
Title Symmetry and transport property of spin current induced spin-
Hall effect

Author(s) Xing, YX; Sun, QF; Wang, J

Citation Physical Review B (Condensed Matter and Materials Physics),
2007, v. 75 n. 7, p. 075324-1 - 075324-7

Issued Date 2007

URL http://hdl.handle.net/10722/57320

Rights Physical Review B (Condensed Matter and Materials Physics).
Copyright © American Physical Society.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37893615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Symmetry and transport property of spin current induced spin-Hall effect

Yanxia Xing,1 Qing-feng Sun,1,* and Jian Wang2

1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100080,
China

2Department of Physics and the Center of Theoretical and Computational Physics, The University of Hong Kong, Pokfulam Road,
Hong Kong, China

�Received 17 October 2006; revised manuscript received 21 December 2006; published 15 February 2007�

We study the spin current induced spin-Hall effect that a longitudinal spin-dependent chemical potential
qVs=x,y,z induces transverse spin conductances Gss�. A four-terminal system with the Rashba and Dresselhaus
spin-orbit interactions �SOIs� in the scattering region is considered. By using Landauer-Büttiker formula with
the aid of Green’s function, various spin current induced spin-Hall conductances Gss� are calculated. With the
charge chemical potential qVc or spin chemical potential qVs=x,y,z, there are 16 elements for the transverse
conductances Gp

��=Jp,� /V�, where � ,�=x ,y ,z ,c. Due to the symmetry of our system, these elements are not
independent. For the system with C2 symmetry half of the elements are zero when only the Rashba SOI or the
Dresselhaus SOI exists in the center region. The numerical results show that of all the conductance elements,
the spin current induced spin-Hall conductances Gss� are usually much greater �about one or two orders of
magnitude� than the spin-Hall conductances Gsc and the reciprocal spin-Hall conductances Gcs. So the spin
current induced spin-Hall effect dominates in the present device.

DOI: 10.1103/PhysRevB.75.075324 PACS number�s�: 72.25.Mk, 72.20.�i, 73.23.�b

INTRODUCTION

Recently, an interesting phenomenon, the spin-Hall effect,
has been discovered in the spin-orbit interaction �SOI� sys-
tem and has attracted considerable attention. In this effect, a
longitudinal external bias �or named charge bias hereafter� or
electric field induces a transverse spin current or spin accu-
mulations along transverse edges. The spin-Hall effect can
either be extrinsic or intrinsic. The extrinsic spin-Hall effect
is due to the spin-dependent scattering1 and was found a few
decades ago. On the other hand, the intrinsic spin-Hall effect
is due to the SOI, predicted by Murakami et al. and Sinova et
al. in a Luttinger SOI three-dimensional p-doped
semiconductor2 and a Rashba SOI two-dimensional �2D�
electron gas,3 respectively. Since then, a great many sequent
works have focused on this interesting effect. On the experi-
mental side, two groups by Kato et al.4 and Wunderlich et
al.5 have observed the transverse opposite spin accumula-
tions near the two edges of their devices when the longitu-
dinal voltage bias is added. More recently, a third group by
Valenzuela and Tinkham have taken the electronic measure-
ment of the spin-Hall effect,6 and they have observed an
induced transverse voltage in a diffusive metallic conductor
when a longitudinal net spin current flows through it.

Very recently, the reciprocal spin-Hall effect7,8 has been
investigated, in which a transverse charge conductance is
induced by the driving of a longitudinal spin-dependent bias
�named spin bias hereafter�. The Onsager reciprocal relation7

between the spin-Hall effect and its reciprocal phenomenon
has been found, and the spin-Hall conductance is predicted
to be equal to its reciprocal. So far, the spin-polarization
direction considered in most of the papers on the spin-Hall
effect2,3 and its reciprocal effect7 is along the z-direction that
is perpendicular to the 2D electron gas. The spin is a vector
and it can also be polarized in the x, y, as well as in any n̂
directions. So the direction of the output spin in the two

transverse terminals �i.e., terminals 2 and 4 in Fig. 1� can be
in the plane of the 2D electron gas, e.g., the x or the y
direction, which has been studied by Nikolić et al.9,10 The
results show that while under a longitudinal charge bias, the
spin currents of the y direction in the two transverse termi-
nals are equal, i.e., they are simultaneously flowing out or
flowing in �see the left inset in Fig. 1�. On the other hand, in
the reciprocal spin-Hall effect, the spin-polarization direction
for the spin bias in the two longitudinal terminals �i.e., ter-
minals 1 and 3 in Fig. 1� can also be in the plane of the 2D
electron gas. A few theoretical works have studied this case11

and found that the charge currents in terminals 2 and 4 si-
multaneously flow out or in �see the left inset in Fig. 1�,
while the spin polarization of the spin bias is in the y direc-
tion. This result is different from the usual reciprocal spin-

FIG. 1. �Color online� Schematic diagram for the four-terminal
rectangular sample with the Rashba and Dresselhaus SOIs in the
center region. The four leads are ideal without SOI. The spin bias Vs

or the charge bias Vc is added on lead-1 and lead-3, while the
induced transverse spin current Jp,s or the charge current Jp,c is
probed in lead-2 and lead-4. The left and right insets depict the
directions of the transverse spin or charge currents when the cur-
rents are flowing out �G2=G4� and the currents are simultaneously
flowing in at one terminal and out at the other one �G2=−G4�,
respectively.

