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We propose a scheme to investigate the magnetic phase transition of cold atoms confined in an optical
lattice. We also demonstrate how to get coupled two-leg spin ladders which display a phase transition from a
spin liquid to magnetic ordered state in two-dimensional optical lattice. An experimental protocol is further
designed for observing this phenomenon.
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I. INTRODUCTION

Cold atoms in optical lattices provide a useful experimen-
tal means to investigate quantum many-body systems due to
the advantage of cleanness and controllability. Extensive
works have been done in the past few years, such as imple-
menting quantum phase transitions from a superfluid to a
Mott insulator �1,2�, simulating high-Tc superconductivity
�3�, and realizing various Hubbard models and spin models
�4,5�. By adjusting the amplitudes and propagation directions
of laser beams, a variety of geometries of optical lattice are
generated �6,7�. This technique offers the possibility for con-
structing spin systems including spin chains �8–10�, kagome
lattices �11�, and spin ladders �8,12,13�. In experiments, ex-
cept for cold Bose atoms, Fermi atoms in optical lattices
have also been realized recently, such as 40K in one-
dimensional �1D� �14� and 3D �15� lattices, 6Li in 3D lattices
�16�, and a variety of interesting phenomena—for example,
Bloch oscillations, band insulators, and superfluidity—were
reported.

It was known that spin ladders may provide a transition
from 1D chains to 2D lattices �17�. A class of cuprates can be
described by antiferromagnetic spin ladders with spin 1/2
�18–21�. Applying a magnetic field or pressure, these cu-
prates show a phase transition from a spin liquid state to
several ordered magnetic states. Strongly correlated cold at-
oms in optical lattices provide a way to observe this quantum
phase transition.

In this paper, we propose an optical lattice setup to pro-
duce 2D coupled spin ladders to illustrate a quantum phase
transition, from spin-dimerized phase to magnetically or-
dered phase, and further discuss experimental conditions
which can be realized by adjusting the lattice parameters.
Compared to cuprates, optical lattices are clean and easily
controllable. Manipulating the amplitudes and wave vectors
of laser beams, the coupling between spins can be adjusted in
a wide range.

II. OPTICAL LATTICES AND SPIN LADDERS

A 2D superlattice is formed by superimposing a standing
wave along the x direction with twice the period of a 2D
optical lattice, which was generated by two perpendicular

standing waves, as illustrated in Figs. 1�a� and 1�b�. Adjust-
ing the intensities of the three standing waves, the tunneling
and potential barriers along the x and y direction can be well
controlled. For sufficiently large intensities of the laser, the
on-site interaction strength is much larger than the kinetic
energy so that the lattice-atom system can be in the Mott
insulating phase at a commensurate filling. We will consider
an equal-mixing two-component fermionic system and as-
sume that the lattice has been loaded with one atom per
lattice site. This is possible by using the coherent filtering
scheme proposed in Ref. �22�.

In general, the Hamiltonian of interacting cold atom gas
in an optical lattice is written as

J2

J3

J1
(c) (d)

(a) (b)

FIG. 1. �Color online� �a� Two selected optical potentials along
the x direction, where the potential Vx2 �dotted line� has twice the
period of Vx1 �solid line�. �b� Total potential in the x axis, where a1,
a2, V1, and V2 are the widths and heights of barriers of intradimers
and interdimers, respectively. �c� Landscape of potential in the x-y
plane. �d� Geometry of the 2D coupled spin ladders, where J1, J2,
and J3 are intradimer, interdimer, and interladder spin-spin cou-
plings, respectively.
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where g=4�as� /m and as is the s-wave scattering length.
The potential of optical lattice has the form

