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DEGENERATION OF MODULI SPACES
AND GENERALIZED THETA FUNCTIONS
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Introduction

Let C be a smooth projective curve of genus g and U the moduli space
of semistable vector bundles of rank r and degree d on C. There is a natural
ample line bundle © on Uy that we call the theta line bundle of U, which
generalises the line bundle on the Jacobian of C' defined by the Riemann theta
divisor [DN]. A section of ©% over Uc is called a generalised theta function of
order k. This definition of theta line bundle and generalised theta functions
can be generalised to the moduli spaces of semistable torsion free sheaves of
rank r and degree d on singular curves. A natural problem suggested by the
conformal field theory is to study the space H®(Uc, ©%) by relating it to the
space of generalised theta functions associated with a smooth curve of genus
g— 1

We consider a family of curves f : X — T of genus g, whose singular
fibre X; = X is irreducible, smooth except for a single node, so that its
normalisation X is a smooth curve of genus g — 1. There exists a moduli
scheme M — T such that M; for any ¢ € T is the moduli space Uy, of
semistable torsion free sheaves of rank r and degree d. One can define a line
bundle on M such that its restriction on M; = Uy, is the theta line bundle ©;
on Uy,. Moreover, if we have a vanishing theorem H!(©F) =0 for any t € T,
one would have that dim(H°(©F)) is constant. Thus we need to relate the
space H®(Ux,OF) with the spaces of generahsed theta functions associated
with X. Let zo be the node of X and = : X — X the normalisation of X
with 71 (zg) = {x1,72}. The expected factorisation rule is

(A) HUx,© @ H(U%,©

where p runs through a certain 1ndex1ng set depending on k, L{;‘7 is the moduli

space of parabolic vector bundles of rank r and degree d on X with parabolic
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460 XIAOTAO SUN

structures at x; and x, (with weights depending on ), and ©, is the gen-
eralised theta line bundle. It is clear that to carry through the induction on
genus, one has to start with moduli spaces of parabolic torsion free sheaves
of rank 7 on a nodal curve X with parabolic structure at a finite number of
smooth points and prove a factorisation rule for generalised theta functions
on them, as well as a vanishing theorem for H'. This was done in the case of
rank two by [NR]. We will treat the general case of any rank in this paper.

Now we are going to state the main result. First, some preliminaries:

(1) Let X be an irreducible projective curve of genus g, smooth but for one
node zo. Let 7 : X — X be the normalization of X, and 7 (xg) = {x1, 22}

(2) Let I be a finite set of smooth points on X. Fix integers d, k, r and

(_I:(CL‘) = (al(x)’a@(w)v' o 7al1+1(x)),

ﬁ(a") = (nl(x)’n2(x)’ T ’nl1+1(z))

with 0 < a1(z) < a2(z) < -+ < aj,4+1(z) < k for each x € I. Take (a;)zer €
Zéo and £ > 0 satisfying

lo
(%) 3> di@)ri(@) +1 Y og +rl=k(d+r(1—g)),

z€l i=1 zel

where d;(z) = a;+1(x) — a;(z) and r;(z) = ny(z) + - - - + ni(x).

(3) Let Ux be the moduli space of (s-equivalence classes of) parabolic
torsion free sheaves of rank r and degree d on X, with parabolic structures
of type {7i(z)}zer at points {z}.cs, semistable with respect to the weights
{@(z)}zer. The definitions can be extended to cover the case that I, = 0 for
z € Q C I (Remark 1.1).

(4) For p = (1, - ,pr) with 0 < . <o <y <k —1, let

{di = pr, — priv1h<i<u

be the subset of nonzero integers in {u; — piy1 piz1,... r—1, and for j = 1,2 set

-1 1
6(xj) = (Nraﬂr + dl(xj)v AT s Zdi(xj),ﬂr + Zdi($j))’
i(z;) = (ri(z;),r2(z;) —rilxy), - ymilzy) — mi—a(zg),

where 7;(x1) =71, di(x1) = d;, and r;(x2) =7 — ri_;11, di(x2) = dj_;41.
Let l/{;v be the moduli space of semistable parabolic bundles on X with
parabolic structures of type {7(z)}serufe, 2.} at Points {T}rerufz, 2, and
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weights {@(2)}zerufz,,2.}- We can extend the definition to cover the case that
[ =0, namely, u; = = pr.

(5) For any data w = (k,r,d, ¢, I,{a@(z),(x), oz }zcr) satisfying the condi-
tion (), we will define a natural ample line bundle

Ouy = O(k,r,d, ¢, 1,{d(z),7i(x), 0z }oer)

on Ux, and O, is defined similarly with o, = p, and az, = k — py.
X

Factorization Theorem. There exists a (noncanonical) isomorphism

H U, Ouy) = D HOWUL, Our)
u

where p = (p1,- -+ , br) Tuns through the integers 0 < pr, <--- <y <k —1.

Vanishing Theorem. (1) Suppose that C is a smooth projective curve
of genus g > 2. Then H'(Uc,Oy.) = 0. (2) Assume that g > 3. Then
HY(Ux,Ou, ) =0.

The Factorization theorem is proved in §4 (Theorem 4.1) and the Vanishing
theorems are proved in §5 (Theorem 5.1 and Theorem 5.3). Next we describe
briefly the main steps in the proof of the main theorems.

We adopt a variant of a concept in [B1], GPS, to relate Ux with a suitable
moduli space P of GPS on X. Such a GPS of rank r is given by a pair (£, Q)
where E is a sheaf, torsion free outside {z;,z2}, of rank 7 on X and Q an
r-dimensional quotient of E,, & E,, such that the torsion of E injects to
Q. Given such a GPS, one defines a torsion free sheaf F' on X by the exact
sequence

0—-F—->mkE— ;,,Q—0

where ,,Q is the skyscraper sheaf on X with support {zo} and fibre Q. One
can define the notion of a semistable GPS, and prove that F' is semistable iff
(E, Q) is semistable. All this goes through if there are additional parabolic
structures at {z},cs. There is therefore a morphism ¢ : P — Ux, which is
actually the normalization of Ux (§2).

Setting ©p = ¢*Oy,, we will characterize the image of H(Ux,Ou,) in
HO(P,0p). Our strategy is to consider the filtrations (j = 1,2)

POD,;:=Dj(r—1)D---DDj(a) DDjla—1) D DD;(0)
of subvarieties of P (Notation 2.3 in §2), and the filtration

Ux DW,1D - DWaDWe1 D-- DO W
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of subvarieties of Ux (Notation 2.4 in §2). We will prove in §3 and §4 that
P, D;(a) are reduced, irreducible, normal with only rational singularities, and
Ux , W, are seminormal (Proposition 3.2 and Theorem 4.2). Moreover, we will
prove that the restriction ¢, of ¢ gives the normalization ¢, : D;{(a) — W, of
W, and ¢, (W,—1) = D1(a) N"D2UD;(a—1) (Proposition 2.1). All of these
properties are essentially used to prove that there exists a (noncanonical)
isomorphism H(Ux, Oy, ) & H°(P,Op(—D,)) in §4 (Proposition 4.3). Note
that Proposition 2.1 is essential for the story. To prove it for the general
rank case, we have to clarify a fact: if R, (Notation 2.4 in §2) are saturated
sets for the quotient map? We prove that R, are indeed saturated sets for
the quotient map (Lemma 2.6), which is not known in [NR] and [S2] (see
Notation 3.1 of [NR] and the “Remarque” on page 172 of [S2]); thus we can
even simplify the arguments of [NR] for the case of rank two by using our
lemma.

Let Rz be the variety parametrizing a certain locally universal family of
rank r vector bundles £ on X with degree d and parabolic structures at {z}zrer-
Ux is a geometric invariant theory (GIT) quotient of the semistable points
of ’R,F with respect to the action of a suitable reductive group and certain
linearization by a line bundle ©. Let p : R’ — R denote the grassmannian
bundle of r-dimensional quotients of £;, @ £,,. One will see that

H°(P,0p(~D3)) = H* (R}, p*® ® L)™™ = H*(Rpp, © ® p,L)"™

where L is essentially the line bundle O(k — 1) along the fibres of the grass-
mannian bundle, and { }*"¥ denotes a space of invariants for the group
action. The computation of p,L amounts to the following classical problem
in representation theory. Let Gr be the grassmannian of r-dimensional sub-
spaces of C?" and m a positive integer. The question is how to decompose the
irreducible representation H(Gr, O(m)) of GL(2r) into irreducible represen-
tations of GL(r) x GL(r) C GL(2r) (Lemma 4.5). The factorization theorem
follows from this.

We turn next to the vanishing theorem (1) for a smooth curve C. For the
given data w satisfying the condition (%), one has a line bundle 6, on R,
where Uc is the GIT quotient of semistable points Rs” C ’Rp with respect to
the action of SL(n) (n = d+r(1—g)) and the linearization by the line bundle
@w, which descends to the ample line bundle 6. on Uc. We can write

O, =wgz, ® O ® Det*©,*

on Ry (Proposition 2.2) for a new data @ satisfying the condition (x). Let
Uc,e be the GIT quotient of semistable points R:* C R for the SL(n) action
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under the new linearization by ©, which descends to an ample llne bundle
Oy on Uc . Using the fact that the complements of Rss ’R“ and Rs- in ’RF
and Rf—f are of high codimensions (one needs here the restriction on genus,
see Proposition 5.1), we have

H'(Uc,0u.) = HY(RF,0,)'"™ = H'(Ucw, 00 ® Det* 0,2 @ i)

where Det denotes the determinant map and ©, the theta bundle on the
Jacobian J¢ of C. Then we prove that ©, ® Det*©,? is ample (Lemma 5.3)
and thus prove the vanishing of H'(Uc o, O ® Det*©, % ®wy,. ,) by applying
a Kodaira-type vanishing theorem (Theorem 7.80(f) of [SS]).

The vanishing theorem (2) for the singular curve X is reduced to proving
the vanishing of H'(P,©p) (Lemma 5.5). There exists a flat morphism Det :
P — J% extending the determinant morphism on the open set of stable torsion
free GPS (Lemma 5.7), and a decomposition

(Det),0p = @(Det#)*@u;%

u

where Det,, : U% — Jj? is the determinant morphism. Thus H I(J%,
(Det),Op) = 0 by using the vanishing theorem (1) for smooth curves, and we
are left with the task of proving R! Det,©p = 0. To prove that H'(PL,0p) =
0, where PL denotes the fibre of Det at any L € J%, we follow the same line
as in the proof of the vanishing theorem (1) except that Det*© 2 disappears.
We do need here the properties that P is Gorenstein with only rational sin-
gularities. It also takes more work to prove a formula for the dualizing sheaf
of P (Proposition 3.4 and Lemma 5.6).

We introduce the moduli spaces and theta line bundles in §1. A detailed
study of the morphism ¢ : P — Uy is given in §2. We prove in §3 that P and
its subvarieties D;(a) (j = 1,2, 0 < a < r — 1) are normal with only rational
singularities, and we also prove a formula expressing the canonical (dualizing)
sheaf of H (see §2 for the definition) where we need to prove H is Gorenstein
(it is actually a complete intersection by using a dimension formula for double
determinant varieties). The factorization theorem and the seminormality of
Ux and its subvarieties W, (0 < a < r — 1) are proved in §4. §5 is devoted to
the estimation of codimensions and the proof of vanishing theorems.

§1. Moduli spaces and theta bundles

We introduce the notation in this section by recalling the construction of
moduli spaces and theta bundles, whose proofs are contained in [NR], where
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they deal with rank two, but the proof there goes through for any rank. We
also refer to [BR] and [Pa] for theta bundles on moduli spaces of parabolic
bundles of any rank.

Let X be an irreducible projective curve of genus g over the complex num-
ber field C, which has at most one node x. Let I be a finite set of smooth
points of X, and E be a torsion free sheaf of rank r and degree d on X.

Definition 1.1. By a quasi-parabolic structure on E at a smooth point
x € X, we mean a choice of flag

E.=FE):>2F(E):D - DF_(E);DF,1(E):=0

of the fibre E, of E at x. If, in addition, a sequence of integers called the
parabolic weights

0<ai(z) <ax(z) < - <a,ti(x) <k

is given, we say that E has a parabolic structure at x.
Let n;(x) = dim(F;—1(E),/F;(E),) and r;(z) = dim(E,/F;(E);). Write

d(x) : = (ar(z), a2(), - -, a1, 41 (7)),

fi(z) : = (n(z),na(x), -+, i1 ().

We use @ (resp., ) to denote the map x — d(zx) (resp., x — 7i(x)) from I
to a suitable set. Let E’ be a subsheaf of FE such that E/E’ is torsion free.
Then the induced parabolic structure on E’ is defined as follows: the quasi-
parabolic structure is defined by F;(E’), := F;(E); N E.,, and the weights by
a(z) = a;(x) where i is the biggest integer satisfying that F;(E"), C Fi(E)q.
Definition 1.2. The parabolic degree of a parabolic sheaf E is

lo+1
1
pardeg(E) := deg(E) + % Z Z ni(z)a;(x).
zel 1=1
E is called semistable (resp., stable) for (k,@) if for any subsheaf E' C E
such that E/E’ is torsion free with the induced parabolic structure, one has

pardeg(E)

h(E) -Tk(E’) (resp., <).

pardeg(E') <

By a family of rank r parabolic sheaves parametrised by a variety T, we

mean a sheaf Fr on X x T, flat over T, and torsion free (with rank r and

degree d) on X x {t} for every point ¢t € T, together with, for each z € I,

a flag of subbundles of Fr|rz1x7. The following theorem was proved in the
Appendix of [NR].
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Theorem 1.1. There exists a (coarse) moduli space Uy (d,r,1,k,d, ) of
stable parabolic sheaves F. We have an open immersion

Us, (d,r,1,k,a,7) — Ux (d,r, I, k,a@,)

where Ux (d,r, I, k,d, ) denotes the space of s-equivalent classes of semistable
parabolic sheaves. The latter is a seminormal projective variety. If X is
smooth, then it is normal, with only rational singularities.

Fixing I, k, @, and 7, we set Ux := Ux(d,r,I,k,a,i) and U} :=
U (d,r,I,k,a, ). Let us recall the construction of Ux.

Let Q be the Quot scheme of coherent sheaves (of rank r and degree d)
over X that are quotients of 0", where n = d 4+ r(1 — g). Thus there is on
X x Q a sheaf Fq, flat over Q, and O%,q — Fq — 0. Let 7, be the sheaf
given by restricting Fq to {z} x Q. Let Flags;)(F;) be the relative flag
scheme of type 7i(z), and R be the fibre product over Q:

R = xqFlags(z)(Fz)-
el

Let R® (resp., R*®) be the open subscheme of R corresponding to stable
(resp., semistable) parabolic sheaves, which is generated by global sections
and whose first cohomology vanishes when d is large enough. The variety Ux
is the good quotient of R*® by SL(n) acting through PGL(n). We denote the
projection by

YR — Ux.

Choose an ample line bundle of degree 1 on X, denoted by Ox (1) from now
on. For large enough m, we have an SL(n)-equivariant embedding R «— G,
where G is defined to be

Grassp(m)(C"®W)x H {Grass,(C")xGrass,, ) (C")x- - -xGrass,, (z)(C")}
zel

where P(m) = n+ rm, and W = H%(Ox(m)). For any (a.)ser € ZL, and
£ > 0 satisfying

ly
(%) Z Z di(z)ri(z) +r Z oy + 1l =kn,

zel i=1 zel

where d;(z) = a;41(z) — a;{x), we give G the polarisation (using the obvious
notation):

LIS § (TR E R

€l
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and take the induced polarisation on R. It was proved in [NR] that the set
of semistable points for the SL(n) action on R is precisely R*°. One remarks
that this fact is independent of the choice of @ := (a,).c; satisfying the
condition (). R** is reduced and irreducible and Ux is its GIT quotient.
For any family of parabolic sheaves F of type 7i(x) at € I parametrised
by T', we denote the quotients F(.} w1/ Fi(F(z)x1) by Qa}x1,i> and we define

lx
Or = (det Rrp F)* @ Q){(det Fiayx1)** @ R)(det Qpuyxr,) @}
zel i=1
® (det]:{y}xT)f

where 7y is the projection X x T — T, and det RnpF is the determinant
bundle defined as

{det RmpF}y := {det HO(X, Fi)} ' @ {det H (X, Fy)}.

If we take T' = R*° and @, @, k, ¢ satisfying the condition (x), it is easy to
check that Ogss is a PGL(n)-bundle, which descends to i{x. Moreover, we
have the following theorem for whose proof we refer to [NR], [Pa] and [BR].

Theorem 1.2. There is a unique ample line bundle Oy, = O(k,¢,ad,&,I)
onUx such that for any given family of semistable parabolic sheaves F parame-
trised by T, we have ¢%.0y,, = Or, where ¢r is the induced map T — Ux.