PHYSICAL REVIEW B 75, 075324 �2007�

1098-0121/2007/75�7�/075324�7� ©2007 The American Physical Society075324-1

http://dx.doi.org/10.1103/PhysRevB.75.075324


Hall effect with the z-direction spin bias, in which the charge
current flows in at one transverse terminal and out at the
other one �see the right inset in Fig. 1�.

To explore the vector nature of the spin-Hall effect, we set
the longitudinal bias to be spin-dependent and examine the
transverse spin conductance; that is, the transverse spin cur-
rents are induced by the longitudinal spin bias, which is
named the spin current induced spin-Hall effect hereafter. So
far, most of the studies focus on the spin-Hall effect and its
reciprocal effect, and less attention has been paid to the spin
current induced spin-Hall effect. It is the purpose of this
paper to fill this gap. We study the spin current induced spin-
Hall effect in a finite mesoscopic system by using the
Landauer-Büttiker formula with the aid of Green’s function.
We consider a four-terminal ballistic 2D rectangular region
and the center rectangular region as having the Rashba and
Dresselhaus SOIs �as shown in Fig. 1�. A spin bias Vs �s=x,
y, and z� is added at the longitudinal terminals 1 and 3.12 The
spin bias can be provided from the device of the spin cell,
which has been suggested by some recent theoretical works13

and has also been realized in a few experimental works.14

Under the spin bias Vs, the chemical potentials � for the
spin-up and spin-down electrons in terminals 1 and 3 are
split, and �1,s↑=−�1,s↓=−�3,s↑=�3,s↓=eV /2, where s=x, y,
and z represents the spin-polarization direction. For compari-
son, we also consider the charge bias Vc on the longitudinal
terminals 1 and 3; in this case, �1,s↑=�1,s↓=−�3,s↑=−�3,s↓
=eV /2.15 The transverse two terminals 2 and 4 act as the
measuring terminals, and their chemical potentials �or the
terminal bias� are set to zero. Due to the SOI, the spin bias Vs
or the charge bias Vc can induce transverse spin-Hall currents
Js as well as the charge-Hall current Jc, which will be inves-
tigated in this paper. For this purpose, we use four compo-
nent vectors J= �Jx ,Jy ,Jz ,Jc� and V= �Vx ,Vy ,Vz ,Vc� to rep-
resent the spin �charge�-Hall current and spin �charge� bias,
respectively. In the small bias limit, the relationship between
J and V can be characterized by a 4�4 matrix G�� �� ,�
� �x ,y ,z ,c��.

We have studied the relations among these matrix ele-
ments from the symmetry point of view. Four cases have
been discussed: �1� only the Rashba SOI is present, �2� only
the Dresselhaus SOI is present, �3� both the Rashba and
Dresselhaus SOIs are present, and �4� the Rashba and
Dresselhaus SOIs have the same interaction strength. The
results are summarized in Table I. All elements are found to
have the property �G2

���= �G4
���, where Gp

��=Jp,� /V� with p
=2,4.16 This means that the absolute value �J2,�� of the spin
��=x ,y ,z� current or the charge ��=c� current in terminal 2
is equal to �J4,�� in terminal 4 regardless of longitudinal driv-
ing bias V�. From Table I, we see that if only the Rashba SOI
or the Dresselhaus SOI is present in the center region, half of
the matrix elements of the transverse conductances G�� are
zero. We have also numerically studied the behavior of these
nonzero spin matrix elements and found that the spin current
induced spin-Hall conductances are much larger �about one
or two orders of magnitude� than the spin-Hall conductance
as well as its reciprocal one.

