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Asymptotic Properties of Order Statistics Correlation
Coefficient in the Normal Cases

Weichao Xu, Member, IEEE, Chunqi Chang, Member, IEEE, Y. S. Hung, Senior Member, IEEE, and
Peter Chin Wan Fung

Abstract—We have previously proposed a novel order statistics
correlation coefficient (OSCC), which possesses some desirable ad-
vantages when measuring linear and monotone nonlinear associa-
tions between two signals. However, the understanding of this new
coefficient is far from complete. A lot of theoretical questions, such
as the expressions of its distribution and moments, remain to be ad-
dressed. Motivated by this unsatisfactory situation, in this paper
we prove that for samples drawn from bivariate normal popula-
tions, the distribution of OSCC is asymptotically equivalent to that
of the Pearson’s product moment correlation coefficient (PPMCC).
We also reveal its close relationships with the other two coefficients,
namely, Gini correlation (GC) and Spearman’s rho (SR). Monte
Carlo simulation results agree with the theoretical findings.

Index Terms—Bivariate normal, concomitant, delta method,
Fisher’s transform, Gini correlation (GC), Kurtosis, order
statistics correlation coefficient (OSCC), Pearson’s product mo-
ment correlation coefficient (PPMCC), ranks, relative efficiency,
skewness, Spearman’s rho (SR).

I. INTRODUCTION AND MOTIVATION

AMULTITUDE of methods have been proposed in the lit-
erature to measure the intensity of correlation between

two random variables with a bivariate distribution. Among these
measures the Pearson’s product moment correlation coefficient
[1]–[4] (PPMCC), Spearman’s rho [5] (SR), and Kendall’s tau
[5] are perhaps the most widely used [6]. The Pearson’s coef-
ficient is appropriate mainly for indicating linear associations,
while the other two rank-based coefficients are invariant under
increasing monotone transformations [5].

Recently, the present authors proposed a novel measure
of correlation called order statistics correlation coefficient
(OSCC), which bridges the gap between Pearson’s coefficient
and the other two rank-based coefficients [7], [8]. Theoret-
ical analyses and extensive Monte Carlo experiments have
shown that OSCC has properties including 1) robustness in
the presence of noise, 2) small biasedness, 3) high sensitivity
to changes in correlation between signals, 4) capability to
detect accurately time-delay, 5) fast computational speed,
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and 6) robustness under monotone nonlinear transformations.
These desirable properties make OSCC a potentially useful
alternative to the three classical correlation coefficients [8].
However, the understanding of OSCC is far from complete
due to the lack of knowledge on its distribution with respect to
bivariate normal populations. Such knowledge is indispensable
when one performs theoretical analyses of OSCC, such as the
analytical expressions of its mean, variance, skewness, and
kurtosis, just to name a few.

In order to gain further insight into OSCC, we derive in this
paper the asymptotic distribution of OSCC when samples are
drawn from a bivariate normal population with correlation (bi-
normal model). We will also compare OSCC to PPMCC, since
the latter has long served as a benchmark in the area of corre-
lation studies. In other words, any other correlation coefficients
should preferably emulate the properties of PPMCC under the
binormal model [9].

The paper is organized as follows. In Section II, we give some
basic definitions and several lemmas needed in this paper. In
Section III, we prove that OSCC is asymptotically equivalent to
PPMCC in terms of distribution and moments. In Section IV, we
formulate and prove two theorems on the relationship between
OSCC and the other two coefficients. Section V is devoted to the
applicability of the asymptotic theories to small samples based
on simulation results. Finally, in Section VI, we draw our con-
clusion on the order statistics correlation coefficient.

II. PRELIMINARIES

In this section, we give some basic concepts and lemmas con-
cerning normal random variables and the associated order statis-
tics. These prerequisites are necessary in order to establish our
main results in the sequel.

A. Definitions

1) Order Statistics and Concomitants: Let denote
independent and identically distributed (i.i.d.) data pairs drawn
from a bivariate population with continuous joint cumulative
distribution function (cdf). Sorting the data pairs in ascending
order with respect to the magnitudes of , we get a sequence
of new data pairs , where are
termed the order statistics of and the associated
concomitants [10]–[12].

2) Ranks: Suppose that is at the th position in the sorted
sequence , the number is termed
the rank of and is denoted by . Similarly we can get the
rank of which is denoted by [5].

