
of strategies for the intrasite job execution game in Section 4.
Section 5 contains a detailed discussion about our simula-
tion setup and the parameters used. We present the
extensive simulation results and our interpretations in
Section 6. The last section concludes the paper by suggest-
ing some future research directions.

2 RELATED WORK

Recently, we have witnessed an intensive interest in using
game theoretic and market-oriented approaches in the
analysis and design of distributed computing and network-
ing algorithms [4], [20], [30], [35], [37], [48]. More notable
examples include TCP congestion control [1], [2], routing
[3], [7], [41], [42], bandwidth pricing [11], [47], contents
delivery [16], file sharing [38], wireless caching [48], etc.

There have also been some recent results on game
theoretic job allocation and scheduling reported in the
literature [33]. Regev and Nisan [39] suggested the so-called
POPCORN market for trading online CPU time among
distributed computers. In their system, a virtual currency
called “popcoin” was used between buyers and sellers of
CPU times. The social efficiency and price stability were
studied using the Vickrey auction theory [4], [39]. We
believe that the major drawback of their approach is that
some form of concrete currency is needed, and that is a
system feature that we think would not be practical in a
real-life situation where there is a tremendous number of
machines involved. Similar approaches were also proposed
by other researchers [9], [13], [15], [45].

Wolski et al. [46] proposed a model called G-Commerce,
in which computational resources among different Grid
sites are traded in a barter manner. The efficiency of two
different economic models—commodities markets and
auctions—were studied by simulations. They concluded
that a commodity market is a better choice for controlling
Grid resources compared with auctions. Ghosh et al. [19]
study the load balancing issues in a mobile computational
Grid. In their model, there is a wireless access point (WAP)
which mediates the requests from different mobile devices
constituting the Grid. Using the Nash Bargaining Solution
(NBS) [31], they devised a framework for unifying network
efficiency, fairness, utility maximization, and pricing.
However, an explicit payment scheme must be enforced
in the system.

Larson and Sandholm [27] pioneered the consideration
of the computation cost involved in determining the

valuations that are essential inputs to the auction system.
They defined the notion of “miscomputing ratio,” which
characterizes the impact of selfishness on the efficiency of
the auction. Nisan and Ronen [33], [34] formally defined the
job allocation in a distributed system using a truthful
mechanism framework. Here, “truthfulness” is a concept
about the revealing of real information about each
participant. That is, under a truthful mechanism, each
player will not lie about its state. They proved that the
MinWork mechanism—in which the “payment” to the job
executing computer is the “time” valuation proposed by the
second best computer—is a strongly truthful approximation
mechanism.

Grosu et al. [21], [22], [23] recently performed some
pioneering work in that they designed a load balancing
system based on the truthful mechanism (a key component in
Vickrey-Clarke-Groves (VCG) mechanisms [24], [36]), in
which each computer optimizes its “profits” by considering
the payment and cost involved in handling a job. They used
the overall expected response time as the “social cost” of the
whole system. The optimization of this metric reduces to a
nonlinear optimization problem. With the help of a Lagran-
gian solution based on the Kuhn-Tucker conditions, Grosu et
al. derived a set of useful conditions that are to be enforced
algorithmically by each individual computers in a distributed
manner. An imperfection in their work is that the physical
meaning of the payment functions is unclear. Furthermore, in
an open Grid environment, addressing load balancing alone
is not enough.

Volper et al. [44] proposed a game-theoretic middleware
called GameMosix. Selfish behaviors are modeled by
“friendship relationships” in that computers will help each
other only when they have established friendship relation-
ships before. Quantitatively, a unit of friendship is
accumulated if a computer takes a job from another
computer. Sender and receiver algorithms were then
devised to handle remote job executions based on friend-
ship values.

With reference to the above-mentioned related work, our
proposed models and analytical formulations are novel in
that we consider the hierarchical relationships among
individual computers in a gigantic computational Grid.
Our work is also the first of its kind in investigating the
selfishness issues within a Grid site [26].

3 A HIERARCHICAL SEMISELFISH GRID MODEL

As mentioned in Section 1, the ultimate scale of a computa-
tional Grid is gigantic, and, thus, the Grid, pretty much like
the Internet itself, will cross organizational and national
boundaries. An open question is that of how such a gigantic
distributed computing platform, which is likely to be
composed of hundreds of thousands of processors, is to be
structured and maintained. We believe that a hierarchical
structure, as depicted in Fig. 1a, is the only feasible solution.

In our study, we envision that each “Grid site” is not
going to be a single computer, but rather a network of
computers,1 each of which is a cluster of machines or a
tightly coupled, massively parallel machine. Thus, even-
tually, we may have hundreds of Grid sites, each of which

1. Throughout this paper, we use the term “computer” and “machine” to
refer to a monolithic autonomous computing platform that possibly consists
of multiple CPUs.
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Fig. 1. System model of an open Grid computing platform. (a) The hierarchical structure of an open Grid. (b) The control flow in open Grid job

scheduling.

consists of tens of multiprocessors (i.e., clusters and parallel
machines). Indeed, such a structure, again resembling the
Internet itself, closely matches the “administrative” struc-
ture of computing resources in organizations.

For instance, the computer science department of a
university might own a large cluster of PCs, the electrical
engineering department might possess another, and the
physics department might manage a massively parallel
supercomputer. Yet, all these computing resources partici-
pate in the global Grid community according to the
university’s mandate. Thus, at the intrasite level, the
participating computers, each of which is autonomous,
form a federation. At the intersite level, the participating
Grid sites form another level of federation.

