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Electric-field-induced resonant spin polarization in a two-dimensional electron gas
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Electric response of spin polarization in two-dimensional electron gas with structural inversion asymmetry
or Rashba spin-orbit coupling subjected to a magnetic field was studied by means of the linear response theory
and numerical simulation with the disorder effect. It was found that an electric resonant response of spin
polarization occurs when the Fermi surface is located near the crossing of two Landau levels, which is induced
from the competition between the spin-orbit coupling and Zeeman splitting. The scaling behavior was inves-
tigated with a simplified two-level model, and the height of the resonant peak is reciprocally proportional to the
electric field at low temperatures and to temperature for finite electric fields, respectively. Finally, numerical
simulation illustrated that impurity potential opens an energy gap near the resonant point and suppresses the
effect gradually with increasing strength of disorder. This resonant effect may provide an efficient way to
control spin polarization by an external electric field.

DOI: 10.1103/PhysRevB.76.045313 PACS number�s�: 85.75.�d, 72.25.�b

I. INTRODUCTION

Recently, electric or nonmagnetic generation of spin po-
larization in semiconductors has attracted a lot of interest
because of its potential application in spintronic devices of
semiconductors.1,2 In this attempt, the motion of electron in-
teracts with its spin via the spin-orbit coupling, which pro-
vides a possible way to control electron spin by electric field
instead of magnetic field. Several experiments were resolved
to produce spin polarization in quantum wells,3–6 strained
semiconductors,7 and hole-doped heterojunction.8 In a two-
dimensional electron gas �2DEG� with structural inversion
asymmetry, it was understood that the spin-orbit coupling
generates an effective momentum-dependent field to induce
a net bulk spin polarization by electric fields or currents.9–12

Recently, it was also proposed to generate spin polarization
in a bulk 2DEG in the presence of in-plane magnetic fields
and electric fields.13 Electric-induced spin accumulation near
the boundary of a sample was already observed experimen-
tally in either n- or p-doped semiconductors as a conse-
quence of spin Hall effect.14–16 The ac field was also applied
to induce and detect spin polarization. The spin orientation
was achieved by the excitation of a high-frequency electric
field.17 Spin resonance by an ac field was also discussed
extensively.18,19

Generally speaking, we may introduce the electric spin
susceptibility �E

�� to describe the response of spin polariza-
tion S� to an external electric field E�,20

S��E� = S��0� + �E
��E�, �1�

where S��0� is the spin polarization in the absence of electric
field. Usually, the electric spin susceptibility is a tensor, not a
vector. The spin polarization is determined by the symmetry
of spin-orbit coupling of the system. To generate spin polar-
ization efficiently, a large electric spin susceptibility is ex-
pected. In this paper, we propose an electric resonant re-
sponse of spin polarization in 2DEG with Rashba spin-orbit
coupling. First, the linear response theory shows that the
electric spin susceptibility becomes divergent when the
crossing point of two Landau levels is accidentally located

near the Fermi surface. The additional degeneracy of two
Landau levels is attributed to competition between the spin-
orbit coupling and the Zeeman splitting. Then, a simplified
two-level model was proposed to investigate the scaling be-
haviors of the resonant electric spin susceptibility. The reso-
nant values of the electric spin susceptibility decay with ei-
ther the applied electric field at low temperatures or with the
temperatures in a weak electric field. Finally, we take into
account the disorder effect and apply the truncation approxi-
mation to study the system numerically, which goes beyond
the linear response theory. The dependence of the divergent
behavior on the electric field and temperature was presented
for finite disorder strengths. It is damped with the electric
field and temperature when the energy scale of the electric
field and temperature is larger than the impurity potential.
The numerical consequence is consistent with the result of
linear response theory.

II. MODEL HAMILTONIAN AND LINEAR
RESPONSE THEORY

We start with a 2DEG with Rashba coupling confined in a
two-dimensional plane Lx�Ly. The model Hamiltonian in
the presence of a perpendicular magnetic field B is given by

H = H0 + HR, �2�

where

H0 =
1

2m*�2 −
1

2
gs�BB�z, �3�

and the Rashba coupling

HR =
�

�
�	x�y − 	y�x� . �4�

m* is the effective mass of the electron, �=P+ e
cA is the

kinetic momentum, gs is the Lande g factor, and �B is the
Bohr magneton. We take the Landau gauge A=yBx̂ and con-
sider the periodic boundary condition in the x̂ direction. The
Hamiltonian can be solved analytically with the eigenvalues
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n,s = ��c�n +
s