1053-587X/$25.00 © 2008 IEEE
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B. Lemmas

In the sequel, we use symbols , , , and
to denote the mean, variance, covariance, and

correlation coefficient of (between) random variables, re-
spectively. We write if follows a
normal distribution with and ,
and if and follow a
bivariate normal distribution with , ,

, , and . Given these
notations, we now list the following lemmas which are neces-
sary to investigate the properties of OSCC under the binormal
model.

Lemma 1: Let be i.i.d. data pairs
from a standard bivariate normal population .
Write , , ,

and . Then

(1)

and

(2)

for being large.
Lemma 2: Let , , , be the same as in Lemma 1. Let

, , and .
Then, as large

(3)

Lemma 3: Let be the order statistics of an
i.i.d. sample drawn from a standard normal popu-
lation . Then, as large

(4)

where for .
Lemma 4: Let be defined as in Lemma 3.

Write , , , and

. Then, as large

(5)

The proofs of these lemmas are provided in the Appendices.

III. ASYMPTOTIC PROPERTIES OF OSCC
UNDER BINORMAL MODEL

Let be i.i.d. data pairs drawn from a bivariate
normal population with correlation . As proposed in [7], [8],
the OSCC is defined as

(6)

From its definition in (6), it is easy to verify that OSCC
is not symmetric in and . However, as pointed out in
[8], a symmetric version can be defined as

if symmetry is a critical feature
in practice.

The well-known PPMCC is defined as [2]

(7)

It is quite difficult and maybe impossible to derive the exact
distribution of directly from (6). However, as demonstrated
below, we can establish the asymptotic equivalence between
and by writing as the summation of and a remainder
term, whose mean and variance tend to zero with great rapidity.

A. Mean and Variance of Under Binormal Model

Theorem 1: Let and be defined as in (6) and (7) with
respect to i.i.d. sample pairs from a bivariate normal popula-
tion with correlation . Write . Then, as

(8)

and

(9)

Proof: It has been shown that is shift and scale invariant
[7], [8]. Therefore, without any loss of generality, we assume
in the following that the parent population is of the standard
bivariate normal distribution, that is

(10)

Write . We also have from the
assumption (10). Let and . It can
be shown from [10] that

(11)

where are independent of , the latter being mutually inde-
pendent with distribution . Then can be written
as the quotient of [8]

(12)

and

(13)

Let and denote the numerator and denominator of (7),
respectively. Let , , , and be defined as in Lemma 1.
After some straightforward algebra, we have

(14)

and

(15)
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where

(16)

(17)

(18)

and

(19)

Now we can write

(20)

Let and denote the numerator and denominator of (20),
respectively. It follows from the Delta method [13] that

(21)

and

(22)
To evaluate (21) and (22), it is sufficient to find , ,

, , and , whose orders of magnitude are
determined by , , , , and . The asymptotic means
and variances of , , and are provided by Lemma 2. Now
we focus on the orders of and in the following. Taking
expectation of (17) and applying the properties of as well as
some elementary inequalities yield

(23)

where the last step follows from Lemma 3. By Lemma 3,
Lemma 4, and some elementary inequalities, we have

(24)

Similarly, we can obtain

(25)
and

(26)

From (7), (18), and (19), it is obvious that , ,
and . Then we have

(27)

Substituting (3) and (25) into (27) gives

(28)

from which and together with (3), (23) we have

(29)

By a similar procedure it follows that

(30)

Substituting (29) and (30) into (21) and letting yield

(31)

By virtual of the Cauthy–Schwarz inequality [14] as well as the
results of (3) and (24), it follows that

(32)

and similarly

(33)

Then we have from (28) and (33) that

(34)

Given (3), (32)–(34), and applying the Cauthy-Schwarz in-
equality again, we have

(35)

and

(36)

It follows directly from (35) and (36) that

(37)

A substitution of (29), (30), and (35)–(37) into (22) leads to

(38)

whence the result.
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Remark 1: Since and tend to zero as ,
it follows from [15] that converges in probability to 0, which
is denoted by . On the other hand, it is well known that

. Then from [16] we have , namely, is an
asymptotic consistent estimator of with respect to the bivariate
normal population.

