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Abstract – We propose a topological quantum phase transition for quantum states with different
Berry phases in hole-doped III-V semiconductor quantum wells with bulk and structure inversion
asymmetry. The Berry phase of the occupied Bloch states can be characteristic of topological
metallic states. It is found that the adjustment of the thickness of the quantum well may cause
a transition of the Berry phase in a two-dimensional hole gas. Correspondingly, the jump of the
spin Hall conductivity accompanies the change of the Berry phase. This property is robust against
the impurity potentials in the system. Experimental detection of this topological quantum phase
transition is discussed.

Copyright c© EPLA, 2007

Introduction. – Topological properties of electron
bands or Bloch states are fundamentally important
in characterizing the quantum transverse transport
of electrons in metals and semiconductors. Studies of
the quantum Hall effect reveal the topological origin
of quantum Hall conductivity and the existence of novel
quantum states of matter [1]. Thouless et al. [2] found
that quantum Hall conductivity can be expressed in
terms of the Chern-Simon number of electron bands.
Renewed interest in the anomalous Hall effect leads to
an interpretation of “anomalous velocity” in the Karplus-
Luttinger formula for anomalous Hall conductivity as an
integration of Berry curvatures of occupied Bloch states,
which gives a geometric insight of intrinsic contribution in
ferromagnetic metals or semiconductors [3,4]. It was also
noticed that the Berry phase or Chern-Simon number may
have very close relation to the intrinsic and quantum spin
Hall effect [5–7]. Very recently, Bernevig et al. proposed
a topological quantum phase transition of topological
insulators in HgTe quantum wells [8].
The Berry phase is acquired by a quantum state upon

being transported adiabatically around a loop in the para-
meter space [9]. It reflects the topological properties of
bulk quantum states. Spin-orbit coupling in semiconduc-
tors mixes electron Bloch states in the k space with spin

degrees of freedom. In some two-dimensional (2D) systems
the Berry phase is well defined for some band structures
near the Fermi surface such as the system with Rashba or
Dresselhaus spin-orbit coupling [5]. In this paper, we inves-
tigate the quantum size effect of the Berry phase near the
Fermi surface of heavy holes in the III-V semiconductor
quantum wells with bulk and structure inversion asymme-
try, and propose a topological quantum phase transition
for topological metallic states with different Berry phases
when changing the thickness of the quantum well. The
anomaly or discontinuity of quantum transverse transport
of electron can be characteristic of this topological quan-
tum phase transition. As examples we study the spin Hall
conductance of the systems, and find that the spin Hall
conductivity has a jump near the transition point. This
property is robust against the impurity scattering and
expected to be observed with the current experimental
technique.

Model. – Consider a [001]-grown 2D quantum well of
hole-doped III-V semiconductors. We start with the model
Hamiltonian for the valence band near the Γ point in the
k space [10,11],

Hbulk =HL+HD +HR. (1)
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HL is the Luttinger Hamiltonian [12]

HL =

(
γ1+

5

2
γ2

)
�
2k2

2m
− γ2
m
�
2 (k ·S)2 , (2)

where γ1, γ2 are the material parameters, k
2 = k2x+ k

2
y +

k2z , m is the free electron mass, and S= (Sx, Sy, Sz)
are 4× 4 matrices corresponding to spin 3/2. HD is
the Dresselhaus spin-orbit coupling caused by the bulk
inversion asymmetry (BIA) [13]

HD =−γ
η

[
kx
(
k2y − k2z

)
Sx+c.p.