2
��1 − g�2 + 8n�R

2� , �5�

where n is a non-negative integer and s= ±1.21,22 Here, the
cyclotron frequency �c=eB /m*c, the magnetic length lb

=��c /eB, the dimensionless g factor g=gsm
* /2me, and the

effective coupling �R=� / lb��c. The corresponding eigen-
vectors are expressed as

�nks� = � icns
+ nk

− scns
− n−1k

	 , �6�

where nk is the eigenstate of the nth Landau level with k
= px the good quantum number because of the periodic
boundary condition along the x direction. cns

± are the coupling
parameters of spins up and down. c0,+1

+ =1, c0,−1
− =0, and cns

±

=1/�1+ �un�s�1+un
2�2 with un= �1−g� /�8n�R for n�1.22

Each Landau level has a degeneracy Nk=LxLy /2�lb
2. One of

the remarkable features of the spectra is the additional cross-
ing of Landau levels, which is generated by the competition
between Rashba coupling and Zeeman splitting such as

n,s=+1=
n+1,s=−1 if the integer n and the magnetic field B
satisfy

��1 − g�2 + 8n�R
2 + ��1 − g�2 + 8�n + 1��R

2 = 2. �7�

One important factor in this system is the filling factor, i.e.,
the ratio of number of charge carriers to the Landau degen-
eracy �=Ne /Nk=2�lb

2ne �ne is the density of charge carriers�.
For a specific density, the filling factor is proportional to
1/B, and for a specific field, it is proportional to the density
ne.

With this solution in mind, we are ready to study the
electric response of spin polarization when the Fermi surface
is located near the resonant point. We apply an in-plane weak
electric field, say, Ey along the y direction. Then the electric
spin susceptibility can be evaluated by means of the Kubo
formula in the weak field limit,23

�E
�y =

e�

LxLy
Im 


nn�kk�ss�

�fn�s� − fns�

�
ns − 
n�s���
ns − 
n�s� + i�/��

��nks�S��n�k�s���n�k�s��vy�nks� , �8�

where vy is the velocity in the y direction, fns are the Fermi-
Dirac distribution functions, and � can be regarded as the
lifetime of the quasiparticles. From this equation, the de-
nominator becomes singular when two energy levels are de-
generate near the Fermi surface. As a result, it is possible that
the electric spin susceptibility may become singular for a
long lifetime �→ +�, i.e., �E

�y may become divergent. For a
finite � or finite temperature, �E

�y still remains finite.
For the purpose of numerical calculations, without losing

generality, we take the model parameters such that the lowest
energy level �1�= �n=0,k ,s= +1� and the first excited level
�2�= �n=1,k ,s=−1� cross at a critical magnetic field B
=9.8 T. In the clean limit, i.e., �→ +�, we plot �E

yy versus
the inverse of the magnetic field 1/B in Fig. 1 for a fixed
electron density ne. It is found that a resonant peak occurs at
the critical magnetic field corresponding to a filling factor

�=0.5. The resonant peak indicates that it is possible for a
weak electric field to induce a finite spin polarization at the
resonant point.

It is worth stressing that the Kubo formula is a result of
perturbation and is valid only when E→0 �but E�0�. At a
first glance, the divergence of spin susceptibility in Fig. 1
may be unphysical because it might be caused by the ap-
proximation of perturbation in the linear response theory. To
clarify the problem, we have to go beyond the linear re-
sponse theory and investigate the problem by means of the
nonperturbative approach.

III. NONLINEAR BEHAVIORS IN SIMPLIFIED
TWO-LEVEL MODEL

In order to understand the physical origin of the resonance
and to analyze the scaling behaviors of �E

yy at or near the
resonant point, we consider a simplified two-level model
around the resonant point. This is based on the fact that the
dominant contribution to the electric-field-induced resonance
is attributed to the energy crossing of the two levels. This
truncation approximation reduces an infinite-dimension
problem into a two-level one. As the two-level problem can
be solved analytically, the effect of electric field can be taken
into account. The method goes beyond the perturbation
method and the nonlinear response of spin polarization to an
external field can be revealed. For this purpose, we are only
concerned with the two nearly degenerated levels �1� and �2�
and ignore the contribution from other levels of higher ener-
gies. The Landau degeneracy of the two states for different k
will be taken into account at the last step to calculate physi-
cal quantities since the Hamiltonian in an external field is
diagonalized in block in the k space. Then the total Hamil-
tonian including the electric potential can be reduced to a
2�2 matrix:

FIG. 1. �E
yy versus 1/B �B in units of T� at the temperature T

=0 for weak electric fields by means of the Kubo formula �Eq. �8�
when �→ +�. The parameters are taken as �=4.16�10−11 eV m,
ne=0.118�10−16 m−2, m*=0.05me, and gs=4. The unit of �E

yy is
�C /4�lb

2N.
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H* = � 
 vE

vE − 

	 , �9�

where 
= 1
2 �
1,−1−
0,+1� and vE= �1�eEyy�2�

=�ReElbc0,+1
+ c1,−1

− , which is independent of k. The off-
diagonal element by the electric potential lifts the degen-
eracy and opens an energy gap 2�vE� at the resonant point of

=0. In Fig. 2, the energies of the two levels and the spin
polarizations for the lower-energy states are plotted with re-
spect to the inverse of magnetic field. In the absence of elec-
tric fields the two levels cross at the resonant point B
=9.8 T and each state has almost opposite spin polarization
in the z direction. For a large B field, the state �1�= �n
=0,k ,s= +1� is the lowest energy state with spin polariza-
tion sz= +� /2. By decreasing the magnetic field, the state
�2�= �n=1,k ,s=−1� has the lower energy and becomes the
lowest energy state after the two levels cross. The state �2�
has spin polarization Sz�−� /2. Thus, from the point of view
of the lowest energy state, the spin polarization Sz has a jump
near the crossing point, as shown in Fig. 2�b�. In the pres-
ence of electric field, the two states of �1� and �2� will be
admixed due to the off-diagonal term in H*. The term will
lift the degeneracy of the two levels at the resonant point. In
the lowest energy state, the spin polarization rotates in the
z-y plane from positive Sz to negative Sz when the magnetic
field sweeps over the resonant point. At the resonant point,
the system is almost polarized along the y direction in this
two-level model. Comparing with the case in the absence of

electric field, we notice that nonzero Sy is induced by a weak
electric field. Because there is a finite density of states at this
point due to the Landau degeneracy, the total spin polariza-
tion in the y direction becomes finite. As a result, the electric
spin susceptibility �E

yy becomes divergent at the point.
If we denote by Sy

± the expectation value of the
y-component spin polarization of the two split levels, the
overall response of the spin polarization per unit area to a
finite external field can be calculated by

�E
yy =

1

2�lb
2

�Sy
+f+ + Sy

−f−�E − �Sy
+f+ + Sy

−f−�E=0

E
, �10�

with f± the Fermi-Dirac distribution of the two levels and
f−+ f+=�. With the same parameters as in Fig. 1, electric
spin susceptibility �E

yy near the resonant point is plotted as a
function of 1/B in Fig. 3�a� for different electric fields. After
some algebra, we can rewrite the spin susceptibility in Eq.
�10� into the form

�E
yy =

�

2

f−�1 − f+�
�lb

2�E

�vE�
�
2 + �vE�2

�1 − e−2�
2+�vE�2/kT� . �11�

Near the resonant point 
→0, we have �E
yy �1/E at low

temperatures kT� �vE�; meanwhile, �E
yy �1/T for a weak

electric field kT� �vE�. It depends on the energy scales of the
electric field energy 
 and temperatures T. In Figs. 3�b� and
3�c�, the dependence of the peak value of �E

yy on the electric
field and temperature is plotted.

FIG. 2. �Color online� ��a� and �b� Energy spectra in units of ��c for the two degenerate levels in the absence of the electric field and
the corresponding spin polarization in units of � /2 of the lower-energy states. ��c� and �d� Energies for the two anticrossing levels in the
presence of the electric field and the corresponding spin polarization for the lower-energy level. The higher-energy states are denoted by the
dotted line and the lower-energy states are denoted by the solid line. The arrows indicate the orientation of Sz. The spin polarizations Sz and
Sy for the lower-energy states are denoted by the blue and red lines, respectively. The energy is in units of ��c and B in unit of T. The
parameters are taken to be the same as in Fig. 1: �=4.16�10−11 eV m, m*=0.05me, and gs=4.
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From the point of view of spin polarization, the spin po-
larization per unit area is

Sy�E� =
�

2

f−�1 − f+�
�lb

2�

�vE�
�
2 + �vE�2

�1 − e−2�
2+�vE�2/kT� .

