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Abstract— In graph theory, the Hungarian algorithm can
provide the maximum weighted bipartite matching for assign-
ment problems. In this paper, a modified bipartite matching
(MBM) algorithm is proposed for multiobjective optimization.
This algorithm can be widely used to solve the weighted bipartite
matching problem with multiobjective optimization. We illustrate
the application of MBM to antenna assignments in wireless
MIMO system. The simulation results show that MBM enjoys low
computational complexity and maximizes the system capacity,
while keeping the fairness among mobile users.

I. INTRODUCTION

The Hungarian method for the assignment problem de-
scribed an algorithm for constructing a maximum weight
perfect matching in a bipartite graph [1]. It is proved that
the Hungarian algorithm can always find the maximum assign-
ment, i.e., an optimal solution to the maximum weight sum [1].
Compared with exhaustive search, the computational complex-
ity is reduced to O(n4). However, the Hungarian method only
considers single-objective optimization, limiting its application
to assignments with multiobjective optimization.

In network performance analysis, a single global objective,
which may be one of the network performance measures,
such as throughput, is often examined to optimize network
performance. This approach is meaningful in the homogeneous
situation, such as when each user has the same quality of
service (QoS) requirement. In this case, equal performance is
the implied fairness criterion, and global optimality is equiva-
lent to individual optimization. However, in the heterogeneous
case, individual requirements may be ignored by using a single
overall objective, and sometimes users may have to sacrifice
their own performances for the good of the entire network [2]
[3].

In wireless MIMO communication systems based on spatial
multiplexing, a data stream is split into multiple parallel
substreams, and each substream is transmitted through one of
the transmit antennas [4]. Combined with multiuser diversity
[5] in cellular packet transmission systems, a couple of antenna
assignment schemes have been proposed for packet schedulers
to maximize the system capacity or to provide fairness among
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mobile users [6]-[8]. However these scheduling schemes only
consider single-objective optimization. None of them consider
multiobjective optimization which account for both capacity
maximization and fairness.

In this paper, a modified bipartite matching (MBM) al-
gorithm is proposed for multiobjective optimization, such as
maximizing the total throughput, while keeping the fairness
among individual users. In MBM, this is realized by applying
the Hungarian algorithm to each updated bipartite graph and
choosing the matching with the largest fairness index among
the updated matchings. The bipartite graph is updated by
reducing one edge at a time till no edges remain in the graph.
The deleted edge is the one violates the fairness criterion
most seriously. For each deletion, after the processing of the
Hungarian algorithm, the maximum weighted matching is also
guaranteed for the updated bipartite graph. Consequently, the
fairness comparison can be finished in O(n2) and the matching
which has the best fairness performance is the final solution. In
this paper, MBM is applied to a MIMO communication system
as an example. Simulation results show that it can effectively
guarantee the system capacity and fairness performance. More
importantly, our proposed MBM algorithm can be widely
applied to job assignments and resource allocation problems
which need multiobjective optimization.

The paper is organized as follows. Section II presents the
details of the MBM algorithm. In Section III, we give an
example of MBM for antenna assignments in wireless MIMO
communication systems. Section VI draws the conclusions of
this paper.

II. DESCRIPTION OF MBM

A. Multiobjective Optimization Functions

A graph is denoted by G(V,E), where V is the vertex set
and E is the edge set of the graph. If V = V1 ∪ V2 with
V1 ∩ V2 = Φ, and each edge in E has one endpoint in V1

and the other in V2, the graph G(V,E) is a bipartite graph,
which can also be denoted as G(V1, V2, E). The bipartite graph
is very useful for some applications, such as an assignment
problem which can be depicted as follows: Given a weighted
complete bipartite graph G = (X ∪ Y,X × Y ), where edge
(x, y) has the weight w(x, y), find a matching M from X to
Y with maximum weight. In an application, X could be a
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set of workers, y could be a set of jobs, and w(x, y) be the
profit made by assigning worker x to job y. The essence of the
assignment problem is to find the optimal matching. Basically,
there are two approaches to the optimization problem: single-
objective overall weight optimization and multiobjective indi-
vidual optimization.

For the overall weight optimization, we have a single-
objective optimization problem:

max
∑

x⊂X, y⊂Y

w(x, y), (x, y) ⊂ E. (1)

This approach is often used to obtain the optimal per-
formance for the entire assignment, and the meaning of
optimization is straightforward. To consider the individual
performance, we resort to the multiobjective approach. For
example, the system is required to keep profit fairness among
the workers. Consider any matching Mj ( j = 1, ... n), where
n is the maximum number of matchings chosen from G. We
assume the objective evaluation function is f(wj(x, y)), where
(x, y) ⊂ Mj and wj(x, y) represents the weights of edges in
Mj . Consequently, the multiobjective optimization problem is
to combine (1) with

max f(wj(x, y)), (x, y) ⊂ Mj ,
j = 1, ... , n.

(2)

The multiobjective functions can be constructed based on
specific applications, and are not limited to examples we have
given in this paper. The main contribution of our work is to
introduce a modified bipartite matching algorithm to provide
a solution to general multiojective optimization problems.