Remark 1.1. (1) It is known that the analytic local ring of R is de-
termined (up to smooth morphisms) by C[X,Y]/(XY,Y X), where X, Y are
T X T matrices (see [Fa] and [S2]). Thus, by Lemma 3.8 and Lemma 3.13 of
[NR], the seminormality of Uy is equivalent to that of C[X,Y]/(XY,Y X),
which is known to be seminormal (see [Tr]).

(2) If we replace, in the construction of Theorem 1.2, (det ]—'{y}st)‘Z by

Q) (det Frgyxrs) © (det Fryyxmos )+,
q€Q

where @ is a set of smooth points of X, and > qeq Bq = —fo, we get ample
line bundles on Ux, which are all algebraically equivalent to Oy, .

(3) We can extend the above definitions to cover the case that I, = 0
for ¢ € Q@ C I. In this case, Ux denotes the moduli space of semistable
parabolic sheaves with parabolic structures at {x},c;. ¢ and parabolic weights
{@(z)}zrecr-@- When Q = I, Ux is the ordinary moduli space of semistable
torsion free sheaves (i.e., no quasi-parabolic structure is considered), and the
definition of ©;, in Theorem 1.2 gives ample line bundles ©(&, I) on Uy, all
of them algebraically equivalent to the descendant of

k

(det R« F)* ® (det Fryyxpee) ™ -
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These ©(&, I) will appear naturally in the decomposition theorems, induced
by the 1-dimensional representations of GL(r).

Now we are going to recall the notion of “generalised parabolic sheaf”
(GPS) and the construction of its moduli space ([B1], [B2] and [NR]). We do
not define the general notation (as in [B1] and [B2]), but we have to consider
the sheaves with torsion as in [NR]. Let 7 : X — X be the normalisation of
X and 77 1(x¢) = {x1,z2}. Then we have

Definition 1.3. Let E be a sheaf on )?, torsion free of rank r outside
{z1,z2}. A generalised parabolic structure on E over the divisor x1 +x2 is an
r-dimensional quotient Q

Ey ®E,, 5 Q—0.

(E, Q) is said to be a generalised parabolic sheaf, namely GPS.

We will consider generalised parabolic sheaves E with, in addition, par-
abolic structures at the points of 7~1(I) (we will identify I with =~!(I)).
Furthermore, by a family of GPS over T, we mean the following:

(1) arankrsheaf£ on X xT flat over T and locally free outside {z1,z2}xT;
(2) alocally free rank r quotient Q of £;, & &, on T;

(3) a flag bundle Flag(€,) on T with given weights for each = € 1.

Definition 1.4. A GPS (E, Q) is called semistable (resp., stable), if for ev-
ery nontrivial subsheaf E’ C E such that E/E’ is torsion free outside {z1,z2},
we have

' pardeg(E) — dim(Q)
rk(E)

pardeg(E') — dim(QF') < rk(E") (resp., <),
where QF = (B, ®E,,)CQ.

Set 7 = d + r(1 — g), where § (= g — 1) is the genus of X, and let Q
be the Quot scheme of coherent sheaves (of degree d and rank r) over X
that are quotients of O’;L(. Taking d to be large enough, we can assume that
for any semistable generalised parabolic sheaf E of rank r and degree d we
have HY(E(—z1 —z2—x)) =0,z € X, which means that C* — HO(E) is an
isomorphism, where E is generated by global sections and H %E)— E., ®FE;,,
is onto, where E(—x; — z2) is generated by global sections. Let F be the
universal quotient O™ := £ Q= F—>0on X x Qand

R = Grass,(Fo, ® Fu,) ) {X?Flﬂgﬁ(x) (.7-})}.
re

There is a locally universal family of GPS parametrised by R’ that we denote
by £, which is actually the pull-back of F by the natural projection. Let
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P(m) =+ rm and
G = Grassp,, (C* ® W) x Grass,(C"* ® C?) x Flag,
where Flag denotes the variety

H{Grassr(Cﬁ) X Grass;, ;) (C") x -+ x Grass,, (»)(C™)}.

xcl

Then we have an SL(#)-equivariant embedding R’ — G’. Take the polarisa-
tion

(k) X k x H{a:p,dl (x),++,di, (x)}

m
zel

such that

e
Z Z di(x)r;(z) + TZ o + 1l = ki,
zel i=1 z€l
which is nothing but (x) with #i = n +r and £ = £ + k. Then one proves that
the GIT-semistable (stable) points of R’ are precisely the semistable (stable)
generalised parabolic sheaves, namely R'*S. Let P := P+ be the GIT quotient
of R'** by SL(n) with the projection

,J)I . ﬁ/ss - P,

One defines an s-equivalence of GPS such that

(1.1)

E ~ E' < there exist By, = E, -+ ,E,y1 = E' with o(E;) No(E41) # 0,
where o(E;) denotes the schematic closure of the orbit of E; under SL(n). It
is clear that if £} and F are stable, then F; ~ E, iff E; 2 E5. Then we have

Theorem 1.3. There exists a (coarse) moduli space P* of stable GPS on
X , which is a smooth variety. We have an open immersion P* — P, where
P s the space of s-equivalence classes of semistable GPS on X , which is a
reduced, irreducible and normal projective variety with rational singularities.

The existence of P is known as we have shown above. We will prove in §3
that it is reduced, irreducible and normal with rational singularities. In fact
P is the normalisation of Ux as we will see in next section. We complete this
section by introducing a sheaf-theoretic description of s-equivalence of GPS,
which was given in Appendix B of [NR] in the case of rank 2. We enlarge
the category of GPS by adopting the following more general definition, and
assume that |I| = 0 for simplicity.
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Definition 1.5. A generalised m-parabolic structure on a sheaf E over
the divisor x; + x2 is a choice of an m-dimensional quotient @ of E,, & E,,.
A sheaf with a generalised m-parabolic structure will be called an m-GPS, or
GPS for short. A GPS E is said to be semistable (resp., stable) if E is torsion
free outside {zy,x2} and

(1) if rank(E) > 0, then for every proper subsheaf E’ such that E/E’ is
torsion free outside {z,z2}, we have

rank(E)(deg(E') — dim(Q¥")) < rank(E')(deg(E) — m) (resp., <);
(2) if rank(E) = 0, then E;, & E;, = Q (resp,, B, & E;, = Q and
dim(Q) = 1).
Definition 1.6. If (E,Q) is a GPS and rank(E) > 0, we set

deg(E) — dim(Q)
rank(FE)

uG[(E’ Q)] =

It is useful to think of an m-GPS as a sheaf E on X together with a map
m.E — ;,Q — 0 and h%(,,Q) = m. Let Kg denote the kernel of 7. E — Q.
Definition 1.7. A morphism of GPS (E,Q) — (E’,Q’) is a sheaf map
E — FE’ that maps K to Kz (and therefore induces a map @ — @Q’).
Definition 1.8. Given an exact sequence

0—-E —-E—-E'"-0

of sheaves on X , and m.F — @ — 0 a generalised parabolic structure on E,
we define the generalised parabolic structures on E’ and E” via the diagram

0 —— m.FE m.E mE'" — 0
| | |
0 — @ Q Q" —— 0

The first horizontal sequence is exact because 7 is finite, @’ is defined as the
image in Q of m.E’ so that the first vertical arrow is onto, Q" is defined by
demanding that the second horizontal sequence is exact, and finally the third
vertical arrow is onto by the snake lemma. We will write

O_)(E/7Q/) s (E,Q) N (E”,Q”)—)O

whose meaning is clear.
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Proposition 1.1. Fiz a rational number u. Then the category C,. of semi-
stable GPS (E, Q) such that rank(E) = 0 or, rank(E) > 0 with ug[(E,Q)] =
K, is an abelian, Artinian, Noetherian category whose simple objects are the
stable GPS in the category.

One can conclude, as usual, that given a semistable GPS (F,Q) it has a
Jordan-Halder filtration, and the associated graded GPS gr(E, Q) is uniquely
determined by (F, Q). Thus we have

Definition 1.9. Two semistable GPS (E, Q1) and (E3, Q) are said to
be s-equivalent if they have the same associated graded GPS, namely,

(Eth) ~ (E27Q2) — gT(Elv Ql) = gT(E27 QQ)

Remark 1.2. Any stable GPS (E, Q) with rank(E) > 0 must be a GPB
(i.e., E is a vector bundle) such that E,, — @ (j = 1,2) are isomorphisms,
and two stable GPS are s-equivalent iff they are isomorphic. In fact, let Q;
be the image of E,, — Q and ¢: E,, & E,, 4LQ - Q/Q1 = Q. Then we
define E’ by the exact sequence

0> E - E —,, Qs —0,
where Q2 = Q2/Q1 N Q; is the image of E., - Q — Q. Thus Q¥ = Q, and

/LG[E/, Ql)] — MG[(E, Q)] + dzm(Q) — dlm(Ql)éZ;Té??) + dzm(Ql N Q2) .

If (E, Q) is stable, we must have Q; = Q2 = Q. One can imitate the proof of
Lemma 4.7 and Theorem 4.8 in [Gi] to show that this s-equivalence satisfies
the requirement (1.1).

§2. The normalization of parabolic
moduli spaces on a nodal curve

Let X be an irreducible projective curve of genus g and smooth except for
one node zo, and 7 : X — X the normalisation, n71(z¢) = {1, z2}. It is
clear that we have the canonical exact sequence

0— Ox — mO% — g k(z0) — 0,

where k(z¢) denotes the residue field of zg, and we will use ,W to denote the
“skyscraper sheaf” supported at {z}, with fibre W.
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Given a GPS (FE, Q) on X, we have the exact sequence
0> F-omE— Q0.

It is clear that ¢(E,Q) := F (which has the natural parabolic structures at
points of I) is a torsion free sheaf on X of rank r if and only if

(T) (TorE),, ® (TorE),, <= Q.

Note that, for any sheaf E on X, we have deg(n.E) = deg(E) + rank(E);
thus deg(F) = deg(E).

Lemma 2.1. Let (E, Q) satisfy condition (T), and let F = ¢(E,Q) be the
associated torsion free sheaf on X. We have

(1) If E is a vector bundle and the maps E;, — Q are isomorphisms, then
F is a vector bundle.

(2) If F is a vector bundle on X, then there is a unique (E, Q) such that
¢(E,Q)=F. In fact, E = m*F.

(3) If F is a torsion free sheaf, then there is an (E,Q), with E a vector
bundle on )?, such that ¢(E,Q) = F and Ey, — Q is an isomorphism.
The rank of the map Ey, — Q is a iff F® Oy = 029 @ mE"™ . The
roles of T1 and xo can be reversed.

(4) Every torsion free rank r sheaf F on X comes from an (E, Q) such that
E is a vector bundle.

Proof. Here we only check (3) since we will need the construction later.
The proof of Lemma 4.6 in [NR] easily extends to the other statements for
any rank. Let F ® Oy, & @foa ® mfo(rﬂﬂ, and define a vector bundle E on
X by

0 — Tor(n*F) » m*F — E —0.

By the canonical exact sequence
0— Ox = mOx — zok(Zo) — 0,
we get (note that 7,7*F = F ® 7.0 and F is torsion free)
0—-F—>mn*F — ;,Qr — 0,

where Qp := k(zg) ®oy F is a vector space of dimension 2r — a. Consider
the diagram

0 F T P ——— 5 Qp — 0

H ! |

0——>F—d—> W*E’ _ zoé —F 0
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where the vertical arrows are surjections and Q = Qp /m Tor(m*F) is of di-
mension a. Note that 7,7*F — , @ r induces two surjective maps (7*F),, —
Qr, and so is m. F — Q. Denoting their kernel by K;, we have exact sequences

(2.1) 0 K; — E,, »Q —0.

Let h: E — E be the Hecke modification at o (see Remark 1.4 of [NS]) such
that ker(hs,) = Ko, where h,, : E“ — E,, is the induced map of h between
the fibres at xo. Then one has the exact sequence for some Q, of dimension
r—a

0-ELE— &2 — 0,

namely, pardeg(E) = pardeg(F) and E,, = E‘zl. We define @ by the exact
sequence

MW*E—’IOQ—W

Q) 0—F
which is clearly of dimension r and ¢(E,Q) = F. To check that the induced
E., ® E;;, % Q — 0 (by (Q)) satisfies the requirement, we consider the
restriction of (Q) at xg

hz, @hy
_‘_%Em@Ezzi,Q_,o

I’Io ﬂ’ EZl GBEIQ
which implies that I'm(dp) N Ezi = K, and ker(g;) = h,(K;), where ¢; :
E;; — Q. Thus ¢; has rank a (since h;, is an isomorphism), and go is an
isomorphism (since ker(hy,) = K»)).

Lemma 2.2. Let F' = ¢(F,Q). Then F is semistable if and only if (E, Q)
is semistable. Moreover, one has
(1) o (E,Q) s stable, then F is stable;
(2) if F is a stable vector bundle, then (E,Q) is stable.
Proof. See the proof of Proposition 4.7 of [NR], or [B2].
Given a family £ of GPS parametrised by T, we can define a family Fr
of sheaves on X by the exact sequence

(2.2) 0— Fpr — (w x I)&r — 5,91 — 0.

Since &7 is flat on T and Qr locally free on T, Fr is flat on T, namely a flat
family. Thus we have

(2.3) ¢: T —R.
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If &7 is a semistable family, we get a morphism ¢ : T 2, Res A Ux by
Lemma 2.1. Thus, taking T = R’**, the morphism ¢5,,. induces a morphism

¢>:P—>L{X.

We use the notation in §1, and let

’ﬁ, = X?Flagﬁ(x) (.7:1)
z€

From now on, we will understand that sheaves in (5 have torsions only at
{x1,22}; so R — Q is a flag bundle. Let

p:R —R

be the natural projection. Then we defined in §1 that

lz -

05 = (det Rrz F)* ® Q{(det F2)** @ Q) (det Q1) 7} @ (det F)",
zel i=1

where £ = £+ k. Let (£, Q) be the universal family of GPS on R'. We define

on R'** that
O = p*O5 ® (det Q)F @ (det £,)F.

It is easy to check that ©’ is the (restriction of) the ample line bundle on R/ss
used to linearise the action of SL(7) (note that £ is the pull-back of F by p),
and descends to an ample line bundle ©p on P.
Lemma 2.3. Let n, := (det Q)(det ;)™ for a point x € X and denote
©5 by 6. Then
(1) & =60
(2) O = 6”0y A
Proof. (1) is the definition of ©’. To check (2), consider the morphism
Bires R'** — Ux. Tt is enough to prove that

e (Ouy) = ©'.
From the exact sequence (2.2), we have
detRnpFr = (detRWT(ﬂ'*ST)) ® (detQT) = (detRwTST) ® (detQT),

which result and Theorem 1.2 in §1 imply (2).
Notation 2.1. Define H to be the subscheme of R/ parametrising the
generalised parabolic sheaves (O™ — E — 0,Q) satisfying
(1) C* = HY(E), and H'(E(—x1 — 22 —x)) =0 for any z € X;
(2) TorE is supported on {z1,z2} and (TorE),, @ (TorE),, — Q.
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Notation 2.2. Define Q F to be the open subscheme of Q consisting of

locally free quotients (O™ — E — 0) such that
(1) C* — HO(E) is an isomorphism, and
(2) HY(E(—z1 —x2—z)) =0forany z € X.

Remark 2.1. The assumption H!(E(-z; — 2 — x)) = 0 implies that
H'(E) = 0, E is generated by global sections, H°(E) — E;, ® E,, is onto,
and E(—z; — z2) is generated by global sections. It is not difficult to see
(INR]) that H is an irreducible open subscheme of R’ and

open open

rfélss Y H S fé/.

Notation 2.3. Let Rp = XQFFla:gﬁ(z)(fz) and R}y = p~Y(Rp). Then
zel

p: R —Rp
is a grassmannian bundle over Ry, and ﬁ’F C H. We define
R}va ={(E,Q) € ﬁ/p | E;, — Q has rank a},

and Dy (4) := REpoU---U Ry ;, which have the natural scheme structures.
The subschemes R}, and Dr2(i) are defined similarly. Let D, (i) and Dy (i)
be the Zariski closure of D (i) and Dpo(i) in R’. Then they are reduced,
irreducible and SL(#)-invariant closed subschemes of R/, thus inducing closed
subschemes D (i), Dy(4) of P. Clearly, we have (for j = 1,2) that

R' > D;(r—1) D D;(r—2) D+~ D D;(1) D D;(0),
P > D;(r—1) D Dj(r —2) D --- D D;(1) > D;(0).
Notation 2.4. Let Ro = {FeR |F® O,y =02 @ mE" "}, and let
W; =RoURLU - UR,;

(which are closed in R) be endowed with their reduced scheme structures.
The subschemes W, are SL(n)-invariant and yield closed reduced subschemes
of Ux. It is clear that

ROW,_ 1 DW,_aD--- D Wi D Wy = Ro,

UXDWr_lDerg:)"'le oW
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Lemma 2.4. With the above notation and ¢ : ﬁ’F — R defined as in (2.3),
we have
(1) Q}(R}F,a n R%,b) = Ratb—r;
(2) é(Rk,) = $(RE,) = W,
(3) ¢(Dra(i) = $(Dra(3)) = Wi
Proof. (1) follows from Proposition 4.2 and Proposition 4.7 (1) of [B2]. To
check (2), we note that (1) implies that Rj,, N R} ; = 0 if j < r — a. Thus

¢(Rio) = |J Ra—(r—j) =RoUR1U---URy = W,.

j=r—a

(3) follows (2) immediately.
Proposition 2.1. With the above notation and denoting D1(r—1), Do(r—
1), W._1 by Dy, Dy and W, we have

(1) ¢:P — Ux is finite and surjective, and ¢(D1(a)) = ¢(Dz(a)) = W,,

(2) ¢(P~{D1UDs}) =Ux W and induces an isomorphism on P~ {D1 U
DQ}’

(3) blp,(a) : Di(a) = W, is finite and surjective,

(4) ¢(D1(a) ~ {D1(a) N D2 UD1(a — 1)}) = Wa ~ W,y_1 and induces an
isomorphism on D1(a) \ {D1(a) N Dy UD1(a — 1)},

(5) @ :P — Ux is the normalisation of Ux,

(6) @lp,(a) : D1(a) — W,y is the normalisation of W,

(7) ¢(D1(a) NDs) = Wy_1, and W,_1 is the non-normal locus of W,.