�12�

At the resonant point 
=0 and in low temperatures,
kT / �vE�→0, Sy�E���f−�1− f+� / �2�lb

2��. Thus, a finite spin
polarization can be induced by a weak electric field. In the
absence of electric field,

Sy�0� =
�Sy

+f+ + Sy
−f−�E=0

2�lb
2 � 0. �13�

It is worthy to notice that even in the weak field limit,
limE→0 Sy�E��Sy�0� at the resonant point. This is the key
point to understand this resonant effect. The finite spin po-
larization induced by a small electric field indicates the non-
linear behaviors of this effect. As a result, the spin suscepti-
bility becomes singular in 1/E as E→0. These results are
consistent with the prediction of the Kubo formula in Fig. 1.
It indicates that the resonance is not caused by the perturba-
tion approximation in the linear response approach but is
attributed to the removal of the degeneracy of two crossing
Landau levels by the external field.

IV. NUMERICAL SIMULATION

After establishing a physical picture for the electric reso-
nance of spin polarization in a clean limit, we turn to study
the effect of impurities. The effect of impurities can be de-
scribed by introducing a finite lifetime � phenomenologically
in the Kubo formula. To go beyond the linear response
theory, we do numerical simulation to study the impurity
effect in the real space. For this purpose, we still take the
periodic boundary condition in the x direction but an infinite
potential wall in the y direction: V�y�=0 for �y��Ly /2, and

+� otherwise. The disorder potential U�x ,y� is taken to be
the short-range impurities of strength ui uniformly distrib-
uted at �xi ,yi� in the plane:24

U�x,y� = 

i

ui��x − xi���y − yi� , �14�

where ui� �−u /2 ,u /2�, xi� �−Lx /2 ,Lx /2�, and yi

� �−Ly /2 ,Ly /2�. In the absence of impurity potential and
Rashba coupling, the confined Landau levels ��nks� have
been obtained analytically,25

��nks� = exp�− iy0x/lb
2��n

�y − y0�/�2�lb
2, �15�

where �n
�y−y0� are the confluent hypergeometric functions

and y0=2�lb
2k /Lx. �n is determined numerically by the

boundary condition ��nks�y=±Ly/2=0. The finite size effect re-
moves the Landau degeneracy near the edge. All the con-
fined Landau levels can be regarded as a complete set of
basis. On this basis, the kinetic energy and the Zeeman term,
H0, has been diagonalized. The elements of the Rashba cou-
pling and the disorder potential are ��n�k�s��HR��nks� and
��n�k�s��U��nks�, respectively. After taking into account the
impurity potential and Rashba coupling, we perform the
truncation approximation to reduce the whole Hamiltonian
into an effective one with finite dimension. Furthermore, the
effective Hamiltonian will be diagonalized numerically to
calculate the eigenvalues and eigenfunctions. In the calcula-
tions, we take nmax+1 Landau levels, n=0,1 , . . . ,nmax, and
each Landau level has Nk discrete values of k �n
=0,1 ,2 , . . . ,Nk−1�.26 Nk can also be explained as the maxi-
mum number of electrons accommodated in each Landau
level. Then the number of basis functions we retained in the
truncation approximation is N=2� �nmax+1��Nk with
double degeneracy of spin. By diagonalizing the N�N
Hamiltonian numerically, one gets N-eigenvalues Em

N and
N-component wave vectors ��m

N�=
�nks
m ��nks�, which are the

superposition of the basis ��nks�. When a weak electric field
V=eEyy is applied in the y direction, the expectation value of

FIG. 3. �Color online� �a� The
spin susceptibility �E

yy as a func-
tion of 1/B near the resonant
point for different electric fields at
T=10−6 K. �b� The electric field E
dependence of the peak value of
�E

yy at a low temperature T
=10−6 K. �c� The temperature T
dependence of the peak value for
an electric field E=10−6 N/C. The
unit of �E

yy is �C /4�lb
2N and that

of B is T.
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the total spin can be calculated numerically. As a result, �E
yy

can be obtained,

�E
yy =

1

LxLy


m

��Sy�m

Ey
, �16�

where

��Sy�m = �fm��m
N�Sy��m

N��E − �fm��m
N�Sy��m

N��E=0, �17�

with fm the Fermi-Dirac distribution.
In our calculations, the model parameters are taken as

Lx /N1=Ly /N2=�2�lb. In this paper, we take N1=10 and
N2=6. Then the maximum number of electrons at each level
is Nk=Ly /�y0=N1�N2=60. The number of Landau levels
are truncated to nmax=5; hence, N=720. In this truncation
approximation, we are concerned only with the low energy
physics. The magnetic field is chosen as Bc=9.8 T such that
E0,+1=E1,−1 for the lowest and first excited level in the bulk
region, with other parameters the same as in Fig. 1. 140
impurities of relative strength ��i�= �ui / �2�lb

2������ are
randomly distributed over the sample. For each configuration
of impurities, both the strength and position are generated
randomly. The states are filled from lower to higher energy,
and correspondingly, �E

yy can be calculated by the formula in
Eq. �16� for each configuration.