HAMILTONIAN AND SOLUTION

The system that we considered is sketched in Fig. 1. The
central gray region is the semiconductor sample in which the
SOIs of Rashba or/and Dresselhaus are present. The sample
is connected to four ideal non-SOI leads. The Hamiltonian of
the central region is given by H0= p2 /2m*+V�x ,y�+ �� /��
���xpy −�ypx�− �� /����xpx−�ypy�, where � and � are the
coefficients of the Rashba and Dresselhaus SOIs and V�x ,y�
is the hard wall confining potential. In the tight-binding rep-
resentation, the total Hamiltonian can be written as17–19

H = �
i

�− tai
†ai+	x − tai

†ai+	y + iai
†�VR�y + VD�x�ai+	x

− iai
†�VR�x + VD�y�ai+	y� + H.c., �1�

where ai
†= �ai↑

† ,ai↓
† �, i is the lattice site in the central region

and the leads, t=�2 /2m*a2 is the hopping matrix element

TABLE I. Symmetry of the transverse spin or charge conductance for the system with the Rashba and/or
Dresselhaus SOI: �a� VR�0, VD=0; �b� VR=0, VD�0; �c� VR�VD�0; and �d� VR=VD�0. The symbol “0”
indicates the corresponding G2�4�

�� =0, and the symbol “
 ���” denotes G2
��= ±G4

��.

�a� Vx Vy Vz Vc �b� Vx Vy Vz Vc

Jx 0 � 
 0 Jx 0 � 0 


Jy � 0 0 
 Jy � 0 
 0

Jz 
 0 0 −a Jz 0 
 0 −c

Jc 0 
 −a 0 Jc 
 0 −c 0

�c� Vx Vy Vz Vc �d� Vx Vy Vz Vc

Jx � � 
 
 Jx −r −s +o +e

Jy � � 
 
 Jy −s −r +ō +e

Jz 
 
 � � Jz +u +u � 0

Jc 
 
 � � Jc +v +v̄ 0 �
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with the lattice constant a, 	x and 	y are the unit vectors
along the x and y directions, and �x ,�y are Pauli matrices.
Here, VR=� /2a and VD=� /2a represent the strength of the
Rashba and Dresselhaus SOIs, respectively. VR and VD are
nonzero only in the central gray region.

Since there is no SOI in the leads, the particle current Jp,s�

in the lead-p �p=2,4� with spin at the ±s direction ��=↑ or
↓ stands for the +s or −s direction with s=x ,y ,z� due to the
longitudinal spin or charge bias V� can be obtained
from the Landauer-Büttiker formula20 Jp,s�

= �1/h��q,��Tps�,qs�����p,s�−�q,s����, where �p,s� and �q,s���
are the spin-dependent or spin independent chemical poten-
tial related to the bias V�, which has been detailed in the the
Introduction. Tqs���,ps� is the transmission coefficient from
the lead-p with spin s� to the lead-q with spin s���. Note
that the spin indices ↑ and ↓ in the Hamiltonian ��1�� repre-
sent the spin pointing to the +z and −z directions, and not
pointing to the ±x and ±y directions. So in order to calculate
the transmission coefficient Tqs���,ps� for s�z and/or s��z,
we need to rotate the z-axis in the spin space in the lead-p
�lead-q� to the s-direction �s�-direction� by taking a unitary
transformation:

	ai↑�

ai↓�

 = Us�s��

† 	ai↑

ai↓

 , �2�

where i is the lattice site in the lead-p�q�. The operator ai� in
the center region and in the other two leads does not change.
The unitary matrix Us in Eq. �2� is

Us =� cos
�

2
e−i� sin

�

2

ei� sin
�

2
− cos

�

2
� , �3�

where �� ,�� is the directional angle of the s-direction and
Us

†�sUs=�z. Under this unitary transformation, the Hamil-
tonian of the leads does not vary because the leads’ Hamil-
tonian does not include the Pauli matrix; only the Hamil-
tonian that describes the coupling between the leads and the
center region changes. After the unitary transformation, the
z-axis of the spin in the lead-p�q� is in the s�s��-direction;
then the transmission coefficient Tqs���,ps� can be easily ob-
tained as20

Tqs���,ps� = Tr��q,s���G
r�p,s�Ga� , �4�

where the linewidth function �p,s�= i��p,s�
r −�p,s�

r† �=�p

� UsS�Us
†, with the retarded self-energy �p,s�

r =�p
r

� UsS�Us
† where �p and �p

r are, respectively, the linewidth
function and the self-energy of the lead-p for no-spin-index
lattice system. Here, the matrix S� is

S↑ = 	1 0

0 0

, S↓ = 	0 0

0 1

 . �5�

The retarded and advanced Green’s functions Gr,a in Eq. �4�
can be calculated from20 Gr= �Ga�†= �EFI−H0−�p,��p,s�

r �−1,
with the unit matrix I. Since ���p,s�

r =�p
r

� ���UsS�Us
†�

=�p
r

� I that is independent of the spin-direction index s, the

Green’s functions Gr,a are also independent of the spin-
direction index. This, in turn, indicates that the Green’s func-
tions Gr,a remain unchanged in the above unitary transfor-
mation, in which the spin axis in the leads is rotated.