Proof. (5) and (6) are corollaries of the above (1)-(4), and Proposition 3.2
of §3.

(1) and (3) follow Lemmas (2.1)-(2.4). In fact, the surjectivity follows from
Lemma 2.1 and Lemma 2.4, and the finiteness follows from Lemma 2.3 and
the ampleness of O, and Op.

To prove (2) and (4), we need the following Lemmas (2.5)-(2.7). We will
check (4) here; (2) follows similarly. For any ¢/(E,Q) € Di(a) ~ {D1(a) N
DyUD;(a—1)}, we can assume that E is a vector bundle by Lemma 2.5, and
E,, — Q is an isomorphism since ¥/(E, Q) ¢ Ds. Thus ¢(E, Q) € Wy~ W,_1
by Lemma 2.6 and Lemma 2.4; so ¢ induces a morphism

¢ : Dl(a) AN {Dl(a)ﬂpg UDl(a— 1)} — Wa AN Wafl

whose surjectivity follows from Lemma 2.1(3) and ¢(D;1(a)NDaUD;(a—1)) =
W,_1 by Lemma 2.4(1). Now, taking T' = R, in Lemma 2.7 and using the
universal property of R', we get a section of ¢ on W, ~ W,_1, which proves

(4).
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(7) is easy to see. In fact, ¢(D;(a) ND2) = W,_; is clear by Lemma 2.4(1),
and the non-normal locus of W, is contained in W,_; by the above (4). On
the other hand, W,_, is irreducible since D;{a —1) is so (Proposition 3.2) and

¢(Dj(a—1)) =Wa-1.

Thus it suffices to prove that ¢, := ¢|p,(a) : D1(a) = W, is not an isomor-
phism unless W, 1 is empty. If W,_; is not empty, neither are D; (a)ND; and
Di(a —1). One sees easily that the fibre of ¢, at the generic point of W,_,
contains at least two points since Dy (a — 1) € D;(a) N D, clearly. Therefore
¢, is not an isomorphism at the generic point of W,_;.

Lemma 2.5. Fvery semistable GPS (E', Q') with rank(E’') > 0 is s-
equivalent to a semistable GPS (E, Q) with E locally free.

Proof. For given (E',Q’) € C, with rank(E’) > 0, if Tor(E’) = 0, then
we are done. Thus we assume that one of Tor(E’),,, say Tor(E’)s,, is non-
trivial and the lemma is true for all (E’ ') € C. with dzm(Tor(E’)) <
dim(Tor(E")).

Let q; : E;, — Q' be the maps induced by the generalised parabolic struc-
ture of (E’, @), and choose a projection p : @' — C such that p(q; (Tor(E"),,))
# 0. Let E/ — ;,C — 0 be the morphism

E,—>E/ lQliC

and E’ its kernel, which has a smaller torsion than E’ by the choice of p.
Then we have an exact sequence

0—-FE —E — #C—0
which induces an exact sequence of GPS (see Definition 1.6) if we set 7 = ,,C:
0— (E',Q)— (E',Q)— (r,C) — 0.

One can check that (E',Q’) € C,; thus, there exists a (E,Q) € C, with E
locally free such that gr(E, Q) = gr(E’,Q’). Since (,C) is stable, we have

gr(Eval) = gT(E) @) @ (T, (C)
Let G : Exl & E’mz — C} — 0 and K; = ker(q : E’zl — Q) Choosing a
Hecke modification h : E — E at z; (see Remark 1.4 of [NS]) such that
K, := ker(h,,) C K and dim(K1) = 1, we get the extension

0—>Ei>E1>’T—>0.
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Let Q = Cj @& C and E,, = hxl(Ezl) @ V; for a subspace V;. We define a
morphism f : E;, @ E;, — @Q such that E,, — @ to be

-1

h;
EIQ —M")Emz_)Qc—)Q
and E;, — @ to be

(;_7’;11:'%1) EJL id)

hey(Ey) & Vi o C 1,

S QeC=Q

K;

where Eml : Ezl/i(ll = hT1(E$1) and dl : E:El/kl - é (nOte that ]?1 C Kl)
Thus the following diagram is commutative:

~ ~ hy 21,0
By @B, Lt pogp  0m0 ¢ 0
d 1| |
0o—— Q . geacC C 0

One checks that f is surjective by this diagram, and thus
0 (E,Q) — (E,Q) — (r,C) = 0.

It is easy to see that (E,Q) € C, and is s-equivalent to (E’,Q’).
It is well known that for any F' € R there is an integer ar such that
FRO,, = Oger @ m?o(rk(F)*uF), thus defining a function

a:R* — Zxo
with a(F) = ap. It is not clear if this function induces a function
a: UX — ZZO

(see the “Remarque” on page 172 of [S2]). However, the following lemma
implies that a is invariant under s-equivalence, in particular, descends to Ux.
Lemma 2.6. Let 0 —» F} — F — F5, — 0 be an exact sequence of torsion
free sheaves. Then
a(F) = a(Fy) + a(Fs).

In particular, if F is s-equivalent to F', then a(F) = a(F").
Proof. For any torsion free sheaf F;, we define a vector bundle on X to be
E; = n*F;/Tor(n* F;). Note that we have a diagram

Oo— K —— F — FB —0
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which induces

0 — B

F2 — 0

— M — o

0 —— 7m.Eq . E T Fy 0
| | |

0 — @1 2o Q@ Q@2 —— 0
| | |
0 0 0

where (1, @, Q2 are defined such that each vertical sequence is exact, and
the third horizontal sequence is defined such that the diagram is commutative,
which must be exact.

For a torsion free sheaf F', if we define Qr by

0—>F—*7T*7T*F—> onF —')O’

then one can see that Q; = Qr, /7. Tor(n*F;) and Q = Qp/m.Tor(7*F) in
the above diagram (see the proof of Lemma 2.1). Thus dim(Q;) = a(F}) and
dim(Q) = a(F'), which proves the lemma.

Lemma 2.7. Let T be a reduced scheme, F a sheaf on X x T, flat over T,
such that for t € T the sheaf F; on X is torsion free of rank r and a(F;) = a
s constant. Then there exists a vector bundle £ of rank r on X xT and a
locally free rank r quotient q : £;, §E;, —» Q — 0 on T such that gy : ., — Q
is an isomorphism, q, : £, — Q has rank a at each fibre, and

0= F = (mxI)€— 1ox7Q— 0.

Proof. We can assume that F is torsion free (see Lemma 4.13 of [NR]), and
define Q5 by

(2.4) 0= F > mm"F — ;x7Qr — 0
(we will write 7 for 7 x I'), which gives for any t € T an exact sequence

0= F - mrm*F — 4(QF):— 0
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since F; is torsion free. This shows that (Qx); & Q, has constant dimension
2r — a; hence, Qr is flat (in fact, a vector bundle) on T, which result and
(2.4) imply that 7*F is flat on T.

Taking a resolution 0 - KX — L™ — 7#*F — 0 of 7*F, where L is a line
bundle, and dualising it, we get

0— (1°F)V — L™ — KV — Ext! (r*F, O%, 1) — 0.

Noting that K is a vector bundle on X x T (since 7*F is flat over T and X
is smooth) and (KV); = (K;)V, we have the following diagram:

((m*F)¥)e (L™ (KY)e ——— Eat'(n*F, 05, p)i —— 0
! H H !
(m* Fo)V (Le)™ Ky)V — Ea:tl(ﬂ**]-'t,(f))?) — 50

which implies that Ext!(r*F, O )t = Sxtl(w*]-},of). Thus, Ext!(n*F,
Oz, ) is flat over T. This shows that (7*F)" is locally free and ((7*F)V); &
(7*F)V. Let € := (7*F)VV be the double dual of 7*F. Then we have

(2.5) 02T 5T F—-£E—50
which specialises for any t € T to
0 — Tor(r*F;) — 7 Fy — & — 0.
By (2.4) and (2.5), we get
0> F > mé — zoxTé-*O,

where Q is a vector bundle of rank a on T. Now the same construction in the
proof of Lemma 2.1 proves our lemma.

Lemma 2.8. Let E' be a rank r (stable) semistable parabolic bundle of
degree d — v on X. Then its direct image F = m,E' is a (stable) semistable
parabolic sheaf of degree d on X such that F ® @10 E mfo’". This construction
gives a morphism

Uz(d —T) = Wh.

Proof. The proof of Lemma 2.1 clearly shows that £/ — F = m,E’ and
F — E' = n*F/Tor(n*F) gives a bijection between the set of isomorphism
classes of rank r bundles E’ of degree d — 7 on X and the set of torsion free
sheaves F' of degree d on X with F ® Oy, = m&.



480 XIAOTAO SUN

We check now that the (stability) semistability of £’ implies that of F. For
any subsheaf F} C F of rank r; such that F'/F; = Fs is a torsion free sheaf
of rank 7o, then a(F}) = a(Fy) = 0 since a(F) = 0 and a(F) = a(F1) + a(F2)
by Lemma 2.6. Thus we have m,E, = F;, where E] = n*F;/Tor(n*F;), and
an exact sequence 0 — E{ — E’ — E} — 0. One computes that

pardeg(E;) pardeg(E')  pardeg(F;) pardeg(F')
rank(E]) ~ rank(E') ~ rank(F;)  rank(F)’
which proves that E’ is (stable) semistable if and only if F = m,E’ is so. Since
Wi has reduced scheme structure, the above construction gives a morphism
Uz (d—1) = Wo.

Corollary 2.1. Suppose that g > 1. Then Wy is nonempty and contains
stable parabolic sheaves if |I| > 0. In particular, for any 0 < a <7, W, #
Wa+1- _ .

Proof. We will prove in §5 that codim(Rrp ~R**) > (r —1)(g— 1) +1
and codim(R** ~ R*) > (r —1)(§ — 1) + 1 if |I| > 0 (see Proposition 5.1).
Thus Us(d —r) is nonempty if § = g — 1 > 0, and there exist stable parabolic
bundles of degree d — r on X if moreover |I| > 0. Now using Lemma 2.8, we
conclude that W, is nonempty and contains stable parabolic sheaves if |I] > 0.

Since sermstablhty is an open condition and Wa+1 W, is a nonempty
open set of Wa+1, there is a semistable sheaf F € W,,1 ~ W, (because we
have shown that W%, is nonempty), and we can see that ¥(F) € Way1 \ W,
by Lemma 2.6.

Remark 2.2. When X is a nodal curve of g =1 and |I| = 0, it is possible
that W) is empty (I am not saying that every W, is empty). In fact, if Wy is
nonempty in this case, then there exists a semistable bundle of degree d — r
on X = P! by Lemma 2.8, which implies that r|d.

We will finish this section by computing the canonical sheaf of R p. Recall
that 7: Rp = Xg, Flags)(Fe) — Qp, let £ =7*F, and let

zEI
& =Fo(€)z D Fl(g)z 2D Flm(g)z 2 Flm+l(£)x =0
be the universal flag on Rp. Write Qpi =&/ Fi(E), andlet mz - XxRp —
R F be the projection. Then we have

Proposition 2.2. Let wj_ be the canonical sheaf of Rr and wy =

O5(32,9) the canonical sheaf of X. Then

lz
= (det Rrjs ) @ X) {(det Ex)"e 17 @ (R)(det Q.ﬁ,,-,i)""(’””""“‘ﬁ”)}

z€l i=1

® ®(det ENVTT ® (det Rmg det€)™2
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Proof. Noting that wz = wg /ar ® W*WQF, the proposition is clearly a
corollary of the following two lemmas.
Lemma 2.9. Let E be a vector bundle of rank r on M, and let F(I,E) =

Flag#(E) be of type i = (ny,- -+ ,ni4+1), with the universal flag
E=Fy(E)D Fy(E)D--- > F(E) > F1(E)=0

on F(I,E) and Q; = E/F;(E). Then

l
WELE) /M = (det BT+ @ ®(detgi)~(ni+ni+1)>

i=1
Proof. One considers F'(I, E) as the grassmannian bundle
p : Grass.kpy(e)) (Fi-1(E)) — F(l - 1,E)

over Pﬁ(l - l,E) Then WF(L,E)/F(I-1,E) = det(E(E) & (E_I(E)/E(E))v),
and one has

wre, E)/M~®d€t J(E) @ (Fio1(E)/F(E))Y).
=1

Thus one can compute that

l

wp,EyM = (det E) ™ ® ®(detQi)_("i+”i+1).
i=1

Lemma 2.10. Let O%xé — F — 0 be the universal quotient on X x (QF
Then

= (det R, F)”" ® (X)(det Fy)' ™" @ (det Rmgy det F)~*

F

Proof. We have, on X x QF, the exact sequence 0 — K — O — F — 0.
The tangent space of Qp at apoint (0 = K — O - E —0) is HO(X KY®
E). From the properties of Qr (the Notation 2.2), it follows that

wéi = det Rmg_(F @ FY).

We will now use a variant of the method of [DN] to evaluate det Rmg_(F@F ™).
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Let M = TI'QF*(]: ) be the direct image sheaf of F, which is local free of
rank i = d+r(1 — §). Let Gr be the grassmannian of rank r — 1 subbundles
of M, and let

p:Gr— Qrp

be the projection. We consider the canonical exact sequence on Gr

OHUGT_’p*M_’QGr_’O:

where Ug, is the relative universal subbundle of p* M on Gr, and Qg, is the
relative universal quotient. Let Og,.(—1) = det(Ug,) and consider

X x Gr 26~ Gr

1Xpl Pl

X x QF -2, QF
We have the induced morphism

(26)  75,Usr = w5 M = (1xp)'15_mg,.,(F) = (1x p)*F.

Let Gry be the open set of Gr such that, on X x Grg, the above induced
morphism
WérUGr - (1 X p)*]:

in (2.6) is injective. Then, if we write D = Gr . Gry, there is on X x (Gr~ D)
an exact sequence

(2.7) 0— 75, Ugr = (1 x p)*F — (1 x p)*det(F) ® 75, Ocr(1) — 0.

We will denote the morphisms Gr ~ D — Qp and X x (Gr ~D) - Gr~D
by the same p and 7g,. By using (2.7), we compute that

det Rrgr(1 x p)*(F @ FY) = (det Rre (1 x p)*FV)" ! @ Og,(—rd)

(25) ,
® det Rrgr(1 x p)*(FY ® det F),

(2.9) det Rmgr(1 x p)*F = det Rrg-(1 X p)*det(F) ® Og,(—d).
Using

0— 75,06 (1) = (A x p)*(FY @ det F) — (1 x p)*detF @ 75Ul = 0,
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we get

(2.10)
det Rrar (1 x p)*(FY @ det F) = (det Rrg,(1 x p)*det F)' ' ® Og,(—d).

Thus, by (2.8)—(2.10) and the base change theorem, we have

p*det Rmg (F ® FV) =p*{(det RWQF]-')TH ® (det RﬂQF}_v)T—l
® (det RWQFdet}")_z}.

By duality and the exact sequence

0= F = FOwg, g ar — DFa—0,
q

one has that

det RTrQF]:v = det Rmgy ('7:®w5?>(617/617) = (det Rmg, F) ® ®(d€t-7:q)_l-
q

Thus the lemma follows if p* : Pic(Qr) — Pic(Gr ~ D) is injective, which
will be proved in the next lemma.

Lemma 2.11. p* : Pic(Qr) — Pic(Gr ~ D) is injective.