With the hierarchical structure shown in Fig. 1a, there are
also two levels of job scheduling and dispatching, depicted
in Fig. 1b. Specifically, the job submission system, which is
implemented as a global middleware, channels user
submitted jobs to the global scheduling system. We
envision that such a job submission middleware can be
easily constructed using Web services tools (e.g., WSDL and
SOAP messages [5]). Equipped with a global Grid proces-
sing resources registry (which, again, could be based on the
UDDI protocol), the global scheduler performs job alloca-
tion according to a certain scheduling algorithm.

Most importantly, at the intersite level, the scheduler has
only the knowledge of the processing capability of each
Grid site as a whole, without regard to the details within the
site. In this manner, the scalability of scheduling at the
global Grid level can be efficiently handled. Furthermore,
this scheduling model conforms well to the administrative
structure of the Grid community in the sense that the global
scheduler probably should not “micromanage” the execu-
tion of jobs down to the machine level. The global scheduler
makes use of the “capability parameters” supplied by the
Grid sites as the inputs to the scheduling algorithm. These
capability parameters are, in turn, mediated by the local
job dispatcher at each Grid site based on its information
about the local participating machines.

As described above, our hierarchical model, while
capturing the realistic administrative features of a real-life,
large-scale distributed computing environment, is also
generic in nature. Indeed, this federation-based Grid model
opens up a large variety of interesting research issues. First,
any efficient online job scheduling algorithm can be used.
Furthermore, it is important to study how the various
parameters are generated and communicated. Indeed, from
the hierarchical model, we can formulate three different
game theoretic job allocation and execution problems:

1. Intrasite Job Execution Strategies. This problem
concerns the strategies of the participating compu-
ters inside a Grid site. Specifically, although the
various computers participate in the making up of
the Grid site, each individual computer is selfish in
that it only wants to execute jobs from local users but
does not want to contribute to the execution of
remote jobs.

For example, even though a cluster of PCs in the
computer science department is designated as a
member computer of a university-based Grid site,
the cluster’s administrators and/or users may still
prefer to dedicate the computing time to process
local requests as much as possible. However, if every
participating computer does not contribute, the Grid
site as a whole will fail to deliver its promise as a
serving member of the Grid community, thereby
defying the original motive of forming the Grid.
Thus, one of the participating computers eventually
has to take up a job assigned to the Grid site by the
global scheduler.

This problem is interesting in that we need to
determine how a participating computer should
formulate its job execution strategy so as to
maximize its own utility (i.e., execute more local
jobs) in a selfish manner without rendering the
whole site nonoperational. We focus on this problem
in this paper.

2. Intrasite Bidding. This problem concerns the deter-
mination of the advertised “execution capabilities”
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TABLE 1
Notation in the Game-Theoretic Formulation
Symbol | Definition
T(Jg) Execution time of job Jj,
a Serial fraction of job Jy,
b Parallel fraction of job Jj,
U; Utility function of machine i (i.e., player 7)
S; Degree of cooperation (DoC) of machine ¢
(i.e., the mixed strategy [36] of player 7)
Pit Total number of processors available at machine ¢
P Number of processors used for executing a job at machine ¢
T Duration of a job dispatching round
P, Fixed overhead component of P"
Q Variable component of P"
P The minimum number of processors used to finish a job
Py Extra number of processors needed for a job after 7 units of time
Q@ Selfishness penalty factor
R; Reputation Index (RI) of Grid site j
n Number of players at each Grid site
m Number of Grid sites
I/le Workload accepted in the first round by site j
I/Vj2 Workload accepted in the second round by site j
Wi Workload rejected eventually by site j
51, B2, v | Weighting factors in updating RI

for jobs submitted to the global scheduler. Recall
that, for the scheduler to allocate jobs using a certain
scheduling algorithm, it needs to know all the sites’
execution capabilities—in our study, these are
modeled as the execution times needed for the
pending jobs. To determine the execution time
needed for a certain job, within a Grid site each
participating computer can make a “declaration”—a
notification to the local job dispatcher specifying the
time needed to execute the job.

The local job dispatcher can then “moderate” all
these declarations to come up with a single value to
be sent to the global scheduler. For example, if the
local job dispatcher is aggressive in job execution, it
could use the “minimization” approach—taking the
minimum value of the declarations from all the
member computers. On the other hand, a conserva-
tive approach is to perform “maximization”—taking
the maximum value instead.

This problem is also interesting in that we need to
determine, possibly using auction theory, the best
“bidding” (i.e., making execution time declarations)
strategies for each member computer. Specifically,
we need to determine whether truthful revelation is
the best approach in the bidding process.

3. Intersite Bidding. Similar to the intrasite situation,
at the intersite level, the various local job dispatchers
also need to formulate game theoretic strategies for
computing the single representative value of the job
execution time to be sent to the global scheduler.

Another exciting avenue of research is to study the inter-

play of these three games, i.e., how the selfishness of each
individual computer affects the intrasite bidding, which, in

turn, will impact the intersite bidding in a complicated
manner.

Indeed, different combinations of the above games will
result in different Grid structures. For a semiselfish Grid, the
intrasite games are noncooperative while the intersite game
is cooperative. This model fits most present-day Grid
situations because a Grid is usually formed after some
cooperative negotiations at the organization level. How-
ever, the individual machines operated by bottom-level
departments may not cooperate with each other. For a fully
selfish Grid, the games are assumed to be noncooperative at
all levels. This model is the most general model. Finally, the
ideal Grids are modeled by cooperative games at all levels.