U�r� = Vx1 cos2�kxx� + Vx2 cos2�2kxx� + Vy cos2�kyy�

+ �m�z
2z2�/2 + Vx1

2 /�16Vx2� − Vx1/2, �2�

where Vx1 and Vx2 are the barrier heights of the two standing
waves along the x direction, Vy is that along the y direction,
kx and ky are the two components of wave vector along the x
and y directions, and �z is the harmonic frequency of the
potential in the z direction. The last two terms make the
potential value zero in the bottom of every minitrap. To
simulate a 2D coupled two-leg spin ladder, 4Vx2�Vx1 is nec-
essary. The heights of the two potential barriers in the x
direction are V1= �4Vx2−Vx1�2 / �16Vx2� and V2= �4Vx2

+Vx1�2 / �16Vx2�. The widths of the two barriers in the x di-
rection and the one in the y direction are a1
=arcos�Vx1 /4Vx2� /kx, a2= ��−arcos�Vx1 /4Vx2�� /kx, and b
=� /ky. The geometry of the optical lattice is displayed in
Fig. 1�b�.

In the bottom of the trap, we take the harmonic approxi-
mation and the frequencies in the x and y directions are �x

2

= �16Vx2
2 −Vx1

2 �kx
2 / �2mVx2� and �y

2=2Vyky
2 /m, respectively.

When the on-site interaction and thermal fluctuation are
much smaller than the excited energy of the second band, all
atoms are located in the lowest band. The field operators can

be expanded as �̂��r�=�i,jci,j,�w�r−ri,j�, and w�r−ri,j� is
the ground-state function of the harmonic oscillators, w�r�
= �m�̄ / �����3/4em��xx2+�yy2+�zz

2�/�2��. ci,j,� are the annihilation
operators for spin-� atoms localized at the site labeled by
�i , j�, and �̄ represents the geometric mean of frequencies,
�̄= ��x�y�z�1/3. Substituting the field operator into the
Hamiltonian and integrating, we obtain an equivalent 2D
Hubbard model

H = − �
i,j,�

�t1c2i,j,�
† c2i+1,j,� + t2c2i+1,j,�

† c2i+2,j,� + H.c.�

− �
i,j,�

�t3ci,j,�
† ci+1,j,� + H.c.� + U�

i,j,�
ni,j,�ni,j,�̄, �3�

where �= ±1/2 represents the two states of cold atoms and
�̄=−�. The hopping and repulsive parameters are written as

t1=e−m�xa1
2/4��t0+

m�x
2a1

2

8 +
Vx1

2 e−�kx
2/m�x�, t2=e−m�xa2

2/4��t0+
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2a2
2

8

−
Vx1

2 e−�kx
2/m�x�, and t3=e−m�yb2/4��t0+

m�y
2b2

8 −
Vx1

2 e−�kx
2/m�x�,

where t0=− �
4 ��x+�y +2�z�−

Vx2

2 �1+e−4�kx
2/m�x�−

Vy

2 �1
+e−�ky

2/m�y�−
Vx1

2

16Vx2
and U=	 2

���̄as / ā0, with ā0=	� / �m�̄�.
In the regime of strong coupling, U� t, the half-filled

Hubbard model is equivalent to a spin model approximately
up to the order of t1,2,3

2 /U,

H = �
i,j

�J1Si,j
l · Si,j

r + J2Si,j
r · Si+1,j

l + J3�Si,j
l · Si,j+1

l

+ Si,j
r · Si,j+1

r �� , �4�

where Jm= tm
2 / �4U�, m=1,2 ,3, and Si,j

l,r are the spin-1/2 op-
erators on the left and right of the �i , j� dimer. This Hamil-
tonian describes a 2D coupled spin ladder, as displayed in
Fig. 1�d�.