Proof. 1t is well known that Pic(Gr) = Pic(ép)@ ZO¢r(1). For each fibre
Gr(E)=p YE)of p: Gr — Qr, DN Gr(E) is an irreducible hypersurface
of Gr{E) (see Lemma 7.3 of [DN]). Thus the ideal sheaf

Ogr(—D) = p*(A) ® Ogr(ap), for some A € Pic(QF),

with ag # 0. One has the exact sequence {see Chapter II, Proposition 6.5, of
(Hal)

z5 Pic(Gr) — Pic(Gr ~ D) — 0,

where i(1) = Og(—-D). For any £ € Pic(Qr), if p*L|grp is trivial, then
there exists m € Z such that

p*L =i(m) = p*(A™) ® Ogr(may).

The m has to be zero, namely, p*£L = Og,, which implies clearly that L is
trivial.
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§3. Geometry of moduli spaces of generalized parabolic sheaves

We will prove in this section that P and its subvarieties D;(a) and D;(a)N
Dy (b) are reduced, normal with rational singularities. In particular, we will
prove that H, ﬁj(a), and D;(a) N Dy(b) are reduced, normal with rational
singularities, and prove a formula to express the canonical (dualizing) sheaf
of H. We will use the following device to analyse singularities of a variety V:
find varieties W and V' and smooth morphisms f:V — Wand f' : V' - W,
such that the singularities of V' are easy to analyse. We will call V' (or its
complete local ring at a point) the smooth model of V' (or local smooth model
at a point of V). For simplicity, we assume that || = 0, which will not affect
the generality. Let Y be a scheme of finite type, F a locally free Oy-module
of rank r and

Hom(O%,, F) := Spec S(Hom(Oy, F)V) = Y,
which parametrizes homomorphisms from O} to F. Let
Fy := Isom (0%, F) C Hom(Oy, F)

be the open subscheme corresponding to isomorphisms. Then we call Fy — Y
the frame bundle associated to F. Moreover, if £ is an Oy-module, then the

functor
Hom(&E,F) : T — Homo,.(Er, Fr)

from the category of Y-schemes to the category of sets is representable by
V(FY ®o, &) := Spec S(FY ®o, )

(Proposition 9.6.1 of [EGA-I]), where £ and F7 denote the pulling backs of
£ and F to T. We will also need that

Lemma 3.1. Let f : W — V be a smooth morphism. Then W is re-
duced (respectively, normal, Cohen-Macaulay, Gorenstein) with only rational
singularities if and only if V is.

Proof. See Proposition 4.19 of [NR] for the statement about the rational
singularity. The other statements are well-known commutative algebraic facts.

By a point (E, h) € H, we mean that (O™ — E — 0, E;, ® E,, N o 0)
such that E is locally free outside {z1,z2}, (TorE),, ¢ (TorE),, SN Cr, and
HY(E(-z, — 2, —x)) = 0 for € X, e induces isomorphism C* = HO(E).
Let A be the category of Artinian local C-algebras, and consider the functor

®;: A — Set



DEGENERATION OF MODULI SPACES; GENERALIZED THETA FUNCTIONS 485

defined by (write S = Spec(A) for any A € A):

such that (€%, h°)| g oein/myxx = (B2 1)

Equivalence classes of flat families (£, hs)}

‘I)l(A) = {

. 5 , ,S
where (£5,h5) = (OF__ <5 £5 0,5 @ €5, 7= 05 — 0).

Given a point z = (E, h) € H, let dim(h1(E,,)) = ry and dim(hy(E;,)) =
9. The map e induces two maps C* =5 E, — 0. We denote images of the
canonical base of C* (under h;) by

(aﬁlv' o 7a;"r) eC”
where j = 1,...,7. Without loss of generality, we assume that
alil s aliri
rk . =T;.

%

i
[0 2 a;m

For any algebra A, we use A” — A" and A" drrd, A"™" to denote the pro-

jections (Y1, -, ¥r) = (Y1, ., Yr,) and (Y1, ..., ¥r) = (Yr,+1, ---, Yr) TESPECtively.
Thus for any (£9,h%) € ®1(A),

h{

g5 o5 oy

.”L‘i_

are surjective since it is so at the fibre then by Nakayama's lemma, from which
we get a surjection

g
q s
es L, 2,048 @ 5,08 — 0.

Letting £5 = ker(¢5), we get
~ . oS )
0% 00,078 -0,

s [r—r1] _ . RS [r—r2 _
£5 1 op I op g, 2 0y £ 0

which we denote by (£5,¢5,[r — 1] - b, [r — o] - hS) = (pA(ES,le). It is
clear that the restriction of w4 (€5, k%) at the fibre Spec(A4/m) x X is

~ 0
0—>E—>Eq—>x1Cr16§I2CT2——>O,

B, A cr il oo g, 22 or 20 o
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which is ¢c(E, k). Thus the above construction gives a morphism
p: P — Py

of funct~ors, where ®, will be defined later.
Let Q! be the Quot scheme of rank r, degree d — r1 — ry quotients

O LB 0
X
and Q1 1. the open subset of locally free quotients with vanishing H!(E) such
that C*~"1—"2 — H 0( E) is an isomorphism. It is known that Q! is smooth.

Let f: Q B X X - Q + be the projection, £ the universal quotient on Q P X X.
Then the sheaf (see [La] for the definition)

G == Ext}(,, 0™ & ,,07, &)
where O = (’)le, is locally free. Write V := V(GY) — Q}; and
pv:VxX—-QhxX.
Then there exists a universal extension on V x X
0—ph€—E— 2OV @ 5,017 — 0.
Let W; be the total space of Homo,, (€;,, O} "), namely, the V-scheme
W; =V(ESr—Tdy s v

that represents the functor Hom(&,,, Oy ") (see Proposition (9.6.1) of [EGA-
I]) and let Y := W) xy W;. Then the S-points of Y can be expressed as

065 654, 208 & 5,08 — 0,

( ’Qa 751’62) . S~
OF T L B8 0,65 S op €5, B op

- s ~ ~ ~
where 0"~z £, £5 _, 0 is induced from £ by an S-point of QL. Thus
we can define the functor ®, : A — Set as

By (A) (85, q,€1,&2) such that its restriction at Spec(4/m) x X
2 = -

s (E,q",[r —71] - h1, [r — 7] - ha), which is y := ¢ (E, k)
where 9 is a flat family of bundles parametrized by S, which are generated by
global sections and with vanishing H!. We have an obvious smooth morphism

Y(—) — ®; by forgetting the frames of m5,ES, where Y (—) denotes the
functor defined by the variety Y.
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Lemma 3.2. The morphism ¢ : &1 — $5 is formally smooth.
Proof. For any A — Ay — 0, where Ay = A/I, I* = 0, we consider

®;(A) —— ®,(Ao)

LPAJv LPAOJ,
D(A4) —— P2(4Ao)
For any given points (£, h%) € ®;(4p) and (gs,q,g{g) € ®,(A) such that

&S Ulsox % O o2
0 g|5x)? |a>< 21V, D 2, SO—“"O

|| | |

~ q50

0 —— &% —— g% S 08 ®.,078 —— 0
and & |s, = [r — 1] - h3°, &als, = [r — 72] - h5°, we need to show that there
exists a point

(1) = (0" 5 & - 0,6, @€, 5 05 —0) € &,(A)

such that 4 (€', 1) = (Ss,q,§§2) and (&', )]s, = (£, h50).
We take & = £5 and € = €° to be a lifting of €50, which always exists
and is surjective since I? = 0. To define A/, let ¢; : £ — OF — 0 be the

two induced surjections by g, and define h; : 8;2, LN 0%, which gives a
surjective morphism k' : €5 & €5 — O% — 0 since its restriction on Sy is
RS0, One can check that it is what we want.

By the above lemma, we are reduced to considering the singularities of Y.
To analyse the singularities of Y, we can fix a Ee Q F since

Y =W xy W — Qk
is locally trivial, namely, the singularities of Y are the same with that of any
fibre (note that QL is smooth).

Proposition 3.1. Let E be a vector bundle of rank r on X Ty, X2 € X
andV = V(Ext!(,,C"®,,C™, E E)V),p:VxX — X. Consider the universal
extension

0 —>p*173—> E— ;00 @ 5,0y =0
on X x V. Then the space E = V(ES" ™) xy V(EE"™)) is reduced,
irreducible and normal with rational singularities.

Proof. Replace X by an affine neighbourhood of {z1, 22} where E is trivial.
Furthermore, we can assume that X = A! such that z; = {t = 0} and
x2 = {t = 1}, namely,

= SpecClt] D {(t), 1 —1t)}, E=C[t]".
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Let F = Ext!'(,,C @ ,,C"2, E), let {e;;} be a C-basis of F', and let {z;;} =
{e;;} be the dual basis of {e;;}. Then V = Spec(S(F")) = Spec(C[{zi;}])
and the element

7=Z$ij€ij€Fv®F‘—>S(Fv)®F
.7

— Bat' (5, Cl{a )1 & o, Cl{y)]™),p"E)
determines the universal extension
0—p*E — E— 5, Cl{zy}]" & 5,Cl{zy}]™ — 0.
To construct the universal extension E, we need a resolution of ,, C" @ ,,C"?,
(3.1) 0—-Clt"®C[t]? > ClY" & Clt]” —» ,,C" @ ,,C™ -0
where « is defined by

N . r1+r2 te;, for ¢ <r,
CH" eC[t]” = @ Cltle;, afe) = (1= t)es, fori>r.

i=1

We have

o _Homey(Cl" © TR, Cl)
~ a*Homgyy (Clt]™ @& Clt]"2, C[t]")"

Define e;; : C[t]" @ C[t]™> - C[t]" (1 <i<ry+72,1<j<r)tobe
J

Y e
eij(e’i)z(o,"'7051707"'70)’ eij(ek:)z(O?“'?O) lfk#:l‘

Then {e;;} is a basis of F. Let p*E = C[t]” ®c Clzy;] = Clt, zi5]" = o) %
and let

0 — (C{t, mij]” G C[t,xij]” i C{t,x,‘,j]rl ) (C[t,.rij]”
— 2,Clzy]" & 4,Clzi]|” — 0

be the pull-back of (3.1). The extension E determined by
v (C[t, Ii]’]n %) C[t,$ij]r2 — p*E = C[.’l)ij, t]r
is

— C[(L‘ijv t]r %) C[.’Eij,t]rl+r2 _ Zziql+r2 C[xi]‘, t]yk

E W W )
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where W = {(y(a), —a(a))|a € Clz;;,t]"*t™}. We can describe E by the
following exact sequence:

r1+7re 3 r+ri+re
0— @ C[xij,t]Ek — @ (C[l'ij,t]yk —FE -0
k=1 k=1

where B(ex) = v(ex) D (—afer)) equals

zr:$k'y‘—{tyr+k, kSTl,
j=1 75 (1 — t)yr+k7 k> Ty.
Thus we get
r1+r2 s r+r1+72
(3.2) 0— @ Clzijler = @ Clzsjlye — Ez, — 0.
k=1 k=1
where - )
B (ex) = { 2 i=1 TkiYis if k<,
x - -
1 D1 ThiYj — Yrak ALk >,
B, (ex) { D1 ThiYj — Yk, ik <,
o \€k) = T .
: Ej:l ThjYj if k> ry.
Let
T11 T1r Tri41,1 Tpi+1,r
Xl = . ) X2 - : :
Tyl oo Tryr Try4ra, 1l -+ Tritror
We have
n
ClX1, X2, ¥, Yr a1y Yrir)
S(E,.) = A LA L L AN LR K2 where ¥ =
( Il) (Xl . y)
Yr
and .
S(E ) _ C[Xh x2) Yo Ur4ri4+1, ’yr+r1+r2]
X - — .
’ (X2-¥)
Note that
T—T1 T—72

N\ N

N

O = S(EZH) ®C[Iij] e ®C[Iij] S(Eml) ®C[Iij] S(EJCQ) ®C[zi]‘] T ®C[Ti]] S(Ezz)
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and set
l

pr—N—— .
Y =10 ®y;® - ®1 (1<j<r+r+7r,1<I<2r—r—ry).

We have
_ C[le X27 Y17 YZ]

XY K, Y)Y Y
where
Yir -+ Yir—r; Yr4ri+1,1 <o Yrtri+12r—ri—1;
Y, = . Y, = .
Yr1 oo Yrpr—r Yr+ri+ra,1 oo Yrtri+ra2r—ri—r
and
Nr—ri+1 -+ Y1 2r—7ri—7g
Y, = : : ;
y’r‘,’!‘—’l"1+1 e yr,2r—r1—r2
Yr+1,1 -+ Yr+12r—ri—ry
Y, = . .
Yr+ri1 oo Yrdr 2r—ri—ro

By taking a = r; and b = r — r; in the following Lemma 3.3, and noting that
I, (X;) = {0} and I,_,(Y;) = {0}, the proposition is proved.

Lemma 3.3. Let X = (Zij)pxr, Y = (Yij)rxq be two matrices and let
I,(X) (resp. I,(Y)) denote the set of rank a+1 (resp. b+ 1) subdeterminants
of X (resp. Y ). Then

C[X, Y]
(X ) Ya Ia(X)a Ib(Y))
is reduced, irreducible and normal with rational singularities if a +b < r.

Proof. The fact that the variety is reduced, normal and Cohen-Macaulay
is a special case of theorems in [CS]. Theorems in [He] imply that it has only
rational singularities (see Example 6.5 of [He]).

Remark 3.1. The above varieties D, ; were called double determinantal
varieties in [He], whose dimension formula is

dim(Dqap) = a(r +p) + b(r +q) — a® — b* — ab.
Takinga=p=r;,b=q=r—r; (i =1,2), wehave D, ,_,, = SpecC[X;,Y;]/
(X;-Y;) and dim(D,, ,—r,) = >+ 17 — rr;. It is easy to see that the ideal
(X;-Y;) has r;(r — r;) generators at most and
dim(Spec C[X;,Y;]) — dim(Dy, r—r,) = ri(r — 1¢) = height(I).

Thus D,, ,_,, are complete intersections. In particular, H and P are Goren-

D, » = Spec

stein.
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Proposition 3.2. H, D;(a) and D1 (a) N Dy(b) are reduced, normal with
rational singularities. In particular, P, D;(a) and Di(a) N D2(b) are reduced,
normal with rational singularities.

Proof. By Lemma 3.2 and Proposition 3.1, it is true for H. We only need
to show the proposition for D;(a) and D (a) NDy(b). Let us rewrite (3.2) into

™1 T+7r1
0 — €D Claislex P, P Clailye — Ez, — 0,
k=1 k=1
ri1+r2 8 r+rz
0~ P Claijler == €D Clewlyr — Es, — 0
k=r1+1 k=1

where 3;,(ex) = E;zl zr;y;. The universal maps E,, — O""7 are induced
by

47 r+71

(flv"' ’fT+T1) '2’ (Z fiyilv"' ) Z fiyi,r—rl)y
i=1 i=1

T+T2 T+7T2

(1o s Frara) =2 () fithirrt1s > fiizr—riors)-
i=1 t=1

Let E;, — O be the induced projections by the projection in the universal
) P;
extension ((fla e ’f’r‘+rj) — (f‘r‘+17 T fT‘+T‘_7‘))‘ Then the maps E.Zj — O

are induced by O™+"i RGLEIN O, matrices of which are

0 Yl 0 Y2
I, YY) \L, Y;

where I, denote 7; X r; unit matrices and (Y3, Y;) = Y3 (we use the notions
in Proposition 3.1). It is not difficult to see that the local smooth models for
Dj(a) and D1 (a) N Da(b) at z = (E, h) are

CIX,, Y]] CX., Y] . o
Spec D ) X Spec———— =1,2,1
PO Y L () P Y)Y #3)
and C[X,,Y C[X,, Y
Spec X1, Yy x Spec [X2, Yo

(X1 - Y1, In—r, (Y1) (X2 Yo, I, (Y2))
The proposition follows Lemma 3.3 (note that a < 7).

Remark 3.2. (1) It is easy to see from the proof that a point (E,h) € H
is a smooth point in the following cases: (i) E is torsion free at x; and
hy : E,, — C7 is surjective, i.e., o = r (the roles of z1 and z; are reversed).
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(ii) Both of h; : E,, — C" are surjective (i.e., 71 = r2 = r). In particular, one
can see that D;(0) are smooth.
(2) The locus of non-locally-free extensions is

. ClX1,Y1,X5, Y2, Y3, Yy ClX1,Y:,X2, Y2, Y3, Yy
(X1-Y1,X2- Yo, [ 1(Xy)) (X1-Y1,X2- Yo, I, 1(X))

Spe U Spec
More precisely, the non-locally-free locus H ~ Hr of H has two components
D§~ (j = 1,2): D! is the component of H \ Hp parametrising sheaves with
nonzero torsion at z, (D} is defined similarly), whose local smooth models
are

C[X],Y]7X27Y27Y3’Y4]
(Xl . Y1,X2 . YQ»Irl—l(xl))

C[X1,Y1,X2, Y2, Y3, Yy
(X1-Y1,Xo Yo, I,-1 (X))

and Spec

Spec

We will give more information about the subschemes ﬁ; of H in the following
Proposition 3.3.
Proposition 3.3. Let U R'*S — P be the projection. Then we have
(1) ¢'(Dt NR'*s) =Dy, ' (DLNR'*) = Dy and
(2) the codimension-one subschemes 75; in H are reduced, irreductble and
normal.