]
, (3)

where c.p. stands for cyclic permutation of all indices
(x, y, z), γ is due to bulk inversion asymmetry, η=
∆so/(Eg +∆so), ∆so is the split-off gap energy, Eg is the
band gap energy. HR is the Rashba spin-orbit coupling
term arising from structure inversion asymmetry (SIA)
due to an asymmetry confining potential [14]

HR = α (k×S) · ez, (4)

where α is a material parameter [15] and ez is the growth
direction of the quantum well.
For a 2D quantum well with finite thickness d, the first

heavy- and light-hole bands have approximate relations
of 〈kz〉= 0 and 〈k2z〉 � (π/d)2. If the thickness of the
quantum well is thin enough, the heavy hole (HH) and
light hole (LH) bands are well separated. In this paper, we
limit our discussion to the case in which only the first HH
band is significantly occupied. By means of the projection
perturbation method [16,17], the bulk Hamiltonian,
eq. (1), is projected into the space of heavy holes,

Hhh =
�
2k2

2mhh
+λ1k

2 (k−σ++ k+σ−)

+λ2
(
k3+σ++ k

3
−σ−
)
+ iλ3

(
k3−σ+− k3+σ−

)
+iλ4k

2 (k+σ+− k−σ−) , (5)

where σα are the Pauli matrices, σ± = (σx± iσy)/2,
k± = kx± iky,

λ1 =
3γ

4η

(
1− 3m2α2

4�4γ22 〈k2z〉
)
, λ2 =

3m2γ3
〈
k2z
〉

16�4γ22η
3
, (6)

λ3 =
3α

4 〈k2z〉
(
1− m2α2

4�4γ22 〈k2z〉
)
, λ4 =

9m2αγ2

16�4γ22η
2
, (7)

and the effective HH mass mhh =m[γ1+ γ2− 3m2
(α2+β2+2αβ sin 2θ)/(4�4〈k2z〉γ2)]−1, with β = γ〈k2z〉/η.
The band mixing between the light and heavy holes is
taken into account as the effective spin-orbit couplings.
Correspondingly, the projected spin operator Sz has
the form, Szhh = [3/2− 3m2(α2+β2+2αβ sin 2θ)k2/
(16�4〈k2z〉2γ22)]σz. As a result, there are four types of
effective cubic spin-orbit coupling. λ1, λ2, and λ3 can be
adjusted by the thickness d of the quantum well through
〈k2z〉, and λ4 is determined by the material parameters.

Table 1: Material parameters of selected III-Vs and calculated
critical thickness dc1.

GaAs InAs GaSb InSb InP
Eg (eV) 1.519 0.418 0.813 0.237 1.423
∆so (eV) 0.341 0.38 0.75 0.81 0.110
γ1 6.85 20.4 13.3 37.1 4.95
γ2 2.1 8.3 4.4 16.5 1.65

γ(eV.Å3) 28 130 187 226.8 8.5
dc1 (nm) 1.50 0.68 1.83 0.37 1.48

The Berry phase. – Now we come to discuss the
topological properties of band structure and their
quantum-size effect. The effective 2× 2 Hamiltonian (5)
can be diagonalized exactly in the k space. The two
eigenstates are

|k,+〉= 1√
2

(
1
eiϕ

)
, |k,−〉= 1√

2

(
e−iϕ

−1
)
, (8)

where ϕ is given by

tanϕ=
λ1 sin θ−λ2 sin 3θ−λ3 cos 3θ−λ4 cos θ
λ1 cos θ+λ2 cos 3θ+λ3 sin 3θ−λ4 sin θ , (9)

and tanθ= ky/kx.

The case without SIA. We first only consider the case
of the pure BIA, i.e., α= 0. In this case λ3 = λ4 = 0, and
λ1 = 3γ/(4η), λ2 = 3m

2γ3〈k2z〉/(16�4γ22η3). Thus, the two-
band effective Hamiltonian is reduced to

H ′hh =
�
2k2

2mhh
+λ1k

2 (k−σ++ k+σ−)

+λ2
(
k3+σ++ k

3
−σ−
)
, (10)

where mhh =m[γ1+ γ2− 3m2β2/(4�4〈k2z〉γ2)]−1. λ1 is
independent of the thickness d, but λ2 is proportional
to 1/d2. There exists a critical thickness dc1 such
that λ1 = λ2. The value of the critical thickness
dc1 =mπγ/(2�

2γ2η), which is determined by material-
specific parameters. Table 1 gives material parameters
of some III-V semiconductors (after refs. [16,18]) and
calculated critical thickness dc1.
The two dispersion relations corresponding to the eigen-

states (8) are

Eµ (k, θ) =
�
2k2

2mhh
+µλ(θ)k3, (11)

where µ=±1 and λ(θ) =√λ21+λ22+2λ1λ2 cos 4θ. In
general the two bands do not crossover except at k= 0.
In the case of λ1 = λ2, i.e., at the critical point of
d= dc1, the two bands become degenerate at θ=±π/4
and ±3π/4. The Fermi surfaces and dispersion relations
along the [110] axis are plotted in fig. 1 for three cases
at or near the critical point of λ1 = λ2. We note that the
validity of the above model is restricted to sufficiently
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Fig. 1: Fermi surfaces and dispersion branches of heavy
hole along the [110] direction for different thicknesses d of
the GaAs quantum well. (a) Fermi surface for d < dc1;
(b) Fermi surface for d= dc1; (c) Fermi surface for
d > dc1; (d) dispersion branches along the [110] direction
for d < dc1; (e) dispersion branches along the [110] direction
for d= dc1; (f) dispersion branches along the [110] direction for
d > dc1. The material parameters of GaAs are given in table 1.
±π,±3π stand for Berry phases.

small wave numbers and hole densities, which is similar
to the case of the cubic Rashba model [19].
The topological property of the hole band is revealed by

the vector potential for the Berry phase in the k space,

Aµ = i 〈k, µ |∇k| k, µ〉
= − µ

2k

λ21− 3λ22− 2λ1λ2 cos 4θ
λ21+λ

2
2+2λ1λ2 cos 4θ

eθ. (12)

The associated Berry curvature is ∇k×Aµ = γµδ(k)ez,
where

γµ = µ

[
π− 2π

(
λ21−λ22

)
|λ21−λ22|

]
, (13)

for λ1 �= λ2 and µπ, for λ1 = λ2. The phases are opposite
for the two bands. The singularity at k= 0 indicates
the existence of the Berry phase flux or 2D magnetic
monopole in the k space. We notice that the two types
of spin-orbit coupling in eq. (10) have quite different
contributions to the Berry phase. When the first term
dominates λ1 >λ2, γµ =−µπ and oppositely γµ = µ3π.
At the critical point of λ1 = λ2, γµ = µπ. According to
Stokes’ theorem, γµ is exactly the Berry phase [9]

1, which

1Aµ has the so-called “gauge choice”. The gauge we choose is
consistent with the following approach: firstly, we add a term hσz to
the Hamiltonian (5) to lift the degeneracy at k= 0, then calculate
the Berry phase through the surface integral of the gauge-invariant
Berry curvature and take the limit of h→ 0 at the last step.

Fig. 2: (Colour on-line) Variation of the Berry phase γµ with
the thickness d of the GaAs quantum well with BIA and SIA.
The material parameters are given in the text. The solid line
(red) corresponds to γ+; the dashed line (blue) to γ−.

is acquired by a state upon being transported around
an arbitrary loop C including the origin of k= 0 in the
k space, γµ =

∮
C
dk ·Aµ. From these results, it indicates

that adjustment of the thickness d near the critical point
dc1 may change the value of λ2, and further causes a
change of Berry phase from γµ =−µπ to γµ = µ3π in the
system or vice versa. Since this Berry phase reflects the
global topological properties of hole bands in the k space,
it is believed that this phase transition is topological.

The case with BIA and SIA. Now we will consider the
system with both BIA and SIA. In the following, we use
material parameters of III-V semiconductor GaAs given
in table 1, and take α= 0.01 eVnm. The variation of the
Berry phase γµ with the thickness d is plotted in fig. 2.
Due to SIA, a new step of the Berry phase appears near
1.5 nm. Furthermore, with the increase of the thickness
the Berry phase can transit from γµ =−µπ to γµ =−µ3π
at d= 12.3 nm.