Remark 2: Write . It follows directly from (38)
that . By the Chebyshev inequality [13],
we have for any positive

. This shows how the probability of falling in
can be made arbitrarily close to unity by

choosing suitably. In other words, we can write

(39)

as well as

(40)

B. Asymptotic Distribution of OSCC

Having proven Theorem 1 above, we are capable of finding
the asymptotic distribution of OSCC based on the relation

(41)

It can be shown that
[1]. Then we have

(42)

Recall that also decreases to zero as becomes large.
Then the residual term is negligible for sufficiently large
[15]. In other words, when is large enough, the distribution
of is dominated by the distribution of , whose density
function is, for any

(43)

where [2].

C. Convergence Rate of the Moments of OSCC

Theorem 2: Let

for and . Then

(44)

for and being sufficiently large.
Proof: For and large, it follows from [8] and

Theorem 1 that

(45)

For , we have

(46)

By an argument similar to that given in Remark 2, it follows that

(47)

with probability arbitrarily close to unity. The proof is then con-
cluded by substituting (39) and (47) into (46) and neglecting the
higher order infinitesimal terms.

Given Theorem 2 and the results of Hotelling [17], we can
summarize the asymptotic mean, variance, skewness, and kur-
tosis of for large as

(48)

(49)

(50)

(51)

which are measures of location, scatter, symmetry, and long-
tailedness of the distribution [15].

D. Relative Efficiency of to

Since both and are unbiased estimators of for large,
we can compare the performance of the two estimators by means
of the relative efficiency (RE), which can be defined as [18]

(52)

It follows obviously from Theorem 2 that RE approaches 100%
as becomes sufficiently large.

E. Fisher’s -Transform

It can be shown that, when is large [16]

(53)

where the symbol “ ” reads “coverges in probability to” [15],
[16]. The asymptotic equivalence between and estab-
lished above allows us to assert that

(54)

for large. However, as pointed out in [13], the use of the re-
lations (53) and (54) is not recommended to test a hypothetical
nonzero value of due to the slow convergence speed of (and
hence ) to normality and dependence between the standard
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error and . In one of his pioneering papers
[3], Fisher introduced the extremely useful transformation

(55)

and showed that

(56)

with great rapidity. Write . Then we can expect
that

(57)

is also true from the continuous mapping theorem [16].

IV. RELATIONS WITH OTHER COEFFICIENTS

It can be shown that OSCC is closely related to
two other coefficients, namely, SR and Gini correlation (GC)
[10], [19]. Let and denote
the ranks of and , respectively. Then the
following two relationships hold.

Theorem 3: The order statistics correlation coefficient of
the ranks , where denotes
Spearman’s rho.

Proof: It follows obviously that for
. Substituting these into (6), we have

(58)

Now we evaluate the numerator and denominator of (58),
respectively, as follows:

(59)

and

(60)

Substituting (59) and (60) into (58), we have

(61)

which is the expression of the Spearman’s rho [5].
Theorem 4: The OSCC of the ranks of and the values of
is the sample Gini correlation.

Proof: Replacing by in (6) yields

(62)

which is the sample Gini correlation [19].

Fig. 1. Illustration of convergence speeds of ��� � and ��� � against � �
��� ��� � � � � ��� and � � ���, 0.3, 0.5, 0.8, 0.9, respectively. Note that the
legends of (C) and (D), which are the same as those of (A) and (B), are not
plotted for the purpose of clarity.

V. NUMERIC RESULTS

In this section, we investigate the applicability of our asymp-
totic theories developed in previous sections for small samples.
Monte Carlo experiments are performed for samples of size

. The number of trials is set to for the purpose
of accuracy.

A. Convergence Rates of

Fig. 1 illustrates the convergence speeds of and
versus the sample size with an increment
in each step. The relationships between the decreasing rates of

and and the magnitude of are also revealed by
curves associated with , 0.3, 0.5, 0.8, 0.9, respectively.
It can be observed that with increase of , the magnitudes of

and decrease downward with quite fast speed. The
values of and are less than and , respec-
tively, for even as small as 30. As for the effect of on the
convergence rates, and behave rather differently.
In Fig. 1(A), we can see that for any fixed , increases
with at first, but the relation reverses after . On the
other hand, as shown in Fig. 1(B), relates negatively to

in a consistent manner, that is, the larger the intensity of ,
the lesser the values of for any fixed . Fig. 1(C) and (D)
depict respectively the ratios and

against for
, 0.3, 0.5, 0.8, 0.9. We can observe that the curves of are

already approximately horizontal when is small, suggesting
that converges to constant values with great speed. On the
other hand, the convergenc speed of is rather slow, especially
when and . However, despite the magnitude of