Proof. (1) We will prove that ¢’ (D} NR'*$) = Dy; the other one is similar.
For any (E',Q') € Dy N R'**, Tor(E'),, #0 by the definition. Thus it is
s-equivalent to a semistable GPS (E, Q) with E locally free by Lemma 2.5.
Moreover, by checking the proof of Lemma 2.5, one find that E,, — @ has
rank r — 1; so ¢'((E,Q)) € D,. Each point of D, is the image of a GPS
(E, Q) with E locally free, and E,, — Q is not surjective. Thus E;, — @ is
nonzero, and we can choose a projection @ — C such that £, - Q — C is
nonzero. Taking E to be the kernel of E — ;€ — 0 and @ to be the image
of Exl B E12 under E,, ® E,, — @Q, we get an extension

0— (E,Q) — (E,Q) — (4C, C) -0,

and one checks that (E, Q) is s-equivalent to (E @ IIC,Q @ C). Hence we
have proved that ¢'(D4 N R'*%) = Ds.

To prove (2), we only need to check the irreducibility, and the other facts
follow Remark 3.2 (2) and Lemma 3.3. On X x H, there is an exact sequence

0-K—->0">E—-0

where K is a vector bundle. It is easy to see that 7:7% is the subscheme of H
defined by

D! = {h € H|rank(K (g, n)y = Of, py) <=1 =1}
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Thus we only need to prove that the open subset
f)i'o ={he Dt | rank(Kz,,n) — O?xz,h)) =n-—r—1}

of D! is irreducible. 15;,0 is the open subset of sheaves of the form E& 2, C
with £ generated by global sections and having vanishing H 1(E) It is now
straightforward to imitate the proof of Remark 5.5 of [Ne].

We have shown (see Remark 3.1) that H is Gorenstein; so it has a canonical
sheaf. Before closing this section, we will prove a formula for expressing the
canonical sheaf of H. Let

O € =0, &, ®E,—Q—0

be the universal quotients on X x'H and H. We write down an obvious lemma
at first. _
Lemma 3.4. Let wy = O(3_, q) be the canonical sheaf of X and let wy,

denote the canonical bundle of ﬁ’F Then

la
wg; = (det Rrg, €)@ &) {(det Ex)"e 0@ Q) (det Qg i)™ (1) }@

zel =1
Qdet £,)' " @ (det R, det€)* @ (det Q)* ® (det &)™ ® (det £x,) ™"
q

Proof. 'fé}« —Rpisa grassmannian bundle over R r. Then use Proposition
2.2

We will give an extension of the right-hand side of the above formula to H
as a line PGL(7)-bundle, then prove that the extension gives the canonical
bundle of H. Note that we have an exact sequence

0-K—-0"—=E—-0

on X x H, and K is flat over H since £ is so. One proves that K is locally
free on X x H (by using Lemma 5.4 of [Ne]). For x € X \ {z1,z2}, we have
the identity det (K.) ™! = det &, on H. It is clear that

lo
Q.= (det R?THg)QT ® ® {(det E )Mt @ ®(det szi)"i(z)+m+1(r)} ®
x€l i=1
R)(det £)'" @ (det Rmpdet K~) 7> ® (det Q)" @ (det Ks,)" ® (det Ko,)"
q
is an extension of the line bundle in Lemma 3.4. We now prove that it is the

dual of the canonical sheaf of H.
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Proposition 3.4. Let K be the kernel of the universal surjection O™ — &
on X X 'H, and let wy denote the canonical bundle of H. Then

1= 071 = (det Ry €)'

le
® {(detg e+ =T @ (X)(det Qr )™ ) *"1“(”} ®
zel i=1

R)(det £,)' " ® (det Rrydet K~') 2@ (det Q)* @ (det Kz,)" ® (det Ko, )"

q

Proof. By Lemma 3.4, wy,' = Q7! holds outside the f); We will check
that it extends to each ﬁ; For definiteness take 7 = 1 and for simplicity of
notation suppose there is no ordinary parabolic point. We will determine wy
in a neighbourhood of a suitable point of D}. Since D} is irreducible, it will
be enough to show that w;{l = 0! holds in one such neighbourhood.

We consider a point (O™ — E — 0,Q) in H satisfying

(1) E has torsion at x, (i.e., the point lies on DY),

(2) E islocally free at z1, and

(3) the maps E,; — Q are surjective for both j =1,2.
The conditions (2) and (3) will hold in a neighourhood U of the point. On
X x U, we define a locally free sheaf £ by the exact sequence

(3.3) 05&—E— 4,00,

where ,, Q is the sheaf on X x H obtained by pulling back Q from H and then
restricting to {z2} x H. We can assume that for any u € U the vector bundle
&, is generated by global sections and H 1(8 ) = 0. Thus TuL€ is a locally
free sheaf of rank # — r and commutes with any base change (7 denotes the
projection X xU — U). Let p: Fy — U denote the frame bundle of wy*g.
We will use the same notation &, , € and Q to denote their pulling back to
X x Fy and Fy.
Let Q be the Quot scheme of rank r, degree d — r quotients

o L E -0

and let Q F be the open subset of locally frge quotients generated by global
sections with H'(E') = 0. Let O"-" — E’ — 0 induce the isomorphism
C" " = HO(E'). Let
n—r o7
(9)?«>< o, -0
be the universal quotient. Then there is a morphism fi: Fy — Q F such
that (1 x f1)* E = €. Let T : X x QrF — Qr be the projection and
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E = Extl_ (4,E. ,E') (see [La] for the definition of the sheaf), where ngg’“
Qr

is the sheaf on X x Q r obtained by pulling back 53’“ from Q r and then
restricting to {z2} X Qp. Then there exists a universal extension

Il’

0o (Axq)E —E& - ,¢&, —

on X x V(EY), where ¢, : V(EY) — Qr is the projection. Note that &, =
£z, = Q on U and, by (3.3), we have a morphism f; : Fy — V(EY) such
that fi = q1 - fo and (1 x f2)*€’ = €. Let q : Fy — V(EVY) be the frame
bundle of my.E', where my : X x V(EY) — V(EV) is the projection and

Fo 2 g*(my«E') is the universal frame. Then, if we denote the pulling back
of & and & still by £ and &', there is a morphism f : Fiy — Fy such that
(1x f)*& =€, (1 x f)*€ =€, and

n fr Au *
o}, L £ (e E)

%U iS— TI'FU*S

is commutative, where Oﬁ — g, «E is the induced isomorphism obtained
by taking the direct image of (’)" —&—0.

It is not difficult to check that f Fy — Fy is unramified. In fact, the
universal frame O}, 2 ¢* (my«E') induces a quotient

n 1® * (% *
Ok~ (1x @) (1 mviE) = (1x )°E = &' =0

on X x Fy, which gives a morphism g; : Fyy — R such that & = (1 x g1)*€.
The universal extension gives a quotient

8:51 2 5322 — gél —

on Fy, and thus a morphism g, : Fy — U such that g3Q = g’ and (1 x
92)* E=F¢. Finally, the universal quotient O"~" — & -0 1nduces an
isomorphism (’)” T ﬂ'pv*g Thus we have a morphism g : Fy — Fy,
which can be checked to be a section of f: Fy — Fy. Hence f is actually an
isomorphism if dim(Fy) = dim(Fy ).

Now we check that dim(Fy) = dim(Fy). It is easy to check that

dim(Fy) — dim(Fy) = r? — rank(E).
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Thus we need to determine the locally free sheaf E = l*]a:t}raF(zzé';’E l,g’ )-
Using the exact sequence

0— Oxq,(~{a2} x Q)@ 7y & =15 &, = ki, =0
and using that Ext}fap (wang’n &Y = RIWQF*(g" ® W*ngz\l/) = 0, we have
(8.4) 0 mg (E)8E) = 1q,.(E' @05, (z2} xQr)@E] ~E—0.

One can see easily that rank(E) = r*, and thus wr, = f'wr, = f¢'wy.

Since wy,' = qi‘wélp ® det(q'E) and det(E) = (det&,,.)" ® (det &, )™ (by
using (3.4) and the Riemann-Roch theorem), we have, using Lemma 2.10 and
the pulling back of (3.3),

Wil = (det Rrp, €)7 ® (Q)(det £)' " ® (det Ry, det £)?
(3.5) q
® (det Q)% ® (det &y,)" © (det &)

On X x Fy, let K’ be the kernel of ©" - £ — ;,9. Then we have the
commutative diagram

—
— M — MM ¢—— O

8
9}
S
©

l

0 0

One sees easily that K’ is a vector bundle of rank 7, and (note that Fy is
smooth)

—

detK' = OXXFU(_T . {SL‘Q} X Fu)
Thus we can compute easily that

det Rrp, det € = det Rrp, (det K' ® det K=Y
= det Rrp, (det K1) ® (det K,) ™7
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Noting that det g’zz = (det Kz,) ™' ® (det K.,,) and that det K, is trivial, we
have
W;LI, = (det Rmp, £)* @ ®(det £V ® (det Ry, det K1) 2
(3.7) q
® (det Q)*" @ (det K,)" ® (det Ky, )"

Thus, by (3.7), we have p*wj;' = p*Q~!, which shows clearly that wy,' = Q!
holds on U since p : Fy — U is locally trivial for the Zariski’s topology, and
we are done.

§4. Seminormality and the decomposition theorem

Let Iz denote the ideal sheaf of a closed subscheme Z in a scheme X.
When Z is of codimension one (not necessarily a Cartier divisor), we set
Ox(—Z):=Iz. If L is a line bundle on X and if Y is a closed subscheme of
X, we denote £ ® Iz and the restriction Iz ® Oy of Iz on Y by £(—Z) and
Oy (—Z). Now we collect some general facts at first.

Lemma 4.1. Let V be a projective scheme on which a reductive group
G acts, L an ample line bundle linearising the G-action, and V*° the open
subscheme of semistable points. Let V' be a G-invariant closed subscheme of
Vss, V' its schematic closure in V. Then

(1) V'*=V', and V' / /G is a closed subscheme of V*°/ /G.

(2) HO(V“,E)"“’ = HO(W, E)i"“, where W is an open G-invariant (irre-
ducible) normal subscheme of V containing V** and ()" denotes the
invariant subspace for an action of G.

Proof. See Lemma 4.14 and Lemma 4.15 of [NR].

Lemma 4.2. Let V be a normal variety with a G-action, where G is a
reductive algebraic group. Suppose a good quotient w:V — U exists. Let L
be a G-line bundle on V, and suppose it descends as a line bundle L on U.
Let V"' ¢ V! C V be open G-invariant subvarieties of V such that V' maps
onto U and V" = m=Y(U") for some nonempty open subset U" of U. Then
any invariant section of L on V' extends to V.

Proof. See Lemma 4.16 of [NR].

Lemma 4.3. Suppose there is given a seminormal variety V with normal-
ization o : V — V. Let the non-normal locus be W, endowed with its reduced
structure. Let W be the set-theoretic inverse image of W in 17, endowed with
its reduced structure. Let N be a line bundle on V, and let N be its pull-back
toV (N =0*N). Suppose H'(V,N) — HO(W,N) is surjective. Then

(1) there is an exact sequence

0— HV,N® Ij) — H(V,N) — H'(W,N) — 0.
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(2) If HY(W,N) — HI(W,N) is injective, so is H'(V,N) — H'(V, N).

Proof. See Proposition 5.8 of [NR].

Lemma 4.4. Let G be a reductive group and P a parabolic subgroup. Let
L be an ample line bundle on G/P, and X a union of Schubert varieties with
the reduced structure. Then

(1) the restriction map H°(G/P,L) — H°(X, L) is surjective, and
(2) HY(G/P,L) and H(X, L) vanish for i > 0.

Proof. See Theorem 3 of [MRa).

Remark 4.1. Let F; and F; be two vector spaces of dimension r, and let
Gr denote the grassmannian Grass,(F; & F3) of r-dimensional quotients. Let
E; be the vector bundle on Gr generated by F}, and let E1 & E2 — @ be the
universal quotient. Write [; = (det E;)™! ® det Q and

D;(a) = {g € Gr | rank(E;q — Qq) < a}.

The action of GL(F)) x GL(F3) on Gr lifts to the line bundles [;, and
the subvarieties D;(a) are invariant under the action of GL(F1) x GL(F3).
Thus H“(l;-“) and H°(1¥| p, (a)nDouD; (a—1)) are GL(Fy) X GL(F3) modules. By
Lemma 4.4,

(4.1)

0 — H°(f ® Ip, (a)npsubs(a—1)) = H(IY) = H(If| b, (a)n 020D (a-1)) = O

is an exact sequence of GL(F}) x GL(F;) modules. Thus it is splitting.
Proposition 4.1. The following maps are surjective for any 1 < a <7t
(1) H°(Dy(a),0p) — HO(D1(a) N D2 UD;(a—1),0p);
(2) HO(’Dl(a), 973) - HO(Dl(a) N Dy, @p).
Proof. 1t is clear that the following Proposition 4.2 implies Proposition 4.1.
Proposition 4.2. The following maps are surjective for any 1 < a < r:
(1) HO(’P’ 977) - HO(DI (a’)7 6P)7
(2) H(P,0p) — H°(D1(a) N D UD;(a—1),0p),
(3) H°(P,0p) — H°(Di(a) N Dq, Op).
Proof. We will deal with (2) in detail; the other statements will follow the
same proof. Let us consider the diagram

Ho(ﬁ/ss’ é/)inv _* HO(rbl (a)ss N @Ss U @1 (a _ 1)ss’ é/)inv

4 d

HO(H’(:)/)i"U - HO(@l(a) ﬂﬁg Uﬁl(a— 1)7é)l)inv

] |

HY (R, 0)m —2 s HY(Dp,(a) NDpaUDr(a—1),0)m.
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We need to prove that a is surjective. The map e is an isomorphism by Lemma
4.1. To prove that b is an isomorphism, it is enough to check that
Ho(ﬁ’ss’ é/)inv 5 H (ﬁ/ss n ﬁlp, (:_)/)inu
is an isomorphism. We use Lemma 4.2 with the identification V = 75(35,
U=P,n=19¢,V =R*NR} and U’ = P~ (D UD,). (One can show that
" = P~ (D1 UDs) is nonempty, for example, by Corollary 2.1.) Lemma 2.5
shows that V/ = R'ss ﬂﬁ’ maps onto U = P. Thus b is also an isomorphism.
Given a section s of HO(DI (@)* N D5 UD;(a—1)%,0')"™ it extends to
sections sy, s; on D;(a) N Dy and D) (a — 1) by Lemma 4.1 since Di(a) N Dy
and D; (a — 1) are normal, which are equal on Di(a)% N D§* N Dy(a — 1)%.
For any point z € D1(a) "Dy NDi(a— 1) = Di(a — 1) NDy, we have s1(z) =
so(z) if = is semistable, and s;(z) = sz(x) = 0 if 2 is nonsemistable (by the
definition of semistability). Thus the sections s; and sy yield a section on
D (a) N Dy UD;(a — 1), which is an extension of s. This proves that f is an
isomorphism. Hence we only need to prove that

H°(R}z, €)™ % H(Dp,1(a) N D2 UDri(a—1),0)™
is surjective. Recall that p : 75}1 — Rp is a grassmannian bundle over R F.
Lemma 4.4 implies that
0— p*(@' ® IﬁF,l(a)ﬁf)FaUﬁF,l(a—l)) - p*@’

- p*(e’tﬁp‘)l(a)ﬁ'ﬁ}r‘guﬁpyl(afl)) - O

is exact. In fact, we claim that the above sequence is splitting. Noting that
@' = p*0; ® (det Q)F ® (det ,) "
and that £ is the pull-back of F by p, we can rewrite
O = p* 0z ®det F; ¥ @ det F¥ ) @ (det Q ® det £71)*.

Let X = Dg1(a) NDpp U Dri(a—1) and 7., = (det Q)(det£;,)~ . Then it
is enough to show that
(4.2) 0— pu(nf, ® Ix) = purik, — pu(nf, ® Ox) = 0

is splitting. The above direct image sheaves can be thought of as vector
bundles associated to representations of GL(r) x GL(r) in (4.1) of Remark
4.1 (see Remark 5.10 of [NR]). Thus, by Remark 4.1, (4.2) is splitting and we
proved the proposition.

In order to prove the following proposition, we need to show that W, is
seminormal for any 0 < a < r. However, we will admit this fact, and prove it
later, so that we can prove the decomposition theorem as soon as possible.
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Proposition 4.3. We have a (noncanonical) isomorphism
H(Ux,Buy ) = H(P,0p(~D2)).