Though there exist several transition points of the Berry
phase, in the following discussion, we focus on the regime
near the transition at dc2 = 12.3 nm. In this regime λ1 and
λ3 are much larger than λ2 and λ4. For simplification, we
neglect λ2 and λ4, and the effective Hamiltonian is

H̃hh =
�
2k2

2mhh
+λ1k

2 (k−σ++ k+σ−)

+iλ3
(
k3−σ+− k3+σ−

)
. (14)

The two dispersion relations have the same forms as
eq. (11) with λ(θ) =

√
λ21+λ

2
3+2λ1λ3 sin 2θ. In general

the two bands do not crossover except at k= 0. In the
case of λ1 = λ3, or d= dc2 (dc2 shifts to 12.1 nm due to
the ignorance of λ2 and λ4 and remaining the definition
of λ1 and λ3 in eqs. (6) and (7)), the two bands become
degenerate at θ= 3π/4 and 7π/4. The Fermi surfaces are
plotted in fig. 3 at or near the critical point of λ1 = λ3.
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Fig. 3: Fermi surfaces for different thicknesses d of the GaAs
quantum well. (a) Fermi surface for d < dc2; (b) Fermi surface
for d= dc2; (c) Fermi surface for d > dc2. ±π, ±2π, and ±3π
stand for Berry phases.

In this case the vector potential for the Berry phase in
the k space is given as

Aµ =− µ
2k

λ21+3λ
2
3+4λ1λ3 sin 2θ

λ21+λ
2
3+2λ1λ3 sin 2θ

eθ, (15)

and thus the Berry phase is

γµ =−µ
[
2π−π λ

2
1−λ23
|λ21−λ23|

]
, (16)

for λ1 �= λ3 and −µ2π, for λ1 = λ3. It follows that the
adjustment of the thickness dmay cause a transition of the
Berry phase from γµ =−µπ to γµ =−µ3π in the system
or vice versa.
On the other hand, we note that the strength of α is

another parameter which can be modified by a gate field.
If the thickness d of the quantum well is fixed, a change
of α can also induce a change of Berry phase: for example
for a GaAs quantum well with d= 10nm, the critical value
αc = 0.014 eVnm at which the Berry phase can vary from
γµ =−µπ to γµ =−µ3π.
The topological quantum phase transition and
discontinuity of spin Hall conductance. – The
free-electron gas described by the effective Hamiltonian
is obviously metallic. The spin-orbit coupling makes
the electrons near the Fermi surface to possess different
topological properties in the k space. The question is
whether these metallic states with different Berry phases
are different from each other such that the Berry phase
can be characteristic of these quantum metallic states. To
reveal the relevant physical properties of these metallic
states, we study the spin Hall effect of this system, which
has attracted a lot of interests in recent years [20,21].
Without loss of generality, we shall focus on the effective
Hamiltonian in eq. (14) to explore the physical conse-
quence of the change of the Berry phase near dc2. The
other two transition points of the Berry phase require
much thinner thickness.
For a realistic calculation we need to consider the effect

of impurities, which has drastic influence on some systems
such as the linear Rashba system [21,22]. For simplicity, we
consider H̃hh in eq. (14) with nonmagnetic impurities with
short-ranged potential: V (r) = V0

∑
i δ (r−Ri), where V0

is the strength of the impurities. The retarded Green
function can be written as GR(k, E,ΣR) = (E− H̃hh−
ΣR)−1, where the self-energy ΣR is obtained in the Born
approximation by solving the self-consistent equation,

ΣR = niV
2
0

∫
dk

(2π)2
GR(k, E,ΣR), (17)

where ni is the density of the impurity. In this problem, the
self-energy has a diagonal form, ΣR = ξRI, with I being
the 2× 2 unit matrix. The spin current operator Jzy is
defined as Jzy = (�/2){vy, Szhh}, and the velocity operators
are vx ≡ [x, H̃hh]/(i�) and vy ≡ [y, H̃hh]/(i�). To calculate
the linear response of spin current to the dc electric field,
we take the vertex correction [22], and the spin Hall
conductivity reads