Once the particle currents Jp,s� �p=2,4� are obtained, the
spin current Jp,s and the charge current Jp,c can be obtained
straightforwardly: Jp,c=e�Jp,s↑+Jp,s↓� and Jp,s= �� /2��Jp,s↑
−Jp,s↓�, where s=x ,y ,z. In fact, it is easy to show that the
charge current Jp,c is independent of the spin-direction index
s of the lead-p �i.e., Jp,x↑+Jp,x↓=Jp,y↑+Jp,y↓=Jp,z↑+Jp,z↓
=Jp,n̂↑+Jp,n̂↓�, so the subscript s is neglected from now on.
Then, from the current Jp= �Jp,x ,Jp,y ,Jp,z ,Jp,c� and its driving
bias V= �Vx ,Vy ,Vz ,Vc�, we get all the 16 conductance matrix
elements Gp

��=Jp,� /V� �� ,��c ,x ,y ,z�.16 They are the
charge-Hall conductance Gp

cc describing the transverse
charge current Jp,c induced by the longitudinal charge bias
Vc, the spin-Hall conductance Gp

sc for the transverse spin cur-
rent Jp,s induced by the longitudinal charge bias Vc, the re-
ciprocal spin-Hall conductance Gp

cs representing the trans-
verse charge current Jp,c induced by the longitudinal spin

bias Vs, and the spin-Hall conductance Gp
ss� induced by the

spin current describing the transverse spin current Jp,s in-
duced by the longitudinal spin bias Vs.

RELATIONS DUE TO SYMMETRY

We now study the relations among the 16 conductance
matrix elements Gp

�� considering the symmetry of the device.
First, our system satisfies the time-reversal symmetry,21 so
the transmission coefficients satisfy the relation Tps�,qs���
=Tqs��̄’,ps�̄, which determines the properties of the transverse
conductances. Second, if the shape of the device has the
geometrical symmetry, the results can be greatly simplified
and many matrix elements are zero. In the following, we
consider the rectangular center region that has C2 symmetry.

For the rectangular sample, the shape of the device �i.e.,
the confining potential V�x ,y�� is invariant under the rotation
transformation C2 by rotating an angle  around the
x ,y ,z-axis at the center point. However, the SOI part of the
Hamiltonian is varied under the space rotation transforma-
tion C2. In order to keep the invariance of the total Hamil-
tonian H, we construct the unitary transformation U=U0
� Us, where U0 and Us are the rotation transformations in the
real space and in the spin space, respectively. In the follow-
ing, we list all of the unitary transformations U, under which
the total Hamiltonian H is invariant �i.e., U†HU=H�. We
then derive the relations among the transverse conductance
matrix elements from the symmetry. We consider four cases
of SOI: �1� with the Rashba SOI only, �2� with the Dressel-
haus SOI only, �3� with both the Rashba and Dresselhaus
SOIs, and �4� similar to �3� but the strengths of the Rashba
and Dresselhaus SOIs are equal. To illustrate the derivation,
we shall discuss the case of the Rashba SOI case in detail.
For the other three cases, similar discussions apply and we
only give the results.

First, we study the case with only the Rashba SOI using
the following transformations.

�i� U1=C2z � exp�−i� /2��z�, which performs the trans-
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formation x→−x, y→−y, z→z and �x→−�x, �y→−�y,
�z→�z. Under this transformation U1, the system �including
both of the real space and the spin space� is rotated by an
angle  around the z-axis, which leads J2,x�→J4,x�̄ and
�1,x�→�3,x�̄, so the spin current J2,x= �� /2��J2,x↑−J2,x↓�
→ �� /2��J4,x↓−J4,x↑�=−J4,x, and the spin chemical potential
Vx remains unchanged because the charge chemical potential
Vc and the �x change signs due to the rotations in the real
space and in the spin space, respectively. Similarly, the trans-
formation for the others J2,� and V� can also be deduced as

J2,c → J4,c, Vc → − Vc,

J2,x → − J4,x, Vx → Vx,

J2,y → − J4,y, Vy → Vy ,

J2,z → J4,z, Vz → − Vz. �6�

Then, the relations among the matrix elements of the trans-
verse conductance can be obtained straightforwardly. For ex-
ample, G2

xx=J2,x /Vx=−J4,x /Vx=−G4
xx, etc.