Proof. If we take, in Lemma 4.3, V = W,, V = D, (a), 0 = ¢|p,(a) and
N = ©yy|w,, then we have W = W,_;, W = D, (a) N Dy UDy(a—1) and
N = ©p|p,(a) by Proposition 2.1. Using Proposition 4.1(1) and Lemma 4.3,
we have

0 — H°(D1(a), ©p @ Ip, (0)nDouDs (a—1))
— HO(Wa,@uX) — HO(Wa_l,(")ux) — 0.

Thus we have a noncanonical isomorphism
(4.3)
H°(Ux, Buy ) = H'(Wo, Ouy ) & @D H(D1(a), O ® Ip, (a)nDaup (a-1))-

a=1

If we define D;(—1) = &, note that D;(0) ® W, and D;(0) N Dy = & (by
Lemma 2.4 (1) and Lemma 2.5), we can rewrite (4.3) into

(44) Ho(uxv @Ux) = @ HO(Dl ((1), Op ® I’D1(a)ﬁD2UD1(a—l))‘
a=0
By Proposition 4.1, we have

H°(D1(a),0p ® Ip, (a)nDsuD; (a—1)) ® H'(D1(a) N Dy UDs(a ~ 1),0p)
=~ HY(D,(a), Op),

which isomorphism and (4.4) imply that

(4.5)

P H(D1(a), 0p) = H(Ux, Ouy ) & @D H'(D1(a) N D, UDy(a - 1),0p).
a=0

a=0
By using the following exact sequence
0 — Op, (0)nDsuD1(a—1) = Op1(a)D. ® O, (a=1) = Oy (a=1)rD, — 0
and Proposition 4.1, we get

H°(Dy(a) N Do, 0p) ® H(D1(a —1),0p)

(46) = HO(Dl(a — 1) ND7,0p) B HO(Dl (a) NDy UDi(a— 1), Op).
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By (4.5) and (4.6), we have a noncanonical isomorphism
H(Ux, 0y, ) ® H(D1(r) N Dy, ©p) = H(Dy(r), Op).
On the other hand, by Proposition 4.2, we have the exact sequence
0 — H(P,0p(~Dy)) — H(P,0p) — H°(D3,0p) — 0.

Thus we proved our proposition if one remarks that D;(r) = P.

We recall some facts about the representation of GL(n) (see [FH]). For any
partition A = (A; > --- > A, > 0), we have the so-called Schur functor Sy and
Schur polynomial Sy. One gets all of the irreducible representations of GL(n)
by applying Schur functors Sy to the standard representation V' of GL(n). We
denote these representations Sy(V) by Ry := Ry, ... », and Dy = (A"V)®k.
Then

R4k, itk = Bay o 2, @ D,

and the dual of R}, ... x,, which is isomorphic to S A (V*), is the representation
R_, ..., —x,- In a more fantastic language, R), is the irreducible representation
with highest weight

A1 = A)wr + (Ao = Ag)wa + -+ (A1 — An)Wn—1 + AnWwn,
where wy, - -+ ,w, are the fundamental weights defined by
w’i(diag(alv tre 7(1,”)) =a;+- -+ a;.

Let N,,» denote the Littlewood-Richardson number. Then we have a general
decomposition over GL(V') x GL(W)

(4.7) SA(V @ W) = D Nuwa(S,.V ® S, W)

where the sum is over all partitions p, v such that the sum of the numbers
partitioned by p and v is the number partitioned by A.

For j = 1,2, let E; be r-dimensional vector spaces, and Gr denote the
grassmannian of r-dimensional quotients E1 @ E; — Q. We still use £; to
denote the vector bundle on Gr generated by E;, and use @ to denote the
universal quotient E; ® E; — Q on Gr.

Lemma 4.5. Letl; denote the line bundle (det E;)~'®det Q on Gr. Then
we have a natural isomorphism of GL(E1) x GL{E>) modules

HO(GT’ 13" = @SM(El) ®S,U(E;)’
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where p = (p1, -, u,) runs through the integers 0 < pr <<y <m.

Proof. 1t is clear that H°(Gr,17") = (A"E,)~™ @ H(Gr, (det Q)™), where
the space H%(Gr, (det Q)™) is an irreducible representation of GL(2r) with
highest weight mw, (see §15.4 of [FH]). Thus

H(Gr, 1) = (A"Ey) "™ @ S\(Ey & E,),
where A = (m,--- ,m). Using (4.7), we have
SAEL @ B) = @) Nuwa(S,Er ® S, En).

Clearly, if Nyyx # 0, u = (1, -+, 1) must satisfy that 0 < pr <o <y <
m. The skew Schur function Sx/, = |Hx,—u,—i4j| (3,5 = 1,---,7) can be
written as

S/\/,u, = Z Nuxu/\Sv

in terms of ordinary Schur polynomials S, (see §6 of [FH]), where S, =
|Hy,+;—i|. On the other hand, for given u = (1, s pr) and XA = (m,- -+ ,m),

S/\/u = IHmf;Lij-jl = ,Hm—m+i—j| = ,Hm-ﬂr—i+l+j_i| =Sy

where v = (m—p,, -+ ,m—p1). Thus N,,» = 0 whenv # (m—p,, - - ,m—p1)

and Ny,» =1 when v = (m — p,,--- ,m — p;). Note that
(48) S(m_ur’.,, 7m_ul)(E2) = (ArEQ)m ® SM(ES)
We have

S\(E1 @ Bn) = (DA E2)™ @ S,.(Br) & S,(E3),

14

which proves that

(4.9) HO(Gr,15") = @D Su(Er) © S,u(E3)

"

where p runs through the integers 0 < p, < -+ < py < m.
Given p = (p1,-++ , pr), Su(E1) is the irreducible representation of GL(r)
with highest weight

(1 — p2)wi + -+ (Bro1 — pr)Wr—1 + pywy.
We can rewrite it as (forgetting into the zero terms)

(B (21) = By o) +1)Wrs (21) 7+ F (B (1) = Bry(an)+1)Wry (2y) + Hrwr
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Let d;(21) = r;(2,) = Mri(er)+1 (8 = 1,--+ ,1) and let Flags(,,)(£1) be the flag
variety of type fi(z1) = (n1(z1),- - ,u(x1)), where ni(z1) = ri(x1) —ri—1(z1)
(we set ny(z1) = r1(z1)). If we denote the universal flag on Flagy(,,)(E1) by

B = F()(El) D) Fl(El) DD .F[(El) D) F‘1+1(E1) =0

and the quotient E;/F;(E;) by Qg, ;, then we have

l
(410)  H(Flags,)(E1), R)(detQiz,) ™)) © (A"Ey)* =S, (Br).
i=1

Similarly, if we set 7;(z2) = 7 — 11—i11(z1) and d;(z2) = di—i+1{x1), we have
!
(4.11)  H°(Flags(s,) (Es), R)(detQ; ,)" ") @ (A" Ea) ™ = S,(E3).
i=]1

We remark that [ may be zero, namely, u = (g, -+, ) and S, (E1) is the
one-dimensional irreducible representation (A" E;)#r in this case.
Recall that O™ — F — 0 is the universal quotient on X x Q F and

Grass,(Fe, & Fry) - Qr, Rp = X & Flagi() (Fe) < Qr.

zcl

We will use € to denote the various pull-backs of F. Let g; : Flags(z,)(Fx,) —
Qr (j = 1,2) be the relative flag scheme of type 7i(z;) and

Ex, = Fo(&:,) D Fi(&2,) D+ D Fi(E;) D Fia(Es)) =0

J

the universal flag on Flagy o) (Fz,). If we set Q. ; = &, /F;(€s,) and

l
f = (detfml )NT ® ®(detle ,i)di(xl),

i=1

!
Lh = (det &) @ (XQ)(det Qs i)™
i=1
where the integers I, n;(z;) and di(z;) (¢ = 1,---,1) were defined in (4.10)
and (4.11) (determined by p), then we have
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Lemma 4.6. Let &, ©E,, — Q be the universal r-quotient on Grass(E,, ®
Ezy), and let

h* : Flagﬁ(gcl)(f,;l) XQF Flagﬁ(zz)(]:m) - QF.
Write 1, = (det Q)(det £,)~" for a point x € X. Then we have

f) = @ rE(LY & L£F)

)
where = (p1,- -+, ) Tuns through the integers 0 < p, < --- < p; < m.
Proof. This is the immediate corollary of Lemma 4.5 and (4.10)-(4.11).
For p = (p1,-++ , pr), let U;i( be the moduli space of semistable parabolic

bundles on X with parabolic structures at points I U {x;,z2} and weights
d(x) for x € I (see Definition 1.1 in §1) and for j = 1,2

-1 l
6(Ij) = (iu‘H/'l'T + dl(xj)a ket Zdi(xj)aﬂr + Zdl(xj))
i=1 i=1

Let
@L{‘i = @(k,g,(—i, &’IU {xl’xz})
X

be the line bundle defined in Theorem 1.2 with a,, = u, and a,, = k — ;.
Then we have the decomposition theorem
Theorem 4.1. There exists a (noncanonical) isomorphism

HO(Ux, Ouy) = P H UL, O41)
j7:

where pp = (f1,- -+, pbr) Tuns through the integers 0 < p, < --- <y <k —1.
Proof. We consider the commutative diagram

~’F = Grass;(Fr, ® Fz,) Xar Ry —— Rp

.| |

Grassy(Fg, & Fu,) L, Qr
and note that €' = POz, ® (detQ)* ® (det€,)*. Then

0’ ® O(-Dy) = POz ©® (det€,) ™% ® (det€,,)* ®pine .
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Thus
p(6' @ O(=Dy)) = O, ® (det€,) ™" @ (det€y,)* ® g* (fuml )
By Lemma 4.6, we have

(4.12) p.(6'®O(-D2)) = (O, ®(dets,) F®(detéy,)")@g" hi (LY@ LY)

)
where p = (1, , gtr) runs through the integers 0 < py < -+ < pip < k—1.
Let
ﬁ“ = ’ﬁ, XQ Flagﬁ(:cl)(fml) XQ Fla,gﬁ(x2)(fm2) = X(Q Flagﬁ(m) (fx)
zelU{zi,z2}
and

6, =05, ® (detf,) ™ & (det€,,)*) © LT @ L.
Recalling that (see §1)
le i
05, = (det Rrz€)* @ R{(det £2)* ® Q)(det Qui)"*)} ® (det £,
el i=1
and using the definition of £/ and £}, one has

ly
6, = (detRrz, %0 (KR {(det&)™ ® QR(det 2, )"} @ (det &,)"

zelU{zq,2z2} =1
with oy, = lr, @z, =k — p1, and Iy =1z, = 1. éu is the restriction to ’ﬁ‘,ﬁ
of a line bundle linearising the SL(#)-action on the projective variety R* and

L{;i( is the GIT quotient of the semistable points (ﬁ“)ss C 73’} Noting that
ri(ze) =r —r_ip1(z1) and di(z2) = dj_iy1(z1), we can check that

Ly
Z Z di(z)ri(z) +r Z o +rfl = kn.

relU{zi,z2} =1 zelu{zy,z2}

Thus é/t descends to the line bundle ©;+ on Uf‘f, and
X

HO(U%, @u;%) — O (ﬁu 55 é”)inv - Ho(ﬁ;, éu)inv'
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Let p* : ﬁ‘} — R be the projection. Then (4.12) can be written as

(4.13) pe(6' ® O(— @p*

Thus

H0(~II;,(':)I ®O(— zn'u @HO RM @ inv @HO U~ eu“)

On the other hand, since a section of &' ® O(—D,) is also a section of O, we
have

HO(R'**,6' ® O(=Dy))"™ = H'(R'*** N R, 6' ® O(~Dy))™
by Lemma 4.2 (see the proof of Proposition 4.2 for details), and

HYR'** N Ry, & ® O(=Dy))™ = H' (R, 0’ @ O(=D,))"™
by Lemma 4.1. Thus one gets a canonical decomposition

(4.14) H(P,0p(~D2)) = (D H' Uy Ouz)-

The theorem follows Proposition 4.3 and the proof is completed.
Remark 4.2. The proof of the above theorem gives also a decomposition

of p.(©) )
)= @ PO,
m

where pu = (1, , pr) Tuns through the integers 0 < py < -+ < < k.
Now we are in a position to deal with the seminormality of subvarieties W,,
which was actually hidden in some literature ([Fa], [S2] and [Tr]). Our task
here is to reveal the fact in this literature. In order to make our paper self-
contained, we begin with the definition of seminormality (see [Sw] or [NR])
and we also assume that |I| = 0 for simplicity.
Definition 4.1. An extension A C B of reduced rings is subintegral if
(1) B is integral over A;
(2) Spec(B) — Spec(A) is a bijection;
(3) kanp — kyp is an isomorphism for any p € Spec(B), where ky, = B, /pBy.
Definition 4.2. Let A C B bereduced rings. We say that A is seminormal
in B if there is no extension A C C C B with C'# A and A C C subintegral.
We say that A is seminormal if it is seminormal in its total ring of quotients.
A variety V is seminormal if its local ring at any point is seminormal.



DEGENERATION OF MODULI SPACES; GENERALIZED THETA FUNCTIONS 507

Proposition 4.4. Let V be a variety and let @p denote the completion of
O,. Let I and I3 be two radical ideals in a Ting A such that I + I, is radical.
Then we have

(1) V is seminormal if, for any p € V, Op[u1,--- ,u,]] is seminormal for
some n;

(2) A/(Iy N1y) is seminormal if A/I; and A/I> are seminormal;

(3) A GIT quotient of a seminormal variety is seminormal.

Proof. See §3 of [NR].

Let Q be the Quot scheme of semistable torsion free sheaves of rank r and
degree d, and let F be a universal sheaf on Q x X. For any q € W, C Q, we
will prove that @Vva,q[[ul’ -+, Up)] is seminormal for some n, which will imply
that W,, thus W,, is seminormal by (1) and (3) of Proposition 4.4. Without
loss of generality, we can assume that ¢ is the point of W, such that

~t
qul‘zmx .

To work out the local model of W, at g, we have to recall the local model
of Q at ¢ (see Huitiéme Partie IIT of [S2]). It is known that there is a subspace
W C H°(X, F;(m)) of dimension r such that F,(—m) — O ® W* is injective
and induces the canonical inclusion m&™ C OP" for some m (Proposition 21
of [S2]). Let A be the category of Artinian local C-algebras, and let X4 =
X x Spec(A) for any object A of A. Let Og’(A — F4 — 0 be an exact sequence,
which induces O% — F; — 0 on X, and let W4 C H(X 4, F%(m)) be a free
A-module of rank r such that W4 ® 4 A/m4 = W. Then

Fa(—-m) > W, = HomoXA(OXA ®@ Wi,0x,)

is an injective morphism (see Lemma 19 of [S2]). Writing T = O ® W*/
Fq(—m) and letting T, be the restriction of T on {z}, one has the following
functors:

F,G,H: A — Set,

F(A) := {isomorphic classes of (0%, — F4 — 0,Wa)},
G(A) := {isomorphic classes of (0%, — F4 — 0)},
H(A) := {isomorphic classes of (0%, — T4 — 0)},

where 74 and T4 are A-flat, T4 has support {z} x Spec(A), and the functors
satisfy
F(A/ma) = {(0% — F4 — 0,W)},

G(A/ma) ={(O% — F, = 0)},
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H(A/ma) ={(O%x — T — 0)}.
We have two morphisms f; : ' — G and f; : F — H defined by
[i((O%, — Fa— 0,Wa)) = (0%, = Fa—0),
(0%, = Fa—0,Wa)) = (W3 = Wi/Fa(=m)l{z} xspec(a) = 0)-

Lemma 4.7. The morphisms f1 : F — G and fo : F — H are formally
smooth.

Proof. See Lemma 23 and Lemma 24 of [S2].

Suppose that R = O, & C[Ty, T3)/(Ty - Ty), and w = Ty, v = Ty are the
elements of R. Then the matrices

a:<ublr 0 ), B=(v-I, u-1,)

v-I,
determine an exact sequence
(%) R* &R L pr o
We define the functor ¢ : A — Set by associating with an object A € A the
set of isomorphic classes
(Roc A)2 24 (R®c A)Y L4 (Rec A" — Ta — 0

of deformations of (), with T4 = Coker(34) A-flat. One proved that & is
isomorphic to H (see Proposition 29 of [S2]). On the other hand, we consider
the variety

Z=A{(X,Y)eM(r)xM(r)|X- Y=Y X =0}
For any (X,Y) € Z(A), where X = (@;;)rxr, Y = (¥ij)rxr, the matrices

u- I, X
aA(wa)=( % ’U'Ir), IBA(X,Y)z(v'IT_Y U‘IT_X)

determine, if z;; € m4 and y;; € my4 (4,5 = 1,2,--- ,r), a deformation

((Fxy)) (Rec A
of (), which gives an element of ®(A). In fact, O 7,(0,0) Tepresents the functor
® (see Proposition 28 of {S2]). Thus we get the local model Z of Q at q. It is
not difficult to see that the local model of W, at q is

Z'={(X,Y) € Z |rk(X)+rk(Y) < a}

if we remark that Im(B4(x,y)) ® R/mg has rank 2r — rank(X) — rank(Y).
Namely,

@A(X,Y) Bax,y)
5 /5

(R®c¢ A)ZT' (Rc A - T4 — 0

A~

Oy, w1, un]] 2 Oz 0,0)[[v1, -+, ve]]

for some n and t. To prove the seminormality of W,, we will need
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Lemma 4.8. Let R be a ring, X = (Zij)rxr, ¥ = (Yij)rxr and
Wik, ko) = {(X,Y) | XY =YX =0,rank(X) < ky,rank(Y) < ko },

I(ky, ko) = (XY, Y X, I, (X), I;,(Y))R[ X, Y].
If B(k1,k2) is the reduced coordinate ring of W (ky, kz), then

B(ky, ko) = R[X,Y]/I(k1, k2).