σzyx =
e�

2π

∫
dk

(2π)
2Trσ

[
JzyG

RVxG
A
]
, (18)

where Vx is the velocity operator with the vertex correc-
tion. The self-consistent vertex equation includes the
diagrams with impurity ladders into the vertex part [23]

Vx = vx+niV
2
0

∫
dk

(2π)
2G
RVxG

A. (19)

The solution of Vx has the form Vx = vx+
∑
i ciσi,

and can be determined self-consistently. The detailed
calculation gives the solution cz = 0 and

cx =
AaAd+AbA10
AcAd−A210

, cy =
AaA10+AbAc
AcAd−A210

, (20)

where Aa =A1+A2+A3, Ab =A4+A5+A6, Ac = 1−
A7−A8, and Ad = 1−A7−A9. The relevant parameters
are

Ai =
niV

2
0

4

∑
µ,ν

∫
dk

(2π)2
Γµνi G

R
µG

A
ν , (21)

where

GR(A)µ =
1

E−Eµ− ξR(A) , (22)

Γµν1 =
(µ+ ν)κx
κ

∂ε

�∂kx
, Γµν2 = (1−µν)

∂κx

�∂kx
, (23)

Γµν3 =
µνκx

κ

∂κ

�∂kx
, Γµν4 =

(µ+ ν)κy
κ

∂ε

�∂kx
, (24)

Γµν5 = (1−µν)
∂κy

�∂kx
, Γµν6 =

µνκy

�κ

∂κ

∂kx
, (25)

Γµν7 = 1−µν, Γµν8 =
2µνκ2x
κ2

, (26)

Γµν9 =
2µνκ2y
κ2
, Γµν10 =

2µνκxκy
κ2

, (27)

with κx = kxk
2λ1−ky(k2y − 3k2x)λ3, κy = kyk2λ1−kx(k2x−

3k2y)λ3, κ
2 = κ2x+κ

2
y, and ε= �

2k2/(2mhh). Using the
self-consistent solution of self-energies in eq. (17), we
can calculate the spin Hall conductivity explicitly.
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For numerical calculation here we adopt the material
parameters of GaAs given above and the Fermi energy
Ef = 2.5meV which is close to the bottom of the bands.
Before doing the numerical calculation, we first consider

the problem in the clean limit. The vertex-corrected
velocity consists of two parts, the bare velocity vx and
vertex correction δvx = cxσx+ cyσy. Correspondingly, the
spin Hall conductivity in eq. (18) can be divided into the
intrinsic part and the vertex correction part. Denote by
τ−1 =− 2

�
Im(ξR) the life time. In the clean limit of ni→ 0,

τ →+∞, the intrinsic part of spin Hall conductivity gives

σz,intyx =
3e�2

16π2

∫
sin2 θ dθ

mhhλ3

(
1

k−f
− 1
k+f

)

× (λ21+3λ23+4λ1λ3 sin 2θ) , (28)

where k±f (θ) are θ-dependent Fermi momenta of two
bands. This can be also obtained from the Kubo formula
explicitly. In the low density of carriers, 1/k−f − 1/k+f ≈
−2mhhλ(θ)/�2. Using this formula, we reach an explicit
relation between the intrinsic part of the spin Hall conduc-
tivity and the Berry phase near the Fermi surface:

σz,intyx =
3e

16π2

∑
µ

µγµ(d). (29)

A similar relation has already been obtained for the system
with the Rashba and Dresselhaus spin-orbit coupling, once
the two conduction bands are occupied simultaneously
[5,6]. This relation reflects the close relation between the
spin Hall conductance and the topological properties of the
Fermi surface. Taking into account the vertex correction,
the total spin Hall conductivity in the clean limit is