�ii� U2=C2y � exp�−i� /2��x�, which performs the trans-
formation x→−x, y→y, z→−z and �x→�x, �y→−�y, �z
→−�z. This transformation U2 is equivalent to rotating the
real space by  around the y-axis and to rotating the spin by
 around the x-axis. Under the unitary transformation U2,
Jp,� �p=2,4� and V� are transformed into

J2�4�,c → J2�4�,c, Vc → − Vc,

J2�4�,x → J2�4�,x, Vx → − Vx,

J2�4�,y → − J2�4�,y, Vy → Vy ,

J2�4�,z → − J2�4�,z, Vz → Vz. �7�

Then, Gp
cc=Jp,c /Vc=Jp,c / �−Vc�=−Gp

cc, so Gp
cc=0 �p=2,4�. In

fact, from U2
†HU2=H, we obtain the fact that eight matrix

elements of the transverse conductance are zero, Gp
cc=Gp

cx

=Gp
xc=Gp

xx=Gp
yy =Gp

yz=Gp
zy =Gp

zz=0 �p=2,4�.
�iii� U3=C2x � exp�−i� /2��y�, which performs the

transformation x→x, y→−y, z→−z and �x→−�x, �y→�y,
�z→−�z. This transformation U3 rotates the real space by 
around the x-axis and the spin by  around the y-axis. Under
this transformation, Jp,� �p=2,4� and V� are transformed
into

J2,c → J4,c, Vc → Vc,

J2,x → − J4,x, Vx → − Vx,

J2,y → J4,y, Vy → Vy ,

J2,z → − J4,z, Vz → − Vz. �8�

It is worth mentioning that the above three unitary transfor-
mations are not independent of each other, and we have
U3U1=U2. So Eq. �7� can be obtained from Eqs. �6� and �8�.

Combining Eqs. 6–8, the relations among the matrix ele-
ments of the transverse conductances Gp

�� are obtained and
summarized in Table I�a�. The 16 conductance matrix ele-
ments are arranged in the matrix form, in which the columns
�labeled by J�� denote the measured transverse conductances
�from lead 2 or 4� and the rows are the longitudinal bias V�

in lead 1 or 3. The zero conductance matrix elements are
indicated by the symbol “0.” The symbol “
 ���” denotes
the nonzero conductance matrix elements Gp

��, which have
the same �opposite� signs for lead-2 and lead-4, i.e., G2

��

= ±G4
��. For some pair of conductance matrix elements, they

may have the same value or they may differ in sign, e.g.,
Gp

cz=Gp
zc, p=2,4, which is marked by the letter symbols in

Table I. Here, different symbols present different conduc-
tance values, and the symbol a �or ā� is for G2

��=a �or
G2

��=−a�.
To examine the system with the Dresselhaus SOI only, we

need only change �x to �y and �y to �x in the above Hamil-
tonian with the Rashba SOI and unitary transformations. As
a result, the above three transformations are changed to U1
=C2z � exp�−i� /2��z�, U2=C2y � exp�−i� /2��y�, and U3

=C2x � exp�−i� /2��x�. Under these transformations, we
find all the symmetry relations among the 16 conductances
and the results are listed in Table I�b�. In the case that we
have both the Rashba and Dresselhaus SOIs �VR�0 and
VD�0�, only the transformation U1 can keep the Hamil-
tonian invariant, and it leads to the symmetry relations
shown in Table I�c�. In the case of VR=VD�0, except U1,
there is an additional symmetry U4: I � ��x�y�→�y�x� ,�z

→�z�, which leads to the symmetry between the sx and sy,
and the relations of the conductance elements Gp

�� are ex-
pressed in Table I�d�. In fact, U4 only takes the transforma-
tion in the spin space; so the symmetry U4 always exists and
Gp

zc=Gp
cz=0 for any confining potential V�x ,y� �not requiring

the rectangular sample�.
From these symmetry relations, our conclusions are as

follows. �i� All the conductance matrix elements are found to
obey the relation �G2

���= �G4
���, i.e., the absolute value of

�J2,�� of the spin ��=x ,y ,z� or the charge ��=c� current in
terminal 2 is equal to the absolute value of �J4,�� in terminal
4. Furthermore, G2

��=−G4
�� for the eight block-diagonal ele-

ments in Table I, and G2
��=G4

�� for the eight non-block-
diagonal elements. �ii� Exchanging �x and �y, we find the
system with the Rashba SOI to be the same as that with the
Dresselhaus SOI, which can be seen from Tables I�a� and �b�.
�iii� If only the Rashba SOI or the Dresselhaus SOI is present
in the center region, half of the matrix elements G�� are
zero.22 �vi� For the usual spin-Hall effect or its reciprocal
effect �in which the spin is polarized along the z-direction�,
the transverse spin current or charge current is conserved
�i.e., G2

zc�cz�=−G4
zc�cz��. Furthermore, Gzc and Gcz satisfy the

Onsager relation G2�4�
zc =G2�4�

cz .7,23 For Gcy and Gyc, as well the
non-block-diagonal elements in Table I, they either flow in or
out of terminals 2 and 4 �i.e., G2=G4�, and they do not sat-
isfy the Onsager relation because that Onsager relation re-
quires that the currents in the two transverse terminals 2 and
4 must be J2=−J4.