B. MBM Algorithm

Since individual objectives may conflict with each other,
and may conflict with the entire optimization objective, a new
modified bipartite matching algorithm is proposed. It has been
proved that the Hungarian algorithm always find the maximum
weighted matching for a bipartite graph. That means it can
provide an optimal solution to the above problem (1). The
following is the description of the procedure of the Hungarian
algorithm. Matrix W = [wij ] has elements wij , which is the
weight of assigning worker i to job j as shown in Fig. 1 (a).

1) Step 1: Let X , Y be the bipartite sets. Initialize two
labels ui and vj by ui = maxjwij , vj = 0, i, j = 1, ... , k.
In Fig. 1 (b), the numbers written at the left and the top of
the matrix express the values of ui and vj , respectively.

2) Step 2: Obtain the excess matrix C by the following.
cij = ui + vj − wij .

3) Step 3: Find the subgraph G that includes vertices i and
j satisfying cij = 0 and the corresponding edge eij . Then find
the maximum matching M in G and underline the entries in
M . If M is a perfect matching with k edges, the optimal
assignment is obtained.

4) Step 4: Let Q be a vertex cover of G, and let R = X∪Q
and T = Y ∩ Q. The vertex cover Q as a vertex set of G
which contains at least one endpoint of each edge. Now find
ε satisfying ε = min{cij : xi ∈ X − R, yj ∈ Y − T}. For
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Fig. 1. Weighted bipartite matching.

example, if ε equals 1 in Fig. 1, decrease ui by ε for the rows
of R and increase vj by ε for the columns of T . Then go to
step 2.

Steps 2 to 4 are repeated until the perfect matching M ,
namely the optimal assignment, is obtained.

After the procedure of the Hungarian algorithm, the maxi-
mum weighted matching M can be achieved, and for simplic-
ity, we denote the weight of the k edges as wi, i = 1, ..., k.
To consider the multiobjective fairness optimization problem
(2), MBM calculates ηi of the different weighted edges by

ηi = |wi − (
k∑

i=1

wi)/k|2, i = 1, ..., k. (3)

In terms of the fairness, these ηi values represent the
distance from the mean. Then we chose the edges m by

{m} = argmaxi{σi}, i = 1, ..., k. (4)

For the original maximum matching, denoted as M1, we can
deduce that the edge m violates the fairness criterion most se-
riously. So in order to improve the fairness performance, MBM
deletes the edge m in G, namely, changes the corresponding
element to zero in the matrix W. With the new updated weight
matrix, we apply the Hungarian algorithm again to find the
new maximum matching, and then delete the next edge in
the new case. MBM will iterate these operations till there
is no edge in G. If we only consider the square matrix W
with N × N elements, the iterations can be finished in at
most O(n2) times. Given each obtained maximum matching
Mj (j = 1, ..., N × N), their corresponding fairness can
be evaluated by the defined evaluation function f(wj(x, y)).
Then the final solution given by MBM is
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{p} = argmaxj{f(wj(x, y))},
(x, y) ⊂ Mj , j = 1, ..., N × N.

(5)
For multiobjective optimization, based on the Hungarian

algorithm, Mj is guaranteed to be the maximum weighted
matching for each updated bipartite graph. With the deleting
operation of the edge with the most serious fairness violation
in the previous matching, the result of the fairness function
is updated. By comparing the fairness performances in O(n2)
calculations, the final solution Mp can achieve the best fairness
among those maximum weighed matchings for each updated
G. Therefore, MBM can effectively solve the multiobjective
optimization problems.

III. EXAMPLE

In this section, MBM is applied for antenna assignments in
the downlink of an MIMO communication system to maximize
the overall channel capacity, while keeping the fairness among
all mobile users.

A. System Model

The system model is shown in Fig. 2, where the base station
has NT antennas and each mobile user has NR (≥ NT ) an-
tennas. The number of mobile users is K. The transmit power
is equally divided among the transmit antennas. The receiver
estimates the post-detection signal-to-noise ratio (SNR) of
each transmit antenna, and passes the SNR information to the
base station through the uplink feedback channel at the start
of each time-slot (of duration Ts). Based on this information,
the scheduler selects a group of users and assigns the antennas
to them to transmit in the time-slot. The channel encounters
path loss and shadow fading, and it is time-invariant during
each time-slot and independent between time-slots. Also, the
channel is assumed to be spatially uncorrelated. The channel
matrix Hk(t) between the base station and user k at time-slot
t is [5]

Hk(t) =
√

SNR0 · (lk/L)−β · 10Sk/10 · Gk(t), (6)

where SNR0 is the median SNR, L is the cell radius, Gk(t)
is an independent complex Gaussian random variable with
zero mean and unit variance, β is an path loss exponent, and
Sk(t) is a real Gaussian random variable with zero mean and
variance of σ2

S . In addition, lk is the distance between the base
station and user k. The distance of each user from the base
station is randomly initialized between zero and L. The post-
detection SNR [5] is defined as the SNR of a transmit symbol
after minimum mean-squared error (MMSE) detection, and the
corresponding value for the transmit antenna n to user k can
be calculated as