In this paper, we focus our formulation, analysis, and
results on the first problem introduced above. Specifically,
to simplify the model, we assume that, for the intersite and
intrasite bidding processes, truthful mechanisms [28] are
used. In subsequent papers, we will present our results on
the untruthful revelation of participating machines within
each Grid site and the intersite auction problem.

4 SEMISELFISH MECHANISMS AND MIXED
STRATEGIES

In this section, we present our analytical formulation of the
game theoretic framework for the intrasite job execution
mechanism. We first describe the job model and execution
policies. We then formulate the two-player case, followed
by the general n-player case. Game theoretic algorithms
induced by our analysis are formalized at the end of this
section. Table 1 summarizes the notation used throughout
this paper.
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In our game theoretic study of Grid job scheduling, we
consider a class of malleable jobs [25], each of which has the
following execution time model: T'(J};) = ay —5—%, where ay,
is the serial portion of the job J; and b, is the parallel
portion that can be shortened (hence, malleable) if more
processors are available. That is, the execution time
decreases in a linear manner as the number of processors
allocated to the job increases. Thus, we assume that each job
is a parallel application that can be executed using multiple
processors. Consequently, the “cost” for each participating
computer (e.g., possibly a cluster of PCs) in executing a job
is the number of processors, denoted by P, devoted to the
job during its execution time period.

To model the “selfish” behavior of each participating
computer (i.e., each player) in a Grid site j, we propose the
following utility function:

P!
Ui =—, 1
=P (1)
where U; is the utility of player i, P! is the total number of
processors of player i, and P! is the total number of
processors it used for a remote job. Here, we assume that
P/ > Obecause there is always some overhead for a computer
to participate in the Grid (e.g., the need to expend some
processing resources to monitor the Grid status, or to
advertise its capabilities, and so on).

We believe that this simplistic selfish utility function is
able to model a real-life situation. Essentially, each machine
is selfish in the sense that it does not want to contribute to
the Grid community if possible by minimizing the utiliza-
tion of the machine by remote jobs. Thus, the machine can
spend more time to handle local jobs. This is realistic even
in current Grid computing environments because, although
on the institutional or departmental level machines are
“assigned” to contribute in a Grid, the local users may not
care too much about this and would simply like to utilize
the machines as much as they can.

However, the Grid site as a whole would like to
maximize its Reputation Index (RI), which quantifies the
contributions of the site (intuitively, a higher RI would
lead to a better reputation of the organization as a whole).
Specifically, the RI value R; will be incremented if an
assigned job is successfully executed at site j and
decremented if the job fails (the failure of a job will be
elaborated below). In the following, we propose our novel
formulation of this assigned job execution mechanism as a
noncooperative game [32] to study the dynamics of the
conflicting goals of the selfish machines and the Grid site as
a whole.

In our model, we assume that, after a job is assigned to a
Grid site, the job is associated with an execution deadline in
that the job can be held in the job queue at the local job
dispatcher for a certain period of time. Let us denote this
time by 27. We elaborate the rationale behind this policy in
Section 4.2. Thus, in the execution game, there are two
rounds of “moves.” Within each round, each computer acts
according to its selfish strategy and can choose to either
ignore the job or take it up.

We consider mixed strategies [31], [36] in our study.
Essentially, each computer uses a probabilistic “wait-and-
see” approach—try to avoid the work by waiting, with a

certain probability, for some other computer to take it up.
Now, consider that if a job is taken up immediately after it
is assigned, the amount of resources occupied is given by
P’ = P,+ @, where P, is the fixed overhead component of
resources and () is a variable component that depends on
how much time is left for the job (here, the player index
indicated by the subscript is dropped for clarity).

Specifically, if the job is taken up immediately after
assignment, then @ = P, where P is the number of
processors needed in order to finish the job using the
amount of time advertised by the Grid site to the global
scheduler. On the other hand, if the job is executed after one
round (i.e., 7 units of time) because no computer takes it up
in the first round, then the number of processors involved
becomes P’ = P,+ Q = P,+ P + P,. That is, the waiting
time 7 has to be compensated by “throwing in” P, more
processors to the job so that the deadline of the job can still
be met. Let us consider a simple scenario first—only two
computers are involved.

41 The Two-Player Game

Let us consider two participating computers, denoted by M;
and M,, having mixed strategies s;, where 0 <s; <1 for
i =1,2. Here, s;, called the degree of cooperation (DoC) in our
study, is the probability (i.e., the mixed strategy) that the
assigned job is taken by computer M;. Now, in the first round,
if M, chooses not to take up the job, there are two possible
outcomes: 1) M, takes it up, or 2) M, also does not take it up.
Suppose that, after the firstround, if thejob isnot taken up, M;
will take it up with probability 1. As such, we have

Q==s1P+(1—s1)(1—5)(P+P,). (2)

By symmetry, a similar expression can also be derived for
M,. Suppose P,, = aP, where 0 < a < 1 (i.e., 7 is not a long
period of time with respect to the job’s execution time
elaborated in Section 4.2). Here, « is called the selfishness
penalty factor because it quantifies the amount of extra
resources incurred should the machine refuse to take up the
job earlier. Differentiating U; with respect to s; gives

aUl—fﬁs a) — o
oo (P,,,)z(z(lJr) )- (3)

Depending on the value of s, %—(ﬁ takes on different values:

L. S2 < 1+a ds1

“always do it,” i.e., s; = 1.