In real systems, an additional weak isotropic harmonic
potential exists over the lattice �2�. This confinement brings
an energy offset of each lattice site and leads to an effective
local chemical potential. The superfluid-insulator phase dia-
gram is influenced by this potential �1�. In the current case,
the contribution of this potential only adds a term in Eq. �4�:

m�wh
2 �

i,j,m
��i − N1/2�2a2 + �j − N2/2�2b2��Si,j

m �z, �5�

where m= l, r and �wh denotes the trapping frequency of the
whole harmonic potential. N1 and N2 are the number of
dimers along the x and y directions, respectively. Similarly, a
and b represent the space of dimers. The effect of this whole
harmonic potential corresponds to producing an effective
magnetic field gradient in the z direction. For a typical opti-
cal lattice, this potential is very weak; for example, in Ref.
�2�, the trapping frequency is about 65 Hz. For a lattice with

100 sites in a single direction, the Zeeman energy for at-
oms in different sites varies from 
10−5Er to 
10−2Er. The
magnitude is much smaller than the coupling energy. Thus,
this additional harmonic potential is ignored in the following
discussion.

III. PHASE TRANSITION

In the following, we consider repulsive spin-1 /2 atoms
�23,24� and focus on the magnetic properties of the system
described in Eq. �4�. By adjusting the optical lattice param-
eters, we can reach the regime that J1�J2�J3�. In this case,
the bond operator method �25� is appropriate to study the
properties of the system at low temperature. It describes well
the dimerized phase and several magnetically ordered phases
of dimer-based antiferromagnets. For a dimer of two 1/2
spins, the Hilbert space can be spanned by four states: one
spin singlet �s�= ��↑ ↓ �− �↓ ↑ �� /	2 and three spin triplets
�tx�=−��↑ ↑ �− �↓ ↓ �� /	2, �ty�= i��↑ ↑ �+ �↓ ↓ �� /	2 and �tz�
= ��↑ ↓ �+ �↓ ↑ �� /	2. Bond operators s† and t�

†��=x ,y ,z� are
introduced to generate the singlet and triplet states out of the
vacuum �0�, �s�=s† �0�, �tx�= tx

† �0�, �ty�= ty
† �0�, and �tz�= tz

† �0�.
The bond operators s and t� are assumed to satisfy the
bosonic communication relations with a constraint of single
occupancy at each bond, si,j

† si,j + ti,j
�†ti,j

� 1.
In terms of these four operators, the two spin operators in

a dimer can be expressed as �Si,j
l ��= �si,j

† ti,j
� + ti,j

�†si,j

− i��	
ti,j
	†ti,j


 � /2 and �Si,j
r ��= �−si,j

† ti,j
� − ti,j

�†si,j − i��	
ti,j
	†ti,j


 � /2,
respectively, where �, 	, and 
 represent x, y, and z, and � is
the fully antisymmetric Kronecker symbol. Repeated indices
are summed over. Under the above transformation, the spin
Hamiltonian, Eq. �4� can be transferred into a bosonic one.
The constraint condition can be realized by introducing the

HE et al. PHYSICAL REVIEW A 76, 043618 �2007�

043618-2



Lagrange multipliers �i,j in the Hamiltonian, −�
i,j

�i,j�si,j
† si,j

+ ti,j
�†ti,j

� −1�. Performing the Fourier transformation ti,j
�

=1/	N�ktk
�eik·ri,j, si,j =1/	N�kskeik·ri,j �N is the number of

dimers�, and taking sk=sk
† = s̃ as that most of the s are con-

densed in the condition J1�J2,3, we get H=�k��ktk
�†tk

�

+k�tk
�†t−k

�† + tk
�t−k

� ��+H0, where H0=N�−3J1s̃2 /4−�s̃2+��,
�k=J1 /4−�− �J2 /2�s̃2 cos�kxa�+J3s̃2 cos�kyb�, and k=
−�J2 /4�s̃2 cos�kxa�+ �J3 /2�s̃2 cos�kyb�, with a=a1+a2.