γk,n(t)=
|[Wk(t)Hk(t)]nn|2

(σ2
N

/PR)NT

∑NT

m=1
|[Wk(t)]nm|2+

∑NT

m=1,m �=n
|[Wk(t)Hk(t)]nm|2

,

(7)

User
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Detector
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User 1

User 2

User K

Feedback Channel

Fig. 2. Downlink MIMO system.

where PR is the total received signal power and σ2
N is the noise

power per receive antenna. The weight matrix for MMSE is
given as

Wk(t) = HH
k (t)(Hk(t)HH

k (t) + (σ2
NNT /PR)INR

)−1, (8)

where (·)H denotes the conjugate transpose and INR
is the

NR × NR identity matrix. Therefore, the system capacity for
time-slot t can be expressed as

C(t) =
NT∑
n=1

log2(1 + γk,n(t)). (9)

B. Problem Formulation

In spatial multiplexing, a data stream is split into multiple
substreams, and each substream is transmitted through a
transmit antenna. To exploit multiuser diversity, the scheduler
can simultaneously choose as many multiple users as transmit
antennas and allocate an antenna to each user. As the capacity
is a function of SNR, maximizing the sum of the weight
obtained from SNR is equivalent to the capacity maximization
of (9). We further denote C(k1, ... , kNT

) as the capacity
achieved by allocating transmit antenna i to user ki for i =
1, ... , NT . Consequently, our proposed MBM aims to search
k1, ... , kNT

, for ∀i, j(�= i); ki �= kj to

max C(k1, ... , kNT
) = max

NT∑
i=1

log2(1 + γki,i). (10)

In wireless communication system, the fairness index is
widely used to evaluate the fairness performance [9]. It takes
values between 0 and 1, and is defined as follows:

f =
(
∑NT

i=1 Cki,i)
2

NT (
∑NT

i=1 C2
ki,i

)
, (11)

where Cki,i = log2(1 + γki,i) is the transmit rate achieved
by assigning antenna i to user ki. We assume each user has
the same QoS requirement on throughput. As presented in
Section II-B, after each update of the graph G by deleting
the edge chosen by (4), a new maximum weight matching is
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TABLE I

COMPUTATIONAL COMPLEXITIES

Assignment scheme Computational complexity

Hungarian Algorithm O(n4)
Pure fairness O(n!)

MBM O(n6)

obtained till there is no edge in G. For each achieved matching
Mj , the corresponding fairness index fj (j = 1, ... , NT ×
NT ) could be calculated by (11). Therefore the multiobjective
optimization is achieved by choosing the maximum fp among
the updated matchings, namely,

{p} = argmaxj{fj}, j = 1, ..., NT × NT . (12)

Finally, the maximum matching Mp should be the solution for
the multiobjective capacity and fairness optimization problem.

C. Simulation Results

In this paper, we consider a 4 × 4 MIMO system, and
evaluate the capacity and fairness performance for the best-
effort traffics. We assume SNR0 = 10 dB, the path loss
exponent β = 3.7 dB, the log standard deviation of shadow
fading σS = 8 dB, the cell radius L = 1 Km, and PR/σ2

N =
10 dB. In each time slot, if K < NT , we assume some
users can be assigned multiple antennas by a round Robin
(RR) scheduler or other schemes. If K > NT , an asymmetric
bipartite matching is constructed. In this case, we append
(K − NT ) all-zero rows to the weighted matrix, then deal
with the problem as a symmetric bipartite matching. Our
main goal is to test the performance of MBM for antenna
assignments, so for simplicity, we set K = NT . In this model,
the distance of each user from the base station is uniformly
distributed between 0 and L. Simulation time is 2 × 103 Ts.
We compared the performances of the Hungarian maximum
weighted matching, the pure fairness maximum matching,
and our proposed MBM algorithm. Table I compares the
computational complexities of these three schemes. For MBM,
given a certain fairness index requirement, O(n6) is the upper
bound of the search complexity.

Fig. 3 shows the throughput performance comparisons. For
the generated network scenario in our simulation, the Hun-
garian algorithm can provide the maximum system capacity
of around 33.65 bps/Hz and a fairness index of around 0.77.
If we assume the system fairness optimization target is to
have a fairness index above 0.8, the Hungarian algorithm
is inadequate. MBM can optimize the throughput for any
given fairness requirements. We show the MBM throughput
for fairness requirements (f) from 0.8 to 0.9. By exhaustive
search, the pure fairness maximization scheme gives the best
fairness performance of over 0.9, but it sacrifices the system
capacity.

IV. CONCLUSIONS

In this paper, based on the Hungarian algorithm, a modified
bipartite matching (MBM) algorithm is proposed for multi-
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Fig. 3. Throughput comparisons.

objective optimization. This algorithm can effectively balance
conflicting objectives in multiobjective optimization problems,
and is widely applicable to resource assignment problems. In
this paper, we illustrate the application of MBM to antenna
assignments in wireless MIMO system. The simulation results
show that MBM enjoys low computational complexity and
maximizes the system capacity, while keeping the fairness
among mobile users.
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