=52 > 0: M;’s best “execution strategy” is

« % . s “ . ” o
2. 8>3 Ya = n < 0 M,’s best “execution strategy” is
“always ignore,” i.e., s; = 0.
o % N 7 Z : ” o
3. s = Tha = 05 = 0: M;’s best “execution strategy” is

either of the two possible actions, i.e., it is indifferent.

Theorem 1. The strategy combination (si,s:) = (35155

achieves a Nash Equilibrium [31], [36] in the two-player game
in that no player can benefit by unilaterally deviating from this
strategy combination (i.e., U;(s;) < Ui(755) for any s; # 1%5).

Proof. The theorem is true because () = P by (4) and, thus,
U; does not depend on the value of s; (for ¢ = 1,2) under
this symmetric combination. Thus, any deviation of s;
from S would not affect U;. O
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Fig. 2. Relationships among the utility function U; and DoC s; of machine M;, and the DoC s, of machine M. (a) U;(s1, s2) versus s; with various

values of s,. (b) sy versus s,. (c) Utility versus s.

It should be noted that deviating from the Nash
equilibrium strategy does not make the utility worse. In
fact, the only requirement of the Nash equilibrium is that
unilateral deviation does not lead to a better utility.
However, this equilibrium, albeit unique, is a weak one
(i.e., unstable), and the solution is degenerated [36], [40] in
that each player i can choose any strategy provided the
other player fixes its strategy to be 7%.

Now, let us consider the case where each of the two
computers is patient enough to wait for one more time
interval 7 (i.e., the absolute deadline) before committing
itself to take up the job. Thus, the variable component of the
number of processors involved becomes

Q=

81P + (1 - 51)(1 - 52)[51P + Pu, + (1 - 51)(1 - 82)(P + QPHH

(4)
The terms in the square brackets account for the total cost of
the two-round waiting. With some sample numerical values
(i.e., Piotal = 256, P, = 4, P = 32, and o = 0.5), Fig. 2a shows
the relationships among Uj, s;, and s;. We can draw a
number of conclusions:

e If M, always takes up thejob, i.e., s; = 1, its utility is
independent of M,’s strategy so.

e The maximum value of the utility increases with s;.

e  For small values of s,, the optimal strategy for M is
to always take up the job.

e For large values of s,, the optimal strategy for M, is
to always wait.

e For some values of s, the optimal strategy for M, is
the interior of the strategy space, i.e., s; € (0,1).

Furthermore, by performing partial differentiation with
respect to s;, we can see that the best execution strategy
with variable s, for M; is

2(142a)(1 —s)> — (1 —a)(1 —sy) — 1
2(142a)(1 — 55)* — 2(1 — s9) '

S1 = (5)
If we take s; = s and o = 0.5 so as to solve this cubic
equation, we can get only one real root: s; = sy = 0.4131.
Indeed, Fig. 2b shows a plot of (5) when a: = 0.5. We can see
that there is only one fixed point solution within the feasible

strategy space, ie., s; = sy = 0.4131, which is the unique
equilibrium strategy of the game.

However, this Nash equilibrium is again suboptimal, as
is evident by the following analysis: To obtain the global
optimal utility value, let us take s; =s; =s in (4) and
substitute it into the utility function U (here, the subscript is
dropped because of symmetry). We then consider the case
of setting 27 = 0 under this “enforced” symmetrical strategy
combination. We have

4(1 + 2a)s® — 3(3 + 8a)s? +2(4 + 13a)s — 2(1 + 5a) = 0.
(6)

Solving this cubic equation with o = 0.5, we also get only
one real root: s = 0.6567. Fig. 2c shows the variation of the
utility function with symmetrical strategies (i.e., 51 = s3).
We can see that the optimal strategy is s; = s3 = § = 0.6567,
while the Nash equilibrium strategy is s; = s, = 0.4131.
Thus, the Nash equilibrium utility is Pareto inefficient [36],
which is a common characteristic in noncooperative game
models. Fortunately, under our hierarchical scheduling
model, we can make use of the local job dispatcher to
guide the players (i.e., the participating computers) to use
the optimal strategy. This is elaborated in Section 4.4 below.

It should be noted that “optimality” is defined with
respect to the utility of the machines. Thus, an optimal
strategy is one that “satisfies” optimally the “selfishness” of
the local machines. Consequently, according to the “self-
interest” of the local machines, each machine would then be
willing to use the “optimal” strategy values for local job
execution decision making.

In the above analysis, we assume that there are only
exactly two rounds of moves. We can easily extend the
analysis to the general case where there are an infinite
number of rounds. In this general case, the variable
resource component Q) of M, is given by

af) s1
P((l —op —Q>>’

where Q = (1 —s)(1 —s2). Here, again by partial differ-
entiation with respect to s;, we find that the equilibrium
strategy of M, is given by

Q=

(7)
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TABLE 2
Some Sample s; Values of the Nash and Optimal Strategies
« n=2 n=4 n==06 n=2~8 n =10
Nash ‘ Optimal | Nash ‘ Optimal | Nash ‘ Optimal | Nash | Optimal | Nash ‘ Optimal
0.1 | 0.2572 | 0.4516 | 0.1121 | 0.2656 | 0.0720 | 0.1986 | 0.0531 | 0.1621 | 0.0421 | 0.1386
0.2 | 0.3384 | 0.5361 | 0.1508 | 0.3210 | 0.0975 | 0.2411 | 0.0721 | 0.1971 | 0.0572 | 0.1686
0.3 | 0.3936 | 0.5890 | 0.1783 | 0.3572 | 0.1157 | 0.2691 | 0.0857 | 0.2202 | 0.0681 | 0.1884
0.4 | 0.4360 | 0.6276 | 0.2002 | 0.3846 | 0.1303 | 0.2903 | 0.0967 | 0.2377 | 0.0768 | 0.2035
0.5 | 0.4707 | 0.6579 | 0.2185 | 0.4066 | 0.1426 | 0.3075 | 0.1059 | 0.2520 | 0.0843 | 0.2157
2
(¢ —1)(s2)” — 3axse + 2ax al 5
81 = . : (8) Q=P st —— | (10)
(a—=1)(s2)"+ (1 —2a)s89 + (1-A)y° (1-4)