XING, SUN, AND WANG PHYSICAL REVIEW B 75, 075324 �2007�

075324-4



NUMERICAL RESULTS AND DISCUSSION

In the following, we numerically study the nonzero con-
ductance matrix elements Gp

��, and we mainly focus on the

spin-Hall conductance induced by the spin current Gp
ss�

�s ,s��x ,y ,z�. For simplicity, only the case of the Rashba
SOI is shown since the results for the other three cases have
similar physics. In the numerical calculation, we consider the
square scattering center region for convenience. However,
notice that the symmetry relation in Table I is valid for the
rectangular scattering center region. In the calculation, the
electron effective mass m* is set to 0.05me,

24,25 and the Fermi
energy EF=−3.8t �in Figs. 4 and 5�, which is near the band
bottom −4t, with t=1 as an energy unit and the correspond-
ing lattice constant a2.6 nm.9,10 The size of the center re-
gion L is chosen in the same order as the spin precession
length LSO �LSO�at /2VR� over the precessing angle . If
taking VR=0.03t �corresponding to �1�10−11 eV m�,
LSO50a.

First, Fig. 2 shows the spin-Hall conductance Gzc, the
reciprocal spin-Hall conductance Gcz, the in-plane spin-Hall
conductance Gyc, and its reciprocal conductance Gcy. We see
that they are odd functions of the Fermi energy EF and van-
ish at the half-filled band with EF=0. The behaviors of the
spin-Hall conductance Gzc and Gyc are similar to those in the
previous works done by Nikolić et al.9,10 From Fig. 2, we
can find that the out-of-plane matrix elements Gzc=Gcz,
which satisfies the Onsager relation.7 On the other hand, the
in-plane matrix elements Gyc and Gcy do not obey the On-
sager relation because Gyc and Gcy simultaneously flow out
of or into the two transverse terminals 2 and 4 �as shown in
the left inset of Fig. 1�, and they do not satisfy the corre-
sponding condition. Gyc is smaller than Gcy, and both of
them strongly depend on the Fermi energy.

Second, we examine the spin-Hall conductances induced
by the spin current Gss� �s ,s��x ,y ,z�. Figure 3 shows the

four nonzero matrix elements Gss� versus the Fermi energy
EF. Different from Gsc and Gcs, the spin current induced
spin-Hall conductances Gss� are even functions of EF, and

�Gss�� reaches the largest value at the half-filled band with
EF=0. In particular, the spin current induced spin-Hall con-
ductances Gss� are much larger �at least one order of magni-
tude larger� than Gsc or Gcs �see Figs. 2 and 3�. This means
that the spin current induced spin-Hall effect is the dominat-
ing effect in the SOI system. The spin current induced spin-
Hall conductances Gss� do not obey the Onsager relations; in
general, Gxy �Gyx and Gxz�Gzx. This is because the present
device is not simply a four-terminal system, but more likely
an eight-terminal system with the index of both the terminal
and the spin. Anothr reason is that the circuit of the Onsager
relations requires that the boundary condition of the trans-
verse terminals 2 and 4 be J2=−J4, i.e., in the external cir-
cuit, terminals 2 and 4 and terminals 1 and 3 are connected,
respectively. However, in the present system, the current
G2

���−G4
�� for the non-block-diagonal elements. On the

other hand, for the small VR �e.g., VR�0.08t�, �Gxy� and �Gxz�
are still approximately equal to �Gyx� and �Gzx�, respectively.

The spin current induced spin-Hall conductances Gss� ver-
sus the sample size L and the Rashba SOI strength VR are
plotted in Figs. 4 and 5, respectively. With the increasing size
of the center region L, the conductances Gyx and Gxy are
greatly enhanced �see Fig. 4� because the transverse termi-
nals 2 and 4 are much wider at large L. However, at a few
special sizes L �e.g., L=26,46 for VR=0.06t�, Gxy and Gyx

are anomalous, in which Gxy and Gyx are minimum. This is
because a subband passes the Fermi energy EF. The conduc-
tances Gzx and Gxz have similar behaviors with Gyx and Gxy

while in the small VR region, i.e., the corresponding spin
precession length LSO=at /2VR�L, but for the large VR
case �i.e., LSO�L�, Gzx and Gxz are not regular with the size
L. In the present spin-Hall device, the quantum states are
extended.26

On the other hand, with the increasing Rashba SOI
strength VR, the conductances Gss� are oscillatory �see Fig.
5�. For the larger VR, Gss� shows a chaotic behavior. Further-
more, at the large VR, �Gxy� and �Gxz� are not equal to �Gyx�
and �Gzx�, i.e., the Onsager relations for the spin current in-
duced spin-Hall conductances Gss� are completely violated.