σzyx =−
3e

8π

[
1− �

k2fλ1

(
cx+

λ3

λ1
cy

)]
, (30)

for λ1 >λ3 (with kf = (k
+
f + k

−
f )/2 independent of θ)

and σzyx =−9e/(8π), for λ1 <λ3 (see footnote 2). The
parameters cx and cy can be calculated numerically, and
the result is plotted in fig. 4.
Unlike the 2D Rashba system in which the intrinsic

spin Hall conductivity can be suppressed by the vertex
correction completely [22,24], the spin Hall conductivity
in the present system can survive in the clean limit.
In the case of λ1 >λ3 the vertex correction almost
cancels the intrinsic part when the system deviates from
the transition point, σzyx ≈+ 0.5e/(8π) but has a large
residue near the transition point. In the case of λ1 <λ3 the
vertex correction is zero, which is consistent with previous
calculations by Murakami [25] and Bernevig et al. [26]. In

2σzxy = 9e/(8π) was already found in ref. [19] where those authors
concentrated on the spin-orbit coupling term proportional to λ3. In
fact σzxy =−σzyx(cf. eq. (25) in ref. [19]), thus our result is consistent
with that of ref. [19].

Fig. 4: (Colour on-line) Variation of the spin Hall conductiv-
ity σzyx with the thickness d of the GaAs quantum well. The
material parameters are given in the text and the given Fermi
energy Ef is equal to 2.5meV. The squares (black) correspond
to the intrinsic part of spin Hall conductivity; the triangle
(red) to spin Hall conductivity in the clean limit; the diamonds
(blue) to �/τ0 = 10

−2meV; the circles (green) to �/τ0 =
10−1meV. Here �/τ0 =mniV 20 /�

2.

general, it has been realized that the symmetries of the
spin-dependent part of velocities vj = ∂H/�∂kj play an
essential role in the vertex correction to transverse trans-
port. The parts from the λ2 and λ3 terms have d-wave
symmetry, and have no vertex contribution. The parts
from the λ1 and λ4 terms contain two terms of s- and
d-wave, respectively, where only the term of s-wave
symmetry contributes to the vertex correction.
For a finite density of impurities, numerical results of

the total spin Hall conductivity for different life times are
plotted in fig. 4. The sharp jump of spin Hall conductivity
near the transition point is smeared for the strong disorder
effect. As a result, it is concluded that a jump of the
intrinsic spin Hall conductivity accompanies the change
of the Berry phases near the Fermi surface and it survives
after taking into account the disorder effect of impurities.
Here we only consider short-range scattering potentials,
and it should be noted that the resulting vertex correction
will depend in general on the form and in particular the
spatial range of the scatterers.

Discussion and summary. – From the calculation
above, we established a relation between the topolog-
ical quantum phase transition and spin-resolved quan-
tum transverse transport in the system. The spin Hall
effect has been observed experimentally in both p- and
n-doped semiconductor systems [27,28] and metals such as
aluminum [29] and platinum [30]. Especially, the technique
of Wunderlich et al. [28] can be applied to observe this
topological quantum phase transition explicitly. The 2D
hole-doped layer of the (Al, Ga)As/GaAs heterojunction
is designed as a part of a p-n junction light-emitting diode

47010-p5
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with a specially designed coplanar geometry which allows
an angle-resolved polarization detection at opposite edges
of the 2D hole system. When an electric field is applied
across the hole channel, a nonzero out-of-plane compo-
nent of the angular momentum can be detected whose
magnitude depends on the thickness of the heterojunction
for 2D holes. A series of samples with different thickness
around dc2 are required to detect the jump near the tran-
sition point. On the other hand, as mentioned above, we
can also vary the Rashba coupling α near the critical αc
by adjusting the gate voltage, and detect the jump of spin
accumulation at edges of the 2D hole quantum well with
fixed thickness to reveal the transition of the Berry phase.
Technically it is believed that there is not any obstacle to
observe this transition. In short, the topological quantum
phase can be characterized by the Berry phase accumu-
lated by the adiabatic motion of particles on the occu-
pied Bloch states of hole (or electron). The conventional
phase transition is characteristic of the discontinuity of
the derivative of the free energy with respect to temper-
ature. Instead, this novel type of topological quantum
phase transition is revealed by the discontinuity or anom-
aly of quantum spin transverse transport in the system.
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