Solving (8) with s; = s, (i.e., symmetric equilibrium) and
a = 0.5, we have s; = s9 = 0.4707. On the other hand, the
optimal strategy for the “enforced” symmetric case is given
by the solution of the following equation:

st —2(a+1)s* + 6as® — 8as + 4o = 0. (9)

For o =0.5, the only legitimate root of this equation is
5 =0.6579. We can see that the Nash and optimal strategy
values for the 2-round case are both slightly smaller than
those of the co-round case. Nevertheless, as argued from a
practical perspective in Section 4.2 below, in our model the
system would consider a job as rejected by the assigned site
if it was not taken up after two rounds. Thus, the job
execution game would not be played indefinitely for each
allocated job at a site.

4.2 The Two-Round Policy

In the above analysis, the selfishness penalty factor « is
defined as o = %. It can be shown that N=f where I' is
the execution time for the parallel fraction of the job. Here,
first of all, we can see that, with a fixed value of «, 7 takes
on different values for different jobs. Secondly, as a gets
larger, 7 becomes a larger fraction of T'.

Indeed, with o = 0.1 (i.e., 10 percent more processors are
needed to finish the job after each round), 7 is equal to
9.1 percent of I'. On the other hand, with o =0.5 (ie.,
50 percent more processors are needed to finish the job after
each round), 7 is equal to 33.3 percent of I'. Thus, with
a =0.5, after two rounds of waiting, 66.7 percent of
originally useful execution time is wasted and 200 perecent
of the originally needed resources are needed to finish the
job. In view of this, it is deemed to be reasonable to consider
that the job is rejected if it is not taken up by any player after
two rounds. As detailed in Section 4.4, a rejected job is re-
scheduled by the global scheduler to a possibly new site in
the next batch.

4.3 The n-Player Game

We can easily extend the general case (i.e., with an infinite
number of rounds) of the two-player game to the n-player
scenario—there are n participating computers in a Grid site.
Specifically, we have the following theorem:

Theorem 2. The variable component of the number of processors
Q involved for player i in the n-player game is

where A = []7(1 — s;). Thus, the symmetric Nash equili-
brium strategy s* is given by

()@t
(1-a)e®-¢ ’
where £ = (1 — s*)" .

Proof. We provide an outline of the proof here. We can
derive (10) by generalizing (7) using mathematical
induction on n. We can then derive (11) by partial
differentiation of the utility function with respect to one
of the n mixed strategy variables s. 0
Furthermore, the following theorem formalizes the

existence of an equilibrium strategy for the n-player intrasite

job execution game:

(11)

Theorem 3. There exists an equilibrium strategy for the n-player
intrasite job execution game.

Proof. First of all, each player’s strategy space, {s;} € R!, is
nonempty, convex, and compact. Secondly, the utility
function, Uj, is continuous on II;<;<,{s;} C R". Further-
more, the best execution strategy mapping is single-
valued. Thus, we can conclude that there exists an
equilibrium strategy for the n-player game [36]. O

Although Theorem 3 does not rule out the possibility of
more than one equilibrium, we observe, from simulations,
that the equilibrium strategy (11) appears to be unique. On
the other hand, the optimal symmetric strategy § is given by
the following theorem:

Theorem 4. The optimal symmetric strategy § is given by the
unique legitimate real root* of the following equation:

1+[(1—an)+(n—2)s)(1—s5)""

) (12)
—[(an+2) + (n —2)s](1 — s)"

=0.

Proof. This can be easily shown by generalizing (6) using
mathematical induction on n. 0

Table 2 lists some sample s; values of the Nash
equilibrium and optimal strategies. As can be seen, the
strategy values get smaller with a larger number of players
or with a smaller selfishness penalty factor.

2. When n is odd, there is only one real root; when n is even, there are
three real roots but only one of them is within the (0, 1) interval.
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4.4 Algorithms for Intrasite Game Players

With the formulations described above, we can formalize
the algorithms for each participating computer and the local
job dispatcher.

Using Algorithm 1, the local job dispatcher continuously
communicates with the global scheduler (e.g., via some
SOAP messages) to check if the global scheduler is soliciting
execution time estimates for pending jobs. If so, the local job
dispatcher will in turn solicit such estimates within its
jurisdiction. Here, we assume that the local job dispatcher
uses a conservative approach in that it uses the maximum
value of the local estimates as the representative value for
the global scheduler. Determining an “accurate” represen-
tative value (with respect to the actual resulting execution
time) is a challenging problem outside the scope of this
paper. Finally, we assume that the global scheduler just
uses the earliest completion time (ECT) algorithm, ie., it
assigns the job to the site that can finish the job at the
earliest time.