At last, we investigate how the spin current induced spin-
Hall conductances Gss� are affected by the disorders. In the
previous calculation, the on-site energies �i �i.e., in the term
�i�iai

†ai� in Eq. �1� are taken to be zero when there are no

FIG. 2. �Color online� The spin-Hall conductances Gsc and the
reciprocal spin-Hall conductances Gcs vs Fermi energy EF, with the
parameters L=34a and VR=0.03t.

FIG. 3. �Color online� The nonzero spin current induced spin-
Hall conductance elements G2

xy �black�, G2
yx �green or gray�, G2

zx

�black�, and −G2
xz �green or gray� vs Fermi energy EF. The param-

eters are L=34a and VR=0.03t.
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disorders. To consider the effect of disorder, random on-site
potentials �i in the center region are added with a uniform
distribution �−W /2 ,W /2� with disorder strength W. The con-
ductance is obtained by averaging over up to 1000 disorder
configurations. Figure 6 shows the normalized conductances

Gratio
ss� �Gratio

ss� �Gss��W�0� /Gss��W=0�� versus the disorder
strength W for the different sizes L. From Fig. 6, we can see
that the spin current induced spin-Hall conductances Gss�

decrease with the increasing disorder strength W, but Gss�

keep the large value while W� t. This behavior is similar to
the spin-Hall conductances which have been investigated
recently.27 Hence, in the dirty case, the spin current induced
spin-Hall effect is still dominant in the finite 2D SOI system.
In addition, for the different sizes of the device, the relation

of Gratio
xy and Gratio

xz versus W almost remain the same. On the
other hand, Gratio

yx and Gratio
zx can keep larger value in the

system with a small size than the system with a big size for
fixed disorder strength W.

SUMMARY

The spin current induced spin-Hall effect is investigated
in a four-terminal system with the center region having the
spin-orbit interaction �SOI�. Because of the vector nature of
spin, the charge and three spin components form a 4�4
=16 transverse conductance matrix whose matrix elements
include the spin current induced spin-Hall conductances Gss�

�s ,s��x ,y ,z�, the spin-Hall conductances Gsc, the reciprocal
spin-Hall conductances Gcs, and the charge-Hall conduc-
tances Gcc. Of these matrix elements, we found that in gen-
eral, Gss� are much larger �about one or two orders� than the
others. This means that the spin current induced spin-Hall
effect is the dominating effect in the present device. By ana-
lyzing the system’s symmetry, the relations among these con-
ductance matrix elements are found. The results indicated
that eight matrix elements �Gxx/xy/yx/yy and Gzz/zc/cz/cc� have
conserved quantities as the usual Hall effect. However, the
other eight matrix elements correspond to the current simul-
taneously flowing out of or into two transverse terminals �as
shown in the left inset of Fig. 1�, which is different from the
usual Hall effect. When only the Rashba SOI or the Dressel-
haus SOI is present in the device, half of the matrix elements
are found to be zero.
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FIG. 4. �Color online� The spin current induced spin-Hall con-
ductances Gss� vs sample size L for different SOI strengths: �a�
VR=0.03, �b� VR=0.06, and �c� VR=0.1. The curves of G2

xy and G2
yx

and −G2
xz and G2

zx are nearly coincident for the small VR=0.03 and
0.06. The Fermi energy is EF=−3.8t.

FIG. 5. �Color online� The spin current induced spin-Hall con-
ductances Gss� vs the Rashba SOI strength VR, with the parameters
L=34a and EF=−3.8t.

FIG. 6. �Color online� The normalized conductances Gratio
ss�

�Gratio
ss� =Gss��W�0� /Gss��W=0�� vs the disorder strength W with

the different sizes L=18a, 26a, and 34a. The other parameters are
EF=−3.8t and VR=0.03.

XING, SUN, AND WANG PHYSICAL REVIEW B 75, 075324 �2007�

075324-6



*Electronic address: sunqf@aphy.iphy.ac.cn
1 J. E. Hirsch, Phys. Rev. Lett. 83, 1834 �1999�; M. I. Dyakonov

and V. I. Perel, JETP Lett. 13, 467 �1971�; M. I. Dyakonov and
V. I. Perel, Phys. Lett. 35A, 459 �1971�.

2 S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348
�2003�; S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev.
B 69, 235206 �2004�.

3 J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and A.
H. MacDonald, Phys. Rev. Lett. 92, 126603 �2004�.

4 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D. Awschalom,
Science 306, 1910 �2004�; V. Sih, R. C. Myers, Y. K. Kato, W.
H. Lau, A. C. Gossard, and D. D. Awschalom, Nat. Phys. 1, 31
�2005�; V. Sih, W. H. Lau, R. C. Myers, V. R. Horowitz, A. C.
Gossard, and D. D. Awschalom, Phys. Rev. Lett. 97, 096605
�2006�.