, all curves of become level when . These observa-
tions verify our theoretical results of (8) and (9) established by
Theorem 1.
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TABLE I
OBSERVED MEAN VALUES OF � AND � FOR � � ��, 50, 100

TABLE II
COMPARISON RESULTS OF ��� �, ��� � AND THEORETICAL RESULT

B. Comparative Results for Moments of and

Table I lists the observed mean values and from
the Monte Carlo simulations for , , , respectively.
It can be seen that 1) the convergence speed of to is
quite fast, 2) consistently, 3) for most cases,
the biasedness of is even smaller than that of , and
4) despite few exceptions, the biasedness of is negative
with small and positive with large .

In Table II, we present the simulation results of and
together with theoretical values from (49). Unlike ,

the convergence speeds of is rather slow. However, it
appears that the difference between and is less
noticeable for and negligible for . Therefore,
it would be safe to approximate by (49) for .
A sample size of can be considered asymptotic in
practice.

Tables III and IV contain, respectively, the observed and the-
oretical values of skewness and kurtosis with respect to and

. It can be seen that although their convergence speeds to (50)
and (51) are much slower, and behave compa-
rably with increase of and . In other words, we do not con-
sider that there are significant differences between and
as far as convergence rates of their skewness and kurtosis are
concerned.

C. Comparative Results of Relative Efficiency Study

As mentioned in Section III-D, both and are eligible as
estimators of the population correlation . Besides, it has been

TABLE III
OBSERVED AND THEORETICAL VALUES OF � �� � AND � �� �

TABLE IV
OBSERVED AND THEORETICAL VALUES OF � �� � AND � �� �

shown that GC and SR can also serve as estimators of . For
convenience, let and denote SR and GC, respectively. Then
the four estimators are

(63)

(64)

(65)

(66)

where comes from [19] and from [5]. Having (63) – (66),
we are able to compute the relative efficiencies of OSCC, GR,
and SR (notations , and ) to Pearson’s coefficient

by means of the ratios of to the variance of each of the
other three respective estimators.

Fig. 2(A) shows the increasing trend of with respect to
sample size . It also reveals the negative relation-
ship of the convergence speed of to . It can be observed
that despite the negative effect of , all four curves stand above
96% for and approach 98% when . Fig. 2(B)
compares , , and for and .
We only compare , and in the null case due to
the lack of theoretical results of except for . It can
be easily seen that for , sug-
gesting the advantage of OSCC over GC and SR. Moreover,
it follows that for , [20] and

[5] as . In other words, and
can never approach 100% no matter how large is. On the

other hand, can be made as close to 100% as possible by
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Fig. 2. Relative efficiency of � . (A) relationship of �� versus � and �.
(B) comparison of �� , �� and �� when � � �

TABLE V
OBSERVED AND THEORETICAL VALUES OF ��� � AND ��� �

TABLE VI
COMPARISON RESULTS OF ��� � AND ��� �

choosing sufficiently large. This is ensured by the asymptotic
equivalence established in Section III.

D. Distribution of Fisher’s -Transform

In Table V, we tabulate the expectations of the trans-
formed values , and the asymptotic theoretical ex-
pression corresponding to , 50, 100. We
can see that is consistently greater than for all

. Furthermore, the biasedness of
is more noticeable as large. However, the difference between

and can be considered nonsignificant for .
In Table VI, we summarize the observed variance values
and from the experimental data. For comparison, the
theoretical values of are also provided in the last row.
It can be seen that 1) is consistently larger than ,
2) is approximately independent of for , and 3)
the difference between and are less noticeable for

and negligible for .

Fig. 3. Empirical distributions of � , � , � , and � from populations having
correlation 0 and 0.8 when the sample size � � ��. (A) Histograms of � .
(B) Histograms of � . (C) Histograms of � . (D) Histograms of � . It can be
observed that the two distributions of � are far from normal for � � ��. On
the contrary, both the two distributions of � are roughly normal with nearly
equal variances. Moreover, the distributions of � and � are very similar to
their respective counterparts even when � is as small as 30.