Algorithm 1 Local Job Dispatcher
1: if global scheduler solicits “execution time estimates”
for a job, Ji then
2:  Solicit execution time estimates from all
participating computers, T;(Jy);
Return max{T;(Jj)} to the global scheduler;
end if
if a job is assigned to the site then
Check the currently active number of participating
computers, n;
7:  Broadcast the value of optimal strategy § according
to (12) to all the participating computers;
8:  for round = 1,2 (i.e., a total of 27 units of time) do

9: if a computer M; takes up the job (ties are broken
randomly) then
10: Send the job to M;;
11: Declare that the job is unavailable;
12: end if
13: end for
14: if no computer takes up the job then
15: Declare that the job fails;
16: end if
17: end if

If there is a job assigned to the Grid site, the local job
dispatcher will then coordinate the intrasite job execution
game. Specifically, to enforce the participating sites to use
the optimal strategy, it first determines the value of 5 based
on the current number of active participants (i.e., n) in the
site. Then, it waits to see if, within two rounds (i.e., 27 units
of time), the job is taken up by some participant. If so, the
job is handed over to the volunteer; otherwise, the job is
declared as failed and the global scheduler is notified.
Consequently, the global scheduler needs to reschedule the
job in the next batch, inevitably leading to a longer overall
makespan for the whole set of jobs. Furthermore, the global
scheduler will deduct the RI value of the concerned Grid
site, which in turn will hurt the reputation of the Grid site.
Corresponding to Algorithm 1, each participating machine
uses Algorithm 2 to play the intrasite game.

Algorithm 2 Participating Machine (Player %)
1: if local job dispatcher solicits “execution time
estimates” for a job, J; then

2:  Return the local estimate of T;(J;;) using the value of
desired number of processors P to the local job
dispatcher;

3: end if

4: if a job is assigned to the site then
5:  Receive the broadcast value of optimal strategy §
according to (12) from the local job dispatcher;

6: for round = 1,2 (i.e., a total of 27 units of time) do
7 if Random < § then
8: Declare that this machine takes up the job;

{Random is a random number between 0 and 1
generated by player i}

9: Execute the job;
10: end if
11: end for
12: end if

5 SIMULATION SETUP

This section describes the experimental setup in our
performance evaluation of the three strategies: Optimal,
Nash, and Random. The Optimal strategy is based on
Algorithms 1 and 2. The Nash strategy is also based on the
same algorithms but with the s; values computed accord-
ing to (11) instead of (12). The Random strategy models the
situation where all the players are completely uncoordi-
nated and use heterogeneous s; values randomly gener-
ated from a uniform distribution in the range [0, 25xasn]-

A hierarchical semiselfish Grid infrastructure is simu-
lated using a discrete event-driven simulator. At the intersite
level, m cooperative Grid sites are simulated. At the intra-
site level, a variable number of selfish players are simulated
for each site, as governed by n, which is the mean number
of players.

Job arrivals are modeled by a random Poisson distribu-
tion. Jobs are submitted to a centralized job scheduler. Each
site reports their required processing times, in a “truthful”
manner [36], to the centralized scheduler. The well-known
Min-Min scheduling heuristic [8] is used for the intersite
scheduling. Specifically, for each job, the Grid site that gives
the earliest Expected Time to Completion (ETC) is identified
first. Then, the job that has the minimum earliest ETC is
selected and then assigned to the identified Grid site.

According to the two-round policy, a job may be rejected
repeatedly without being executed even after multiple
scheduling batches. Thus, we incorporate a policy in our
simulator that enforces a selected Grid site to execute a job
which has been rejected three times.

5.1 NAS Trace Workload

We use three months of accounting records for the 128-node
iPSC/860 located in the Numerical Aerodynamic Simulation
(NAS) Systems Division at NASA Ames Research Center
[29]. This trace contains 92 days (7,948,800 seconds) data,
gathered in 1993. There are 16,000 jobs in the whole trace.
For testing the job execution performance under a high-
throughput Grid environment, the 92 days trace data is
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TABLE 3
Simulation Parameters
Parameter | Value
Number of jobs K NAS: 16,000; PSA: 10,000

Number of sites m

Job arrival rate

Job load level

Site architectures

Mean number of players n
Selfish penalty factor o
Reputation Index (RI)

NAS: 12; PSA: 10, 15, 20 (default), 30, 40

NAS: specified by the trace; PSA: 1 job every 100 seconds
NAS: fixed; PSA: 20 levels (0-300,000)

NAS: 8 x 8 nodes and 4 x 16 nodes; PSA: 10 levels

4, 6, 8 (default), 10, 12

0.1, 0.2, 0.3 (default), 0.4, 0.5

initial: 0.5; weighting factors: 81 =1, o = 0.5,v =1

proportionally squeezed to 46 days. We map the 128 nodes
to 12 Grid sites; 4 of the sites each contain 16 nodes, and the
other 8 sites each contain 8 nodes. Our simulations are
based on the arrival time, job size, and runtime data
provided by the trace. This trace was sanitized to remove
the user-specified information and preprocessed to correct
for system downtime [29].

5.2 PSA Workload

The parameter sweep application (PSA) model has emerged as
a “killer application model” for composing high-throughput
computing applications for processing on global Grids [12].
The parameter sweep application is defined as a set of
independent sequential jobs (i.e., no job precedence). The
independent jobs operate on different data sets. A range of
scenarios and parameters to be explored are applied to the
program input values to generate different data sets. The
execution model essentially involves processing K inde-
pendent jobs (each with the same task specification, but a
different data set) on M distributed sites, where K is
typically much larger than M.

5.3 Simulation Parameters

Table 3 lists the key simulation parameters. We report our
results for various parameters. For each parameter, the
default value and their varying range are provided. The
default values are used for all experiments unless otherwise
specified.