By using the Bogliubov transformation, the Hamiltonian
can be diagonalized,

H = �
k

�k
k
�†
k

� + E . �6�

The zero-temperature free energy is E=N�− 3J1

4 s̃2−�s̃2+��
+ N

�2��2 ��−�
� dkxdky

3
2 ��k−�k�, where �k= �J1 /4

−��	1−m cos kx+n cos ky, �k= �J1 /4−���1− �m /2�cos kx

+ �n /2�cos ky�, with m=J2s̃2 / �J1 /4−�� and n=2J3s̃2 / �J1 /4
−��. The energy spectrum can be expressed as

�k = �J1/4 − ��	1 − m cos kxa + n cos kyb . �7�

Minimizing the free energy with respect to s̃ and � gives
�E /�s̃=0 and �E /��=0, which determines the parameters s̃
and � self-consistently. The energy gap between the ground
state and the lowest point of spectrum is

 = �J1/4 − ��	1 − �m + n� . �8�

In the regime that �0, most spins form spin singlets in
pairs. In this regime the system is spin disordered or named
as spin liquid �26�. The three triplet modes are degenerate
and massive in the spin liquid phase, as displayed in Fig. 2.
When the interdimer coupling increases, the gap between
excited and ground states decreases and the spectrum is more
dispersive. At a critical point, the energy gap vanishes at the
point k0= �0,� /b� in the wave vector space. The t� bosons
condense and a magnetically ordered phase arises. The phase
diagram of the spin liquid and magnetically ordered states is
presented in Figs. 3 and 4. In Fig. 3, the controlling param-
eters are the ratio between the intradimer coupling and inter-
dimer one. Due to the limitation of the bond operator
method, the mean-field phase diagram needs to be improved
when J2 /J1 approaches 1 and J3 /J1 approaches 0. In Fig. 4,
we gave the phase diagram in terms of lattice parameters.
Adjusting the intensity of lasers, it is possible to realize the
transition between two phases in optical lattices.

In the magnetically disordered phase, the excitation spec-
tra of triplet bosons are threefold degenerate. Considering
spontaneous symmetry breaking, we assume that tz bosons
condensate as the energy gap  approaches zero. The ground
state of a rung in the ordered phase can be expressed as
��̃0�= 1

	1+�2 �i,j�si,j
† +�eik0·Ri,jti,j

z†� �0�, where � is the condensa-
tion amplitude of triplet bosons and k0 represents the in-
plane ordering wave vector �the gap begins to vanish in this
point�. The expected values of spin in this ground state are
��Si,j

l �x�= ��Si,j
r �x�= ��Si,j

l �y�= ��Si,j
r �y�=0 and ��Si,j

l �z�=−��Si,j
r �z�

= �� / �1+�2��cos�k0 ·Ri,j�. It is easy to see that all the dimers
have a staggered magnetic structure and the magnitude of the
spin expectation is related to the condensation of t� bosons.
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FIG. 2. �Color online� The energy spectrums of different inter-
dimer couplings in the spin liquid phase. The solid, dashed, and
dotted lines correspond to coupling strength J2 /J1=J3 /J1=0.1, 0.3,
0.5, respectively. The optical lattice parameters Vx1=5Er, Vx2

=20Er, and Vy =28Er for J2 /J1=J3 /J1=0.1; Vx1=16Er, Vx2=10Er,
and Vy =6Er for J2 /J1=J3 /J1=0.3; Vx1=20Er, Vx2=12Er, and Vy

=7Er for J2 /J1=J3 /J1=0.5. Er=
�2kx

2

2m , where m is the mass of the 6Li
atom, as=2.41 nm, m=9.99�10−26 kg, kx=2ky =5.93 �m−1, and
�z=6600 Hz. �k is measured in units of J1. kx and ky are measured
in units of 1 /a and 1/b, respectively. In the following figures, the
atom parameters and laser wavelengths are the same.
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FIG. 3. Phase diagram controlled by the spin coupling strength.
In the regime of the energy gap, �0, the system is spin disordered
or in a spin liquid phase, while a magnetically ordered phase ap-
pears at =0. The phase boundary can be determined by the equa-
tion �J2+2J3�s̃2=J1 /4−�, where the amplitude of condensate s̃ and
chemical potential � can be given by the variational method. J1, J2,
and J3 are functions of the lattice parameters, so the phase diagram
is described by the amplitudes of standing waves in Fig. 4.
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In order to describe the excitations of the ordered phase, we
take the transformation si,j� = �si,j +�eik0·Ri,jti,j