After averaging over 104 different impurity configura-
tions, we plot the average value of �E

yy versus the filling
factor � in Fig. 4�a� for different strengths of disorder, �. The
temperature is set to T=0.025 K, hence, the ratio kT /��c
=2�10−4�� and the electric field Ey =10−6 N/C such that
ẽ=eEylb /��c�10−8��. When the electrons are filled up to
�=0.5, �E

yy displays a resonant peak. In contrast, �E
yy is finite

in the nondegenerate region with the filling number �=2–4
and tends to be suppressed when �=1.6�10−3. The relative
error due to impurity fluctuation is estimated to be about
0.01% and up to 5% at the resonant point due to the fact that

the susceptibility is very sensitive to the energy gap opened
by impurities. The peak height decreases with the disorder
strength � and the peak value versus � is demonstrated in the
inset. When we extrapolate to the limit �→�, the peak value
tends to be suppressed completely. The dependence of the
resonant �E

yy on the disorder strength is similar to that on the
electric field, thus, the impurity scattering opens a gap be-
tween the degenerate levels just like the electric field. In-
versely, we fix the disorder strength at �=10−5 and plot the
electric spin susceptibility �E

yy in Fig. 4�b� at different tem-
peratures with kT /��c��. The peak height of �E

yy decays
with temperatures. The scaling behavior of the peak value
versus T is shown in the inset. In the presence of disorder,
the dependence of the resonant peak of �E

yy on the electric
field is also simulated and plotted in Fig. 5, denoted by the-
black and red dots, respectively for the disorder strengths

FIG. 4. �Color online� �a� �E
yy

versus filling factor � for four dif-
ferent disorder strengths � for a
fixed temperature T=0.025 K.
The inset shows the disorder
strength dependence of the peak
value. �b� �E

yy versus the filling
factor � at different temperatures
T for disorder strength �=10−5.
The inset is for the temperature T
dependence of the peak value. The
electric field is taken to be as
low as Ey =10−8 N/C and the
spin susceptibility is in units of
�C /4�lb

2N.

FIG. 5. �Color online� The electric field E dependence of �E
yy

and the spin polarization Sy are denoted, respectively, by the dots
and diamonds in the presence of disorder. The temperature is set to
zero. The electric spin susceptibility �E

yy is in units of �C /4�lb
2N

and Sy is in unit of � /4�lb
2.
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�=10−5 and 10−4. At low temperatures, when ẽ=eEylb /��c
��, �E

yy is independent of the electric field E but diverges as
1/E when it is comparable with or greater than the disorder
strength �. The spin polarization Sy�E�=Sy�0�+�E

��E� in-
creases linearly with a weaker electric field but saturates at
higher electric fields, as plotted in Fig. 5 by the black and red
diamonds for the disorder strengths �=10−5 and 10−4, re-
spectively.

V. SUMMARY AND DISCUSSION

At last, the occurrence of this resonance is not limited
only in the Rashba system. The electric spin susceptibility
depends on the symmetry of spin-orbit coupling explicitly.
The present work can be generalized to a system with the
Dresselhaus coupling HD=��px�x− py�y�. Because the
Rashba coupling can be transformed to the Dresselhaus cou-
pling under the transformations of �x→�y, �y→�x, and
�z→−�z,

27 we conclude that it is �E
xy instead of �E

yy which

would become divergent at the resonant point.
In conclusion, a tiny electric field may generate a finite

spin polarization in a disordered Rashba system in the pres-
ence of a magnetic field. As a result, the electric spin suscep-
tibility exhibits a resonant peak when the Fermi surface goes
through the crossing point of two Landau levels. Numerical
results demonstrate that the result goes beyond the linear
response theory. This provides a mechanism to control spin
polarization efficiently by an electric field in semiconductors.
As the spin polarization can be measured very accurately, it
is believed that the effect can be verified in the samples of
2DEG, such as the heterojunction of InGaAs/ InAlAs.
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