In our experiments, the initial values of RI at all sites are
set to 0.5. The RI at each site is then updated for every batch
process. Using the following equation, the new RI value of
site j is calculated from the old value plus some new input
value gathered from that batch.

RIeY RIOld + /6’ I/Vll + ﬂ I/VJQ VV: (13)
J - J 1 VVtota,l 2 Wtotal i VVtotal ’

where Wial is the total workload processed by all sites in a
batch, Wll, W}z, and W represent the workload accepted in
the first round, accepted in the second round, and rejected
eventually by site j, respectively. The corresponding
weighting factors are (31, 2, and v, respectively, which are
all positive real numbers. In our study, they are set to 1, 0.5,
and 1. Based on the RI updating rule above (i.e., (13)), those
sites that accept more jobs (in particular, accept jobs at the
first round) will increase their reputation quickly, and those
sites that reject more jobs will have their Rls declining
rapidly.

6 PERFORMANCE EVALUATION RESULTS

In this section, we present our simulation results over the
NAS workload for the three strategies: Random, Nash, and
Optimal. We evaluate the overall system performance using
the following metrics:

e  Makespan: the largest finish time among all the jobs,

e  Turnaround Time: the average time spent by a job in
the system,

e Slowdown Ratio: the ratio of the average turnaround
time to the average waiting time of all jobs,

e  Reputation Index: defined in Section 4,

e  Utilization: the fraction of resources used by remote
jobs, and

e  Job Rejection Rate: the percentage of jobs rejected by a
site.

6.1 Results over NAS Workload

We first consider the results over the NAS workload. As
indicated in Fig. 3, the first observation is that the Optimal
strategy consistently outperforms the Random and Nash
strategies by a considerable margin. For example, the
Optimal strategy’s performance is 5 percent to 8 percent
better than the other two strategies. Furthermore, the job
rejection rate of Optimal is only around 2 percent to
3 percent but those of Random and Nash are around
40 percent on average. Here, notice that the utilization
results shown in Fig. 3e are for a typical Grid site in the
simulation platform (denoted by 5).

Thus, we have an important conclusion: It is not
necessarily bad for the machines to behave selfishly
provided that they all use the same optimal mixed strategy
values s; computed by our analysis. Another interesting
conclusion is that the Nash equilibrium strategy is quite
poor—almost the same as the Random strategy. Indeed,
although there is no incentive for each player to deviate
from the Nash equilibrium, the resulting equilibrium
performance is not much different from that of a totally
uncoordinated job execution scenario.

As to the effects of o, we can see that, as a larger « is used
(i.e.,, heavier penalty), the makespan, turnaround time,
slowdown, and utilization increase, while the job rejection
rate decreases. This can be explicated by the fact that, as the
penalty is heavier, more time is needed to compensate for
the refusal of job execution. Accordingly, there is less
incentive for the machines to behave selfishly.
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For the RI, we can see from Fig. 4a that the Optimal
strategy is robust to the variation of «, while a larger « leads
to a higher RI in the Random and Nash strategies. On the
other hand, as the RI evolution illustrated in Figs. 4b and 4c
shows, a larger selfishness penalty factor is needed for the
Nash strategy but the Optimal strategy generates a linearly
increasing RI.

Fig. 5 shows the performance results with a varying
mean number of players in each site. Again, we can see that
the performance of the Optimal strategy is consistently
better than the Random and Nash strategies and is quite
robust. We can also see that, for the Random and Nash
strategies, the effects of a larger number of players are
similar to those of a larger selfishness penalty factor. For
instance, the job rejection rate of Optimal stays rather
constant at around 2 percent, while those of Random and

Nash are as high as around 35 percent on average. For the
utilization, we can see that, as more players are in a Grid
site, the utilization of each machine becomes lower due to
more spread-out load sharing.

Fig. 6a shows the variation of the RI with an increasing
mean number of players. We can see that the Optimal
strategy is again quite robust. On the other hand, the
Random and Nash strategies show a slight downward
trend, indicating that, as there are more players, a job is
slightly more likely to be rejected, leading to a decreasing
RI. This observation is reinforced by the results shown in
Fig. 6b which illustrate that, as the system evolves, a smaller
number of players can lead to a higher RI. Indeed, as
Table 2 indicates, a smaller number of players gives a
higher s; value (i.e., higher degree of cooperation) in both
the Nash and Optimal strategies. Finally, as depicted in
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Fig. 6¢c, the Optimal strategy continuously increases the RI
as the system evolves.

6.2 Results over PSA Workload
Now, let us consider the results over PSA workload. Fig. 7
shows the results for the PSA workload with various values
of selfishness penalty factor a. Compared with the results
for the NAS workload discussed above, the relative
performance differences of the three strategies for the PSA
workload are similar as for the NAS workload. For instance,
the job rejection rate of Optimal is also around 2 percent to
3 percent while those of Random and Nash are as profound
as around 40 percent on average.

Fig. 8 contains the results for the PSA workload with
various values of the selfishness penalty factor. Again the
trends are similar to those for the NAS workload. However,

as the number of jobs in the PSA workload is smaller than
those in the NAS workload (i.e., 10,000 versus 16,000), the
values of RI are smaller. Nevertheless, the relative perfor-
mance differences are similar.

Fig. 9 shows the results for the PSA workload with
various mean numbers of players in a Grid site. The
Optimal strategy also performs consistently better than the
Random and Nash strategies. An interesting observation is
that, for the utilization performance, while Random slightly
outperforms Nash for the NAS workload, here, for the PSA
workload, they perform quite close to each other.