z �
/	1+�2, ti,j� z= �−�eik0·Ri,jsi,j + ti,j

z � /	1+�2, and ti,j� x= ti,j
x , ti,j� y

= ti,j
y . By performing this transformation and taking the

Holstein-Primakoff expansion, si,j� =si,j� †= �1−1/Nti,j� �†ti,j� ��1/2

�21�, the Hamiltonian includes zero-, linear-, and quadratic-
order terms in the t� bosonic operators. The disappearance of
the linear term gives the value of �= �J2+2J3−J1� / �J2+2J3

+J1�, which also minimizes the zero-order term. Finally, the
Hamiltonian can be diagonalized as

H = �
k�

�k
�
k

�†
k
� + �

k
��k

x +
1

2
�k

z − Ak −
1

2
Bk� + E0, �9�

where �k
x =�k

y =	Ak
2 −4Ck

2, �k
z =	Bk

2 −4Dk
2, E0=N�J1 /4���2

−3� / �1+�2�−�2�J2+2J3� / �1+�2�2, and Ak=
J1

1+�2 + �J2

+2J3� 2�2

�1+�2�2 + 1−�2

1+�2 M, Bk=J1
1−�2

1+�2 + �J2+2J3� 4�2

�1+�2�2 +
�1−�2�2

�1+�2�2 M,

and Ck= M
2 , Dk=

�1−�2�2

�1+�2�2
M
2 , with M =−�J2 /2�cos�kxa�

+J3 cos�kyb�. As a result, the energy spectrum in the mag-
netically ordered phase is obtained, as displayed in Fig. 5. In
this phase, there are two degenerate spin-wave excitations
restoring the breaking of rotational symmetry and one longi-
tudinal mode which is gapped and corresponds to fluctua-
tions in the amplitude of the moment.

IV. DETECTION OF THE PHASE TRANSITION

In the spin liquid and magnetically ordered phases, there
are gapped excitations which are triplet magnons in spin liq-
uid and longitudinal modes in the ordered phase. These gaps
can be probed by magnetic resonance �8�. When �BB�J1
��B is the magnetic moment of the alkali-metal atom and B
is the intensity of the oscillating magnetic field�, the fre-
quency of oscillating magnetic field has a resonant peak at
�=Egap /�.

The excited spectrum is also a sign to distinguish the two
phases. Two-photon Bragg scattering provides an effective
method to measure the spectrum �3,27�. In such experiments
two laser beams with different wave vectors and frequencies
illuminate the atom cloud. The frequency difference is much
smaller than the detuning of the two lasers from atomic reso-
nance. The atoms absorb a photon from one beam and emit
another photon into the other. By changing the angle be-
tween the two laser beams, we can tune the momentum
transfer �momentum difference between the two beams�. If
the momentum and frequency differences match those of the
dispersion relation of the spectrum, a resonant absorption of
the probe light happens. Other methods for measuring spin
correlation functions were proposed to distinguish the differ-
ent magnetic phases �8�.

V. CONCLUSION

In summary, 2D coupled spin ladders can be simulated by
an optical superlattice. A phase transition from the spin liq-
uid to magnetically ordered phase is possibly realized
through adjusting the lattice parameters controlled by laser
beams. Our results show that strongly correlated cold atoms
in optical lattices provide a route to observe this quantum
phase transition. Manipulating the amplitudes and wave vec-
tors of laser beams, the coupling between spins can be ad-
justed in a wide range. Recent developments of controlling
the cold atoms in optical lattices allow for the experimental
investigation of our prediction in the future.
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