Fig. 3 shows the property of variance-stabilization of Fisher’s
transform. In Fig. 3(A) are plots of the histograms of

( ) from populations with correlations 0 and 0.8; Fig. 3(B)
shows the corresponding histograms of . For comparison,
the histograms with respect to and are also presented in
Fig. 3(C) and (D), respectively. The two distributions of in
Fig. 3(A) are drastically distinct in both their modal heights and
forms — the one being symmetrical, the other highly skewed.
On the other hand, in Fig. 3(B) the two distributions do not differ
greatly in height and are approximately the same in form. Be-
sides, the distributions of and are very similar to their
respective counterparts even when is as small as 30. This jus-
tifies to some extent the fast convergence rate of to in
terms of distribution.

VI. CONCLUDING REMARKS

In this paper, we have investigated the properties of the order
statistics correlation coefficient proposed previously by the
present authors. Theoretical derivations and simulation results
suggest that the new coefficient is asymptotically equivalent
to the Pearson’s product moment correlation coefficient in the
sense of distribution as well as moments in the normal cases.
The new coefficient also has close relationship with the other
two correlation coefficients, namely, Spearman’s rho and Gini
correlation. The advantages of the order statistics correlation
coefficient over Pearson’s and other correlation coefficients
have been discussed in [7] and [8]. The results in this paper
further justify that the order statistics correlation coefficient can
be used as an alternative to Pearson’s coefficient in correlation
analysis.

APPENDIX I
PROOF OF LEMMA 1

Proof: It is well known that the normality holds under
linear transformations of normal random variables [13]. There-
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fore, and , which are linear transformations of normal
random variables and , must follow a bivariate normal
distribution. Recall that and the
i.i.d. assumption, we have

(67)

that is, .
It can be shown that and are asymptotically normal

[13]. Therefore, is also normally distributed as
large. From Wishart’s formulae [21], we have

(68)

(69)

and

(70)

Given (68)–(70) and by the Delta method, we have

(71)

and

(72)

Since, by definition, , then

(73)

Noticing that and , we finally
arrive at

(74)

and

(75)

thus establishing the lemma.

APPENDIX II
PROOF OF LEMMA 2

Proof: From (1) in Lemma 1 we have

(76)

and

(77)

From (2) it follows that

(78)

Applying some basic identities together with (68), (70), and
(78), we have

(79)

For brevity, let . It has been known long ago that
is independent of [13]. Hence

(80)

We have shown in Lemma 1 that as
large. Then we have

(81)

On the other hand, from (1) it follows that

(82)

Substituting (81) and (82) into (80) leads to

(83)

thus completes the proof.

APPENDIX III
PROOF OF LEMMA 3

Proof: Write and . Let
be the cdf of and . It follows [10] that, as

(84)
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It can be easily shown that , with
being the pdf of [10].

Writing and substituting the expression of
into (84) yield

(85)

We can prove that the function is nondecreasing over
by verifying the nonnegativity of its derivative, as

(86)
where is a compact notation of . Write

. Now we show that when is fix,
. Noticing that , we have, for odd

(87)

and for even

(88)

It is easy to verify that both and are left Riemann sums
of over . Therefore, and are
underestimations of since is nondecreasing over

, that is, for any fix . Write . We
have

(89)

Let . Now we show that
. We first prove that , as

(90)

Then we have and hence

(91)

Substituting (91) into (89) leads to

(92)

Write . Then it follows directly
from the L’Hospital’s Rule that

(93)

Applying the L’Hospital’s Rule once more, we have

(94)
Then, for being sufficiently large

(95)

whence the result.

APPENDIX IV
PROOF OF LEMMA 4

Proof: The relationship between moments and cumulants
gives [22]

(96)
where denotes the cumulants. It has been shown that [23]

as large (97)

Hence, it is sufficient to study the orders of the summations
of the remaining two terms, which are of order
[23]. It follows that , , and

(say) [13]. Substituting these identities into
(96) and ignoring the terms , we have

(98)

Applying the Cauthy–Schwarz inequality yields .
Recalling from Lemma 3 that , we then
have

(99)

thus completes the proof.
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