Moreover, if R is Cohen-Macaulay and normal, the W(ky,ks) are Cohen-
Macaulay and normal if k1 + ky <.

Proof. See Theorem 2.9 and Theorem 2.14 of [St].

Theorem 4.2. The varieties W, (0 < a <) are seminormal. In partic-
ular, the varieties W, (0 < a <r) are seminormal.

Proof. By Proposition 4.4, we only need to check that @Z',(0,0) [[vi, - ,ve]]
is seminormal. It is clear that

a a
7' =|JW(k,a—k), Oz =CIX,Y]/[)I(k,a—k).
k=0 k=0

It is easy to check that, for any 0 < I < a,

a—l1 a—l1
(4.15) (Y I(k,a—k)+I(@a—1+1,1—1)= ) I(k1-1).

k=0 k=0
Thus one can use (2) of Proposition 4.4 to prove that Oz is seminormal
because of the normality of W(k,a — k). But (4.15) and the normality are
unchanged under completion, a classic fact (for example, see §13 of [ZS]),

and so we have proved the seminormality of © zr 0,0 [[v1,- -, ve]] by the same
reason.

§5. Codimension computations and the vanishing theorems

We are going to prove the vanishing theorems in this section. For this pur-
pose, we need some computations of codimensions, which may have some in-
dependent interest. Let V be a vector space of dimension r and V' C V an ry-
dimensional subspace. We denote the flag variety of type @@ = (n1, - ,n41)
by Flagz(V'), and its closed point

(V=VyoViD---2VDVy1=0)

by F(V). We begin the story by the following lemma.
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Lemma 5.1. For any partition ry =mq +--- + my+1 with m; > 0, let
QV') ={F(V) € Flagz(V) | dm(V'NV))>r—(my+--+ m;)}.

Then we have

+1

codim(QV")) = Z( ;i —m;)(ry — Z

j=1
Proof. The closed points of Flag;(V) can be expressed as the quotients
V=V/Vipa = V/Vi— - = V/Vi - 0)

with dim(V/V;) = n; +--- +n; and the closed points of (V') are the points
of Flagz(V) such that

rank(V' - V/V)) <my + -+ m,.

By Proposition 9.6 and Remark 9.16 of [Fu], there exists, for any n > r, a
unique permutation w € S,, such that

Tw(mi 4+ nir) =my+ - +m,.

(Wetakea; =7, 1<i<l+1landb,=ny+---+ ny4+2—; in Proposition 9.6
of [Fu].) Thus the codimension of Q(V') is £(w) (see Proposition 8.1 of [Fu)).
By Proposition 9.6 (c) of [Fu], we compute that

I+1 7
0w) =3 (n; — my)(r = S ma),
j=1 i=1

which proves the lemma.
Proposition 5.1. With the same notation as before, we have the following
estimations of codimensions:
(1) codim(R**~R®) > (r—1)(§—1)+1if |I| > 0, and codim(R* < R*) >
(r=1)(G - 1) if |1 = 0;
(2) codim(Rr ~ ’R,SS) r—=1(g-1+1.
Proof. Recall that Ry = ><Qp Flagy(;)(F,) and the tangent space of Qg
zel
at the point (0 - K — O" — E — 0) € Qp is H'(X, KV ® FE). Since
C* = HY(E) and H!(E) = 0 (by the definition of Q), we have the exact
sequence

(51) 0-HYEY®E)—>C*"®C"* - H K" ®E)— H'(EY®E) — 0.
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The Riemann-Roch theorem implies that dim HO(KV @ E) = r2(§— 1) + 1+
dim PGL(n). Thus

dimRp =12(§— 1)+ 1+ Y dim Flags((Fz) + dim PGL(#).
zel

We will deal with (1) in detail. Consider a point E € R* \ R°. It is an
extension

O—>E1—>E—+E2—’O

by two vector bundles E; of rank r; and degree d; such that
(5.2) pardeg(E;) = rr—lpardeg(E),
where we take the induced parabolic structures on E;. Let
E;=Fy(E); DF1(E): D~ D F (E): D F,11(E); =0
be the quasi-parabolic structure of E at x € I, with weight
0<ai(zr) <ax(zr) < - <a 4+1(x) <k,

and let m;(z) = dim(E1, N F;_1(E)s/E1 . N Fi(E),). Then we rewrite (5.2)
as

le+1

(5.3) rdy —md= % Z Z (rini(z) — rm;i(z))ai(x).

z€l i=1

We will now describe a (countable) number of quasi-projective varieties para-
metrising such parabolic bundles.

For j = 1,2, let d;, ; and i1, be integers such that dy +ds = d, r1 +75 =7,
and n1+ny = 7. For each = € I, let my(z),--- ,m;, 1 be nonnegative integers
such that 7y = mq(x) +--- + my_41(x) and

lp+1
rdy —rid = % Z Z (riny(z) — rmy(x))a;{x).
wel i=1

Let Qj (j = 1,2) be the Quot scheme of rank r;, degree d; quotients

0" — E; — 0
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and let (5% be the open subset of locally free quotients with vanishing H YE;)
such that C* = HO(E;). Let F; be the universal quotient on X x Q%
V=QLxQ}rand F=Fy @ Fron X x V. If weset f: X xV —V and

Ve ={y e V| K (f '), Fly1) =1},

then Vj,: are locally closed subschemes (with the reduced structure) of V, and

V= U Vhl.

R1>0

R f.(F) is locally free of rank k! on Vj,:. We define varieties Pj: as follows:
(1) if k' =0, we set P =V and F*' = F1 & F on X x V;
(2) if h! > 0, we define P, = P((R'f.F)Y) to be the projective bundle on
Vi1, and F h' to be the universal extension

0= FQ0p(1)—F" = F —0

on X x Py:.
For any x € I and v(z) = (r1,d1, k', mi(z), -+ ,mi,4+1(x)), we define a locally
closed subscheme of Flags ) (F2) to be

(Be = Fo(E): D Fi(E)z D+ D Fi,(E). D Fi,+1(E)=0)

XO — 1
v(z) € Flag()(F!') | dim(F(E); N Ey) =7 — Y _ m;(x)
i=1
and let

XU = XPhl Xg(z)
xel
Each X, parametrises a family of parabolic bundles E, which occur as
extensions 0 — E; — E — E5 — 0 (the extension being split if h! = 0), with
parabolic structures at = € I of type fi(z) = (n1(2),--- ,n,+1(z)), whose
induced parabolic structures on E; are of type (mi(x),:--,mu +1(z)) (we
will forget m;(z) if it is zero). The dimension of X, is not bigger than

(G—1) S r2+ Y dim PGL(#;) + 2+ h* = 1+ ZI dim Xy if A1 >0,
A

(G-1) 272 + 3 dim PGL(7;) + 2+ 3 dim Xy (o) if ! =0,
x€l
where i = 1,2. Let X3° be the open set of semistable parabolic bundles, and
let F(v) be the frame-bundle of the direct image of F(v) (the pull-back of
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F"') on X$5. There is a map from each F(v) to R . R*, and the union of
the images covers R*® \ R?

dim(Im F(v)) = dim(F(v)) —e

where e is the infimum of the dimensions of the irreducible components of the
fibres. If a vector bundle F is an extension

(5.4) 0—-FE —FE— FEy,—0,
then it is easy to see that

2+ dim(H°(Ey ® Ey)) if (5.4) is splitting,

amaue) = { 17 . |
1+ dim(H(EY ® E1)) if (5.4) is not splitting.

Since the E are generated by sections and any automorphism of E acts non-
trivially on the frames of H°(E), we have

(1) e> dim(H°(EY ® Ey)) + @i + a3 if h' =0, and

(2) e> dim(H°(Ey ® E1)) + 7} + 73 — Lif h! > 0.
Thus, by using the Riemann-Roch theorem, the codimension of the images
are bounded below by

rire(g— 1) + Z codim(Xg(z)) +rdy — rid.

xzel

By Lemma 5.1 and (5.3), noting that riro =13 (r—ry) >r—1, we have

Lo+l j
Z Zm, )(n;(z) —m;(x))
codim(ﬁss\ﬁs)Z(T’—l)@—l)“‘Z j—llﬂ =
S SERE »@

Since r; = Zijl m;(z) and 7 = Zﬁ ~*1ni(x), the first statement of the
lemma follows the following Lemma 5.2.

Now we prove (2) of the lemma, the arguments being word by word as
above, except that we replace the equality (5.3) by an inequality

lo+1

rd; —rid > + ZZ (rini(z) — rm;(x))a(x).

.EEIl]
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Lemma 5.2. For any integers n; >0 and m; >0 (j =1,--- ,1+1) with
n; >myj, let 0 <a; <--- < a1 <1 be rational numbers. Then

I+1 I+1 +1 3 I+1 I+1

I+1 I+1
Domid (ny=my)+ 3 myd nsa; > Y (3 mi)(ng—m +Z"zzm]a]
=1 j=1 =1 =1 =1 =1

Moreover, if Zg LNy > Z] lm] > 0, we have the strict inequality

+1 +1 i+1 I+1 +1 J +1 41

ijZ(nj—nzj)+Z mjz n;a; > Z(Zmi)(nj-mj)+2annLjaj.
j=1  j=1 =1 j=1 j=1 i=1 =1 j=1

Proof. We check it by induction on [, letting (*) denote the inequality and
LHS(+) and RHS(*) denote the “left (right)-hand side of (x)”. When | = 1,

we have
LHS(x) — RHS(*) = ma(nq1 — mq) 4+ (ming — mani)(az — ay),

which satisfies the lemma. Assume that () is true for { — 1. Then

! !
LHS(x) = RHS(x) > mus1 » _(n; —m;) = > (muyiny — nism;) (@ — a5),
Jj=1 j=1

which is a strict inequality if Zl_l n; > Zz (mj; > 0. When my;; =0,
LHS(x)—RHS(%) > nj4q 217 1(@141—a;)m; > 0, which is strict if 3 7 +1 n; >
Zl+11 m; > 0. When m;;1 > 0, we have that

! !
LHS(x) = RHS(¥) > mu14 Y (nj —m;) Z

Jj=1

m;) (a1 — aj)

>0,
which is strict if 1,41 > myy1. The lemma, is proved.
Proposition 5.2. Let D/ = Di(r — 1) UD! and D] = Dy(r— 1)U DL,
Then
(1) Codim(H ~R"*) > (r—1)§+ 1.
(2) The complement in R'*S {D{ UD%} of the set R'* of stable points has
codimension > (r — 1)g + 1 if |I| > 0, and codimension > (r — 1)§ if
[I| = 0.
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Proof. We will prove (1) in detail, and (2) will follow similarly. For any
(E,Q) € HN\R'** with £, ®E,, 4 @ — 0, there exists a nontrivial subsheaf
E, C E, of rank(E;) = r1 > 0, such that E//E is torsion free outside {xq,z2}
and

(5.5) pardeg(E;) — dim(Q"") > Crlv(pardeg(E) -r).

In fact, we can choose Ej such that E/E; = E, is torsion free. If E has
torsion , 71 @ z,7T2, then let £y O E; be the inverse image in Eof ;,71 & 2,72
Then pardeg(E,) = pardeg(E:) + dim(71) + dim(r2) and

dim(QEl) — dim(QF*) < dim(m) + dim(ry) = pardeg(E;) — pardeg(E)),

which shows that El satisfies (5.5), and we can choose El instead of E;. Thus
F is an extension
0—-FE —>FE—>FE,—0

with B, torsion free (note that ro = rank(E;) > 0) and with E; satisfying
(5.5).

We can write E = E' & ,,C' & ,,C2 and E, = E] & ,,C"' & ,,C™
with E’ and E] torsion free. Thus (E, Q) is a GPS such that E' = E/Tor(E)
occurs as an extension

0— E| - E — Ey—0 (where Ej} = E)

with pardeg(E}) > dim(QF")+ 2 pardeg(E)—r1—s1—s2. When d = deg(E) =

deg(E')+s;+s2 is large enough (so is deg(E’) since s1+s2 < 1), we can assume

that E/ and E} are generated by global sections and H'(E}) = H'(E;) = 0.
Let d; = deg(E}), rj = rank(E}) (j = 1,2) and, for any z € I,

m;(x) = dim(E{, N Fi_1(E)2/E}, N Fi(E)z)

where E;, = Fo(E)y D Fi(E)y D --- D Fi,(E): D Fi,41(E) = 0 is the
quasi-parabolic structure of E at = € I of type (ni(x), -+ ,n,4+1(x)), with
weights

0<ai(zr) <ax(r) < - <ap4i1(x) <k

Let t = dim(QF') and s = s; + so. Then s <t < r and

lo+1

(66  rdi-rid>r(t—s—rn)+ 33 (i) - rmi(@)ai(a).

rzel i=1
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Let v = (dy,ry, 81, 82,8 {mi(2),--- ,my, +1(2)}rer, h), where h > 0 is an in-
teger. We will construct a variety F'(v) with a morphism F(v) — H ~ R’**
such that its image contains the point (£, Q).

For j = 1,2, let n; = dim HO(EJ’-), Q’ the Quot scheme of rank r;, degree
d; with quotients O™ — E; — 0 and Q% the open subset of locally free
quotients with vanishing H' (E}) and Ej generated by global sections. Let &;
be the universal quotient on X x (5}, V= (5}; X (5% and F = &Y ® &, on
X x V. We have V = J,», Vi and R f,(F) is locally free of rank & on Vj,
(see the proof of Proposition 5.1), where f : X x V — V is the projection.
Let P, = P((R'f.F)V) be the projective bundle on V}, and let

(5.7) 0— & ®O0p, (~1) = E'(R) — & — 0

be the universal extension on X x P, (we set P, = V and £'(h) = gl &
if h =0). For v/ = (di,r1,{mi(x), - ,mi+1(x) }zer1, h), as in the proof of
Proposition 5.1, we can define a variety X (v') — Pj,. It parametrises a family
of parabolic bundles E’, which occur as extensions 0 — E; — E' — E}, — 0
(the extension being split if o = 0), with parabolic structures at z € I of
type 1i(x) = (n1(z), -+ ,ni,+1(x)), whose induced parabolic structures on E
are of type (my(x),---,my, +1(z)) (we will forget m;(x) if it is zero). Let
0— E(-1) = E'(v') — &5 — 0 be the pull-back of (5.7) on X x X(v'), and
EW)=E&'(v)® ,, 0% @ ,,0%. We consider

Gy = Grass, (E(W )z, BEW)s,) — X (V)

and define a subvariety of G,/ by

X(v) { (Ey, ®En, 5 Q — 0) € Gy with dim(ker(q) N (C* &C*?)) = o}
V)= .

and dim(ker(q) N(E7, @ C* @ Ej,, & C*))=2r1 +s—t

Then X (v) parametrises a family of GPS (E = E'® ,,C** & ,,C%2, Q), where
E' occurs as an extension 0 — E{ — E' — E} — 0 (it is split if A = 0) with
parabolic structures at « € I of type 7i(x), whose induced parabolic structures
on Ei are of type (mi(z), -+ ,my +1(x)) (we will forget m;(x) if it is zero),
such that ., C** & ,,C°? — Q is injective and

rank(E;, @ CP @ E|,, #C” - Q) =t.

One computes dim X (v) = dim X(v') +r(r+s) — (r —t)(2r1 + s — t). Let
£(v) be the pull-back of £(v') on X x X (v) — X x X(v'), and let F(v) be the
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frame bundle of the direct image of £(v) on X (v). Then there is a morphism
Fv) > H~ R’*s whose image contains (E, Q).