Fig. 10 contains the RI variation results for the PSA
workload with different mean number of players. We can
see that as more players are involved, the RI values become
smaller. As discussed above, this is likely due to the fact
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that as more players are involved the s; values get smaller
(as indicated in Table 2).

Our last set of simulation results is for testing the
scalability effect of the Grid site. Fig. 11 shows the job
execution performance results with varying number of Grid
sites. As expected, since the workload size is fixed (ie.,
there is a fixed number of jobs in both the PSA workload),
the makespan, turnaround time, utilization, and slowdown
ratio all decrease with increasing Grid site because the
workload is shared by a larger number of machines.
Interestingly, the job rejection rate results are rather
independent of the Grid size due to the fact that the intra-
site game is played for each assigned job only, indicating
that the selfish behaviors of machines are independently
distributed probabilistically for each job.

Finally, Fig. 12 shows the RI variations with different
Grid sizes. Again, we can see that the RI value decreases as

the Grid size increases because the jobs are shared by more
sites so that each site gets less opportunity to increase its RI.
Overall, the Optimal strategy is the best in all cases.

6.3 Comparison of Different Integrated Intersite and
Intrasite Scheduling Schemes

Although the focus of this paper is on the intrasite job
execution game, we believe that it is also interesting to
study the interplay between different intersite job allocation
methods integrated with the optimal intrasite strategy. In
this final set of results, we consider the following three
intersite job allocation policies:

e Min-Min algorithm. This is the algorithm that we
use for all the results presented so far.
e Earliest finish time first (EFTF). This algorithm

allocates a job to a Grid site based on the site’s
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advertised finish time of the last remote job allocated
to it.

e Auction. We use a simple auction strategy here—the
intersite job allocation is based on the “second-
highest bid” auction. That is, a job is allocated to a
Grid site which advertises the second smallest
execution time for the job. This is in sharp contrast
with the Min-Min algorithm we used earlier in that
the Min-Min algorithm considers only the shortest
execution times.

We generated the results of applying these three intersite
schemes combined with the optimal intrasite strategy for
both the NAS and PSA workloads. In order to obtain a more
macroscopic view of the relative performance, we also
extended the system size by increasing the maximum mean
number of players from 12 to 30. Fig. 13 shows the results of

the comparison. We can see that, as we scale up the system
size, all the combined scheduling methods can reduce the
makespan significantly. For the NAS workload, we find that
the Min-Min approach is always better than the EFTF
algorithm. However, it is interesting to see that the auction
approach, while initially outperformed by the Min-Min
algorithm for small system sizes, improves quite remark-
ably for large system sizes. A plausible explanation is that,
as we scale up the number of players in each site, the
auction process becomes more efficient in the sense that the
successful bidder site can usually find a “volunteer” to
eventually execute a job on time. The PSA workload shows
a similar trend.

The interplay of intersite and intrasite scheduling highly
deserves further investigation. Due to space limitations, we
will leave this for a future paper.
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7 CONCLUSIONS AND FUTURE WORK

We have presented a novel and general hierarchical Grid
computing model by taking machine selfishness into
account. Our model matches well with the real-life
administrative structure of a practical Grid computing
platform which is open and owned by a large number of
autonomous management units organized at the intersite
and intrasite levels. Using this hierarchical model, we can
formulate three different game theoretic frameworks for
studying the behaviors of the Grid machines: intrasite
execution game, intrasite execution time bidding game, and
intersite bidding game.

In this paper, we focus on the first framework to present
a detailed mathematical analysis of the selfish behavior of
individual machines within one single Grid site. Nash
equilibrium and optimal strategies are analytically derived.
We have also carried out detailed simulations to study the

overall system performance under a wide range of para-
meters. We have reached two important conclusions: First,
it is not necessarily bad for the machines to behave selfishly,
provided that they all use the same optimal mixed strategy
values s; computed by our analysis. Second, the Nash
equilibrium strategy is quite poor—almost the same as the
Random strategy. Indeed, although there is no incentive for
each player to deviate from the Nash equilibrium, the
resulting equilibrium performance is not much different
from that of a totally uncoordinated job execution scenario.

Our study presented in this paper has several limita-
tions. For one thing, our approximate analysis is focused on
symmetric mixed strategies. It would be interesting to
analyze situations where heterogeneous strategies and
deterministic actions are used by the machines. Moreover,
the simulation study would provide more insights if we
integrate all three levels of scheduling together with
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intelligent algorithms used at each level. Furthermore, our
simulation results are based on a small scale Grid due to
various constraints in our testbed. An important future
research work would be to perform more extensive
simulations to study the performance of the integrated
scheduling system under large-scale Grids.

There are some other interesting avenues of further
research. First, it is important to devise an algorithm
(possibly game theoretic) for the site manager to determine
an accurate representative value of job execution time based
on the objective of successfully bidding the job without
overcommitting its resources. Second, the job deadlines in
our performance study are governed by the underlying
application (e.g., NAS or PSA) and are not under the control
of an individual site. However, if the deadline of a job can
be manipulated by a site, it would be interesting to design a
game theoretic deadline setting strategy in order to
maximize the successful remote execution probability.
Third, linking the selfish factors with appropriate trust
negotiation models for Grid computing is still a wide open
research problem. We are currently working on integrating
the three different games into a unified framework, which is
then incorporated into our previously proposed trust
binding methodology [43].
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