5 J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 �2005�.

6 S. O. Valenzuela and M. Tinkham, Nature �London� 442, 176
�2006�.

7 J. Shi, P. Zhang, D. Xiao, and Q. Niu, Phys. Rev. Lett. 96,
076604 �2006�.

8 E. M. Hankiewicz, J. Li, T. Jungwirth, Q. Niu, S.-Q. Shen, and J.
Sinova, Phys. Rev. B 72, 155305 �2005�.

9 B. K. Nikolić, S. Souma, L. P. Zârbo, and J. Sinova, Phys. Rev.
Lett. 95, 046601 �2005�.

10 B. K. Nikolić, L. P. Zârbo, and S. Souma, Phys. Rev. B 72,
075361 �2005�.

11 J. Li, X. Dai, S.-Q. Shen, and F.-C. Zhang, Appl. Phys. Lett. 88,
162105 �2006�.

12 In our model, a pure spin bias Vs �with zero charge bias Vc� is
added at the longitudinal terminals. Suppose the longitudinal
terminals 1 and 3 are replaced by the ferromagnetic leads and
we apply both the spin bias and the charge bias. In this case, the
spin and charge currents in the transverse terminals 2 and 4 can
easily be obtained from J�=G��V� with the aid of G��, but now
the spin current induced spin-Hall effect, the spin-Hall effect,
the reciprocal spin-Hall effect and the Hall effect, will mix to-
gether.

13 Q.-F. Sun, H. Guo, and J. Wang, Phys. Rev. Lett. 90, 258301
�2003�; W. Long, Q.-F. Sun, H. Guo, and J. Wang, Appl. Phys.

Lett. 83, 1397 �2003�; B. Wang, J. Wang, J. Wang, and D.-Y.
Xing, Phys. Rev. B 69, 174403 �2004�; D.-K. Wang, Q.-F. Sun,
and H. Guo, ibid. 69, 205312 �2004�.

14 S. K. Watson, R. M. Potok, C. M. Marcus, and V. Umansky, Phys.
Rev. Lett. 91, 258301 �2003�.

15 Under the charge bias Vc, the chemical potentials �1/3 are spin
indenpendent. So the results �e.g., the charge or spin current� are
completely the same, regardless of the spin index s used in
�1,s↑=�1,s↓=−�3,s↑=−�3,s↓=eV /2.

16 Here, Gp
��=Jp,� /V� represents Jp,� divided by the bias value V.

17 L. Sheng, D. N. Sheng, C. S. Ting, and F. D. M. Haldane, Phys.
Rev. Lett. 95, 136602 �2005�; J. Li, L. Hu, and S.-Q. Shen,
Phys. Rev. B 71, 241305�R� �2005�.

18 C. P. Moca and D. C. Marinescu, Phys. Rev. B 72, 165335
�2005�.

19 Here, the four leads are also described by the discrete tight-
binding Hamiltonian, which is the same as that in Ref. 17.

20 Electronic Transport in Mesoscopic Systems, edited by S. Datta
�Cambridge University Press, England, 1995�, Chaps. 2 and 3;
T. P. Pareek, Phys. Rev. Lett. 92, 076601 �2004�.

21 F. Mireles and G. Kirczenow, Phys. Rev. B 64, 024426 �2001�;
Q.-F. Sun, J. Wang, and H. Guo, ibid. 71, 165310 �2005�.

22 In Ref. 10, the matrix element Gxc is very small, but it is not zero.
This is different from the our present results �Gxc=0 exactly, see
Table I�a��, although the system is completely the same. They
may have neglected a factor of G22

out−G22
in in their Eq. �8�.

23 Notice that G2�4�
zc =G2�4�

cz is valid only for the square scattering
center region. For the rectangular scattering center region, G2�4�

zc

is in general not equal to G2�4�
cz .

24 Y.-S. Gui, C. R. Becker, N. Dai, J. Liu, Z.-J. Qiu, E. G. Novik, M.
Schäfer, X.-Z. Shu, J.-H. Chu, H. Buhmann, and L. W. Molen-
kamp, Phys. Rev. B 70, 115328 �2004�.

25 Here, the parameters of the material “n-type HgTe” are used in
the numerical calculation, which is the same as that in Ref. 24.
In fact, for other materials �e.g., GaAs with m*=0.036me�, the
numerical results are similar.

26 Y. Xing, Q.-F Sun, and J. Wang, Phys. Rev. B 73, 205339 �2006�.
27 L. Sheng, D. N. Sheng, and C. S. Ting, Phys. Rev. Lett. 94,

016602 �2005�.

SYMMETRY AND TRANSPORT PROPERTY OF SPIN… PHYSICAL REVIEW B 75, 075324 �2007�

075324-7