Therefore we have a (countable) number of quasi-projective varieties F'(v)
and morphisms F(v) — H ~ R'*s such that the union of the images covers
H ~ R'*S. Since the sheaf E' @ ,,C* @ ,,C*? has an automorphism group
of dimension at least dim Aut(E') + rs + s*, and the dimension of H is

r2(§—1)+ 1472+ dim Flags()(F;) + dim PGL(7),
zel
we find that the codimension of H \ R’** is bounded below by

rira(§—1) + 8> +ris+ (r - t)(2r1 +s—t)
lp+1

+rd1—r1d+zz Ty — Zml z))(n;(z) —m;(x)).

zel j=1
By using (5.6), we get
codim(H ~ R'%) > rireg + (r1 — )2 + (1"1 —t+s)s
lz+1
Zm mez)) n; (@) — m;(2))
* Z lot1

i + Z rin;(x) — rm;(x ))ajl(:)

(5.8)

It is clear that (r; —¢)2 + (r1 —t + s)s > 0 when ¢t < 1y + s. Otherwise, if
t>r1 +s, we have (r; — )2+ (r —t+s)s = s>+ (t —ri)(t —r1 — 5) > s°.
Thus
codim(H~R'**) > (r —1)§ + 1,

and we have proved (1) of the proposition

For any (E, Q) € R~ {DJUD{}\R" with E,, ®Es, > Q — 0, there s
asubsheaf £ C E such that E/E i is torsion free outside {z1, 2}, contradicting
the stability. One can show that E has to be of rank 0 < r; < r. Otherwise,
E must satisfy the exact sequence

0—>E—E— ;71 ® 2,72 —0
with dim(r @ 12) = dim(Q/ QF ), and we have the diagram
Eﬂfl ®Ex2 E— E1:1 @EI2 —> T @7'2 — 0

| ') |

0 —— QF -, Q — 5 Q/QF —— 0.
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Since q; : E;; — Q (j = 1,2) are isomorphisms, 7; have to be zero. Thus (2)
now follows the same proof except that we replace the inequality (5.6) by an
equality.

Remark 5.1. It is not true that R’**~R’® has codimension > 1. Points on
Df = Dy (r—1)UD! and DJ = D, (r—1)UD} are never stable (see Remark 1.2).
The above codimension bound breaks down because, for (E, Q) € D{ UDg , we
cannot assume that the subsheaf contradicting stability is of rank 0 < r; < r.

We denote the Jacobian of degree d line bundles on X by Jii)‘7 and the

Poincaré line bundle on X x J)% by L. Let
0, := (det Rm;L) ® (det L£,)*T179

and Det : ﬁp — J% be the morphism given by the determinant of the
universal quotient bundle. This induces a morphism U5 — J%, which will

also be denoted by Det. On ﬁp, one sees easily that
(5.9) (det Rmjs _det £)72 = (det £,)*" "=~ g Det*0 2.

Lemma 5.3. Let Det : Uy — J% be the induced morphism by Det : Ry —

J;i?. Then
Ou, ® (Det*©,) 2

is ample if k > 2r.

Proof. Let L{)-I% be the fibre of Det : Uz — J;i( at L € J%. One has an
r?9-fold covering

.k 0

given by f(E, L) = E ® Lo. We will show that 6y, ® (Det*©,)~? is ample
when pulled back to this finite cover.

One can show that Z/{XLV is unirational, which implies that

Pic(U% x J%) = PicU%) x Pic(J%).

Hence it suffices to check that the restriction to each factor is ample. The
restriction to the first factor Z,l§ is GL,} |u§, which is clearly ample.

The restriction to the second factor is f*(('—:)u)?)!.]% ® f*(Det*Gy)‘Qb%.
Writing M, = f*(@u)?)b% and M, = f*(Det*Gy)_2|J)o?, we are left with the
task of proving that M; ® M, is ample. It is easy to see that M; = f} @u}?
and M, = f5(©,?), where fi : J% — Uz and fo : JE — J are given by
fi(Lo) = EQLq (for afixed F) and fo(Lg) = L& L. If we identify J% with J%
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by the isomorphism J% oL, J% and work up to algebraic equivalence, then
M, = [r]*(©,?) is algebraically equivalent to ©, 2 where [r] : JE — Jg
is the finite cover given by [r](L¢) = L{,. To figure M; out, we consider the
commutative diagram

XXJ%]X—fl>5(:XU}?

" | |

0 f1
J)"( — Uz
By the base change theorem, if £ denotes a Poincaré bundle on X xJ %, then

l;]; -
M, = (det Rm; E® L)* ® (X){(det L) @ Q) (det L)%} @ (det £,,)"™,

ze€l 1=1

which is clearly algebraically equivalent to

(det RryE ® L)* @ (det L) Erer TiZi du@)ri(e)4r Soep eatrl
= (det Rm;E @ L)* ® (det L£,,)".

On the other hand, since E is generated by sections and det(FE) = L, we have
0—»(’)/X®CT71—>E—>L——>O.

Thus (det Rm;E ® L) = (det Rm;L)" ' ® det Rrj(L ® L), and M, is alge-
braically equivalent to

{det Rr; L @ (det £,)* 79} "~ V% @ {det R (L ® L) ® (det(L ® L£),)* T 79}

After identifying J% with J%, we see that M, is algebraically equivalent to

8;’“. Thus M; ® Ms is algebraically equivalent to 6;k’2rz, which is clearly
ample when k > 2r.

The next lemma is a copy of Lemma 4.17 of [NR] (one can see [Kn] for its
detailed proof).

Lemma 5.4. Let X be a normal, Cohen-Macaulay variety on which a
reductive group G acts such that a good quotient w: X — Y exists. Suppose
that the action is generically free and that dim(G) = dim(X) — dim(Y'), and
further suppose that

(1) the subset where the action is not free has codimension > 2, and
(2) for every prime divisor D in X, n(D) has codimension < 1, where D
need not be invariant.
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Then wy = (mw x )€ where wx, wy are the respective dualising sheaves and
the superscript ()¢ denotes the G-invariant direct image.
Fix an ample line bundle O(1) on X, and a set of data

w = (d, 7k, 0, {di () }rer1<i<l,, {Qn }zer, T)

satisfying

lz
(5.10) DY di@)ri(@) + 1Y ap + 1l = ki

xel 1=1 zel

Then w determines a polarisation (for fixed O(1))

% X H{am,dl (), ,di, (x)}.

zel

We denote the set of semistable points for the SL(72) action under this polar-
isation by R}’ C R, and its good quotient by U5 .

Iy
Oz, = (det Rrj..E)" @ Q){(det &,)* @ ®detQ )5} @ (det €,)°

zel

descends to an ample line bundle (‘)u)? on Usy , and we need to prove that
HY (U % w’@ui,w) =0.

Theorem 5.1. Assume that § > 2. Then, for any set of data w satisfying
(5.10),
Hl(U’)?‘w,@ui w) = 0.

Proof. We can assume that r > 2 since the vanishing theorem for r = 2 is
known (see [NR] and [Ral). Let @ = (d,r,k,, {d;(®)}rer1<i<i,s {@ zer, I)
be a new set of data with k = k+2r, £ = 2+ £—r|I|, d;(z) = d;(z) +ni(z) +
ni+1(z) and @, = a, + ni+1(x). Let

lo i
O, = (det Rﬂ'ﬁFé')k ® ® {(det E)% ® ®(det Qm)di(r)}

zel i=1

® ®(det€ )T ® ® det £,)' " ® (det gy)2ﬁ+2(r~1)(§v1)+t7.
z€l
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One can check that
lo
(5.11) ZZJ )7i( x)+rZaI+r£—kn
el i=1 zel

@ determines a new polarisation

% % H{&x,czl(l‘),"' 7Jl1($)}'

zel

We denote the set of semistable points for the SL(n) action under the new
polarisation by R’ C R, and its good quotient

Yot RE — Us .

O descends to an ample line bundle O (see Remark 1.1 (2)). By Proposition
2.2 and (5.9), we have

(5.12) @RF®W~ =0, ® Det* 0,2

Since we assumed that § > 2 and r > 2, the codimension of RE~ ﬁﬁf for any
w is at least 3 (see Proposition 5.1 (2)). Thus, by local cohomology theory,
we have

(513) Hl (st’ eﬁis)inv — Hl (RF, @ﬁp)inv (Rss ﬁcs )inv‘

Since codim(R2S ~ ﬁg) > 2 (see Proposition 5.1 (1)), by using Lemma 5.4,
we have

(see Lemma 6.3 of [NR]). By (5.12), we can write

(5.14) Ofoe = ¥5(05 ® Det*©,%) @ wp...

One uses the fact that for good quotients the space of invariants of the co-
homology of an invariant line bundle is the same as the cohomology of the
invariant direct image and (5.14) to prove that

HY (R, 05.,)™ = H' Uz, 00 ® Det* 0, @ (Yuuwpzss)™)
= H'(Us 5,00 @ Det* 0,2 @ i ).
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Now since Oy ® Det*©, 2 is an ample line bundle by Lemma 5.3 (note that
k > 2r) and Uy  has only rational singularities, we can apply a Kodaira-type
vanishing theorem (see Theorem 7.80(f) of [SS]) and conclude that

Hl( Xw’ ) _ H (Rse ﬁss)inv =0.

Remark 5.2. (1) To check (5.11), one has to show that for any x € I

lz
r(ni,+1(2) = 1) + ) ri(@)(na(z) + niga (@) = 0.
i=1
Noting that r = n;_41(z) + Ziil n;(z) and n;(z) = r;(z) — r;—1(x), we have
to show that

Z{n 1(@)(r = ri(2)) = ril@)(r = riga (@)} =0,

which is clearly true since ro(z) = 0.

(2) Since Rlp*(@’ y=0foralli>0 (note that p : R’ — Ry is a grassman-
nian bundle over R ), we have Hl('R’ 0')nv = HY(Rp, p,©'). By using
the canonical decomposition {see Remark 4.2) and the vanishing Theorem 5.1,
we can show that H'(R/,,®')" = 0.

Next we will show the vanishing theorem for the moduli space of semistable
parabolic torsion free sheaves on a nodal curve X.

Theorem 5.2. Assume that g > 3. Then H'(Ux,Ou, ) = 0.

Proof. Tt will be reduced to proving a vanishing theorem for P given the
following lemma.

Lemma 5.5. For 0 < a < r, the natural maps H'(W,,Ou,) —
H'(D:(a),0p) are injective. In particular, H(Ux,Ou,) — H(P,O0p) is
injective.

Proof. 1t is known that ¢, := ¢|p, (a) : D1(a) — W, is the normalisation
of W, (see Proposition 2.1). If W, _; is empty, ¢, is an isomorphism and the
lemma is clear. If W,_; is not empty, W,_1 is the non-normal locus of W,
and we are reduced to proving that

H'W,_1,0u,) — H (D1(a) N D2 UDi(a—1),0p)
is injective by Lemma 4.3 (2). Thus it is enough to show that
H'(Wa-1,0uy) — H'(Di(a - 1),65)

is injective, and we are done by induction since ¢g : D1(0) — W) is always an
isomorphism.

In order to prove the vanishing theorem for P, we have to prepare some
lemmas.
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Lemma 5.6. Assume § > 2. Then (Y.wy)™ = wp where wp is the
canonical (dualising) sheaf of P.

Proof. We will check the conditions of Lemma 5.4. By Proposition 5.1 (2),
Uz (d — r) contains a stable bundle, and thus W, contains a stable parabolic
sheaf by Lemma 2.8, which shows that there exist stable parabolic bundles
on X since stability is an open condition. Thus there exist stable generalised
parabolic bundles on X by Lemma 2.2 (2), and the action of PGL(ni) on H
is therefore generically free. We now check conditions (1) and (2) of Lemma
5.4.

(1) By Proposition 5.2 (2), the nonstable locus in R'*® \ {D! UDI} has
codimension > 2. We need to show that each of the D;(r — 1) and
15; contains GPS with no automorphism except scales. Take j = 1 for
definiteness, let E be a stable parabolic bundle on X of degree d — 7,
let E = E® ,,C" and define the GPS structure on E as follows. We
take Q = C7, the map E,, — @ to be the obvious projection, and
the map E,, — @ any isomorphism. This yields, after an identification
H°(E) = C", a point on D} as required. Next consider E = E®O)? (z2),
the GPS structure being given by taking @ = sz2, the map F;, — @
being zero, and the map E,, — @ the residue O, (z2) = C. This yields
a point on Dy (r — 1) with only automorphisms by scales.

(2) If a prime divisor is not contained in the nonstable locus, its image in
P will have codimension one. If it is contained in the nonstable locus,
then, by (2) of Proposition 5.2, it has to be one of the (D;(r — 1)) and
(15;)53. We have already seen that the respective images of these in P
are the D; by Proposition 3.3.

Lemma 5.7. There is a morphism Det : H — J;i? that extends the deter-
minant morphism on the open set ﬁ’F Moreover, it yields a flat morphism
Det : P — J;i(

Proof. Note that, on X x H, we have an exact squence
0K —-0"5E -0,

and K is flat over H since £ is so. One proves that K is locally free on X xH
(by using Lemma 5.4 of [Ne]). Thus det(K)~! is a line bundle on X x H and
gives a morphism

Det : H — J;%,
which is clearly an extension of the determinant morphism on the open set
7€'F Restricted to R’** the map Det clearly factors through the quotient by
the SL(n) action and yields a morphism

Det : P — J%,
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which we will prove to be a flat morphism. J% acts on P by
(E,Q)— L-(E,Q)=(E®7*L,Q® Ly,).

One checks that Det(L-(E,Q)) = Det(E,Q)® (n*L)". Noting that the pull-
back map J¢ — Jgu and the r-power map J% — J% are surjective and that
.]% acts transitively on J%, we can see that Det : P — J% is flat by generic
flatness.

Let H” denote the (reduced) fibre over L € J%, and let PX denote the
(reduced) fibre of Det above L. Clearly P* is the GIT quotient of HZ, and
all of the properties of H and P continue to be valid for HZ and P~. From
the proof of the above lemma, one sees that all of the fibres of Det : P — J:%
are reduced. Thus PL is also the scheme-theoretic fibre over L, and we have

Proposition 5.3. The canonical (dualising) sheaf of PL is the restriction
of wp to PL.

Proof. The following general fact can be proved by repeated use of Bertini
(on U) and the adjunction formula: Suppose f : V — U is a flat map of
varieties, with U smooth and V Gorenstein. Let V), be the scheme-theoretic
fibre over p € U. Then the dualising sheaf of V}, is the restriction of the
dualising sheaf of V.

Proposition 5.4. Assume § > 2. Then H'(PL ©p) =0 forany L € J;ll(.

Proof. Let wk denote the restriction of wy to HY. Then (Yiwh )™ = wpe
by Lemma 5.6 and Proposition 5.3. Recall that, for the polarisation

(L~ k)

m

<k x [[{ow di(@),- - ,di, ()},
xzel
the line bundle ©’ was defined to be

l;r ~
(det Rry€)* ® Rl (det £,) @ R)(det Qz.i) ™)} ® (det £,

zel =1

® (det Q)F ® (det &,) ¥,
which descends to the ample line bundle ©p if the polarisation satisfies
ly .
Z Z di(x)ri(z) +r Z oy + 1€ = kn.
zel i=1 zel

Noting that (1 x Det)*L = (det K)~! ® w3, N for a suitable line bundle N on
H, one sees that N 2 det K, on H™ for any 2 € X (x may be z; and z3), and

(det Rmyndet K1) ™2 = (det £,)?"+(r—D(25-2),
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Thus, on H%, we have ©' = (:); ® “’7L-t by Proposition 3.4, where

lz _ -
O, = (det Rmy2€)* @ (Q){(det £:) ® (R)(det Qi) )} ® (det £,)°

xzel i=1
® (det Q)F ® (det &,)F

with k = k +2r, £ = 27 + £ — r|I|, di(z) = di(z) + ni(z) + nisq(z), and
0z = ag + ny_4+1(z). One checks that

la

ZZJL(.’L‘)Tl(T) + erz +rl = k.

el i=1 zel

The rest of the proof proceeds as Theorem 5.1 except that an analogue of
Lemma 5.3 is not needed. The Kodaira-type vanishing theorem and Hartogs-
type extension theorem for cohomology are applicable since H% and P’ are
Cohen-Macaulay and have only rational singularities.

Theorem 5.3. Assume g > 2. Then H'(P,0p) = 0.

Proof. We consider the flat morphism Det : P — J jd? and try to decompose

the direct image (Det).Op. One can see that (Det),Op = {(Detﬁ,“)*(:)'}m“
and the equalities

{(Detﬁ/“)*é’}inv = {(D@t'}-{)*é,}inv = {(Detﬁ%)*@’}”’“

hold by using Lemma 4.1 and Lemma 4.2, where Detﬁ,p : 7%’1, — J% is
clearly factorized through the projection p : ﬁﬁp — Ryp. Thus (Det7~zar )0 =
(Detﬁp)*p*é)’ and, by Remark 4.2, we have

(Detﬁ;v)*é/ = @(Detﬁ;)*é#,

N

where Detﬁ; = Dety -pt: 75’} — J%, which restricting to (’]Aé")SS induces
a morphism Det,, : L{’% — J;i(/. It is now clear that we have the decomposition

(Det)*@’p = @(Dety,)*@;u
I

which implies that H'(J¢, (Det).©p) = 0 by Theorem 5.1 since § > 2. On
the other hand, R'(Det).(©5) = 0 by Proposition 5.4. Hence we are done by
using spectral sequence.
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