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Abstract— The Hungarian algorithm can provide the max-
imum weighted bipartite matching for assignment problems.
However it can only solve the single objective weight optimization
problem. In this paper, a modified bipartite matching (MBM)
algorithm is proposed to solve the weighted bipartite matching
problem with multiobjective optimization. In addition, our MBM
algorithm is applicable to asymmetric bipartite graph, which
is common in resource allocation problems. We illustrate the
application of MBM to antenna assignments in wireless multiple-
input multiple-output (MIMO) systems for both symmetric and
asymmetric scenarios. The simulation results show that MBM
enjoys low computational complexity and maximizes the system
capacity, while keeping the fairness among mobile users.

I. INTRODUCTION

The Hungarian method for the assignment problem describe
an algorithm for constructing a maximum weight perfect
matching in a bipartite graph [1]. It is proved that the Hun-
garian algorithm can always find the maximum assignment,
i.e., an optimal solution to the maximum weight sum [1].
Compared with exhaustive search, the computational com-
plexity is reduced to O(n4), where n is the cardinality (the
number of the elements in a set) of the node set of a bipartite
graph. However, the Hungarian method only considers single
objective optimization, limiting its application to assignments
with multiobjective optimization. In addition, for asymmetric
bipartite graphs, the Hungarian algorithm only considers the
assignments based on the minimum cardinality of the bipartite
node sets. It will cause unnecessary resource wastage when the
redundant resource is reusable.

In network design, a single global objective, which may be
one of the network performance measures, such as throughput,
is often examined to optimize network performance. This
approach is meaningful in the homogeneous situation, such
as when each user has the same quality of service (QoS)
requirement. In this case, equal performance is the implied
fairness criterion, and global optimality is equivalent to in-
dividual optimization. However, in the heterogeneous case,
individual requirements may be ignored by using a single
overall objective, and sometimes users may have to sacrifice
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their own performance for the good of the entire network [2]
[3].

In wireless multiple-input multiple-output (MIMO) com-
munication systems based on spatial multiplexing, a data
stream is split into multiple parallel substreams, and each
substream is transmitted through one of the transmit antennas
[4]. Combined with multiuser diversity [5] in cellular packet
transmission systems, a couple of antenna assignment schemes
have been proposed for packet schedulers to maximize the
system capacity or to provide fairness among mobile users [6]-
[8]. However these scheduling schemes only consider single
objective optimization. None of them considers multiobjective
optimization which account for both capacity maximization
and fairness.

In this paper, a modified bipartite matching (MBM) al-
gorithm is proposed for multiobjective optimization, such as
maximizing the total throughput, while keeping the fairness
among individual users. In MBM, this is realized by applying
the Hungarian algorithm to each updated bipartite graph and
choosing the matching with the largest fairness index among
the updated matchings. The bipartite graph is updated by
reducing one edge at a time till no edges remain in the graph.
The deleted edge is the one violating the fairness criterion
most seriously. Consequently, the fairness comparison can be
finished in O(n2). For asymmetric bipartite graphs, i.e. the
number of nodes in the two bipartite sets are different, if the
resource to be assigned may be fully utilized, our MBM is
designed to maximize the resource usage by reconstructing
the graph and finding updated matchings. In this paper, MBM
is applied to a MIMO communication system as an example.
Simulation results show that it can effectively guarantee the
system capacity and fairness performance whether or not the
number of mobile users and the number of antennas are
the same. More importantly, our proposed MBM algorithm
can be widely applied to job assignments and other resource
allocation problems which need multiobjective optimization.

The paper is organized as follows. Section II presents the
details of the MBM algorithm. In Section III, we give an
example of MBM for antenna assignments in wireless MIMO
communication systems. Section VI draws the conclusions of
this paper.
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II. DESCRIPTION OF MBM

A. Multiobjective Optimization Functions

A graph is denoted by G(V,E), where V is the vertex set
and E is the edge set of the graph. If V = V1 ∪ V2 with
V1 ∩ V2 = Φ, and each edge in E has one endpoint in V1

and the other in V2, the graph G(V,E) is a bipartite graph,
which can also be denoted as G(V1, V2, E). The bipartite graph
is very useful for some applications, such as an assignment
problem which can be depicted as follows: Given a weighted
complete bipartite graph G = (X ∪ Y,X × Y ), where edge
(x, y) has weight w(x, y), find a matching M from X to Y
with maximum weight. In an application, X could be a set
of workers, y a set of jobs, and w(x, y) the profit made by
assigning worker x to job y. The essence of the assignment
problem is to find the optimal matching. Basically, there are
two approaches to the optimization problem: single objective
overall weight optimization and multiobjective individual op-
timization.

For the overall weight optimization, we have a single
objective optimization problem:

max
∑

x⊂X, y⊂Y

w(x, y), (x, y) ⊂ E. (1)

This approach is often used to obtain the optimal per-
formance for the entire assignment, and the meaning of
optimization is straightforward. To consider the individual
performance, we resort to the multiobjective approach. For
example, the system is required to keep profit fairness among
the workers. Consider any matching Mj ( j = 1, ... n), where
n is the maximum number of matchings chosen from G. We
assume the objective evaluation function is f(wj(x, y)), where
(x, y) ⊂ Mj and wj(x, y) represents the weights of edges in
Mj . Consequently, the multiobjective optimization problem is
to combine (1) with

max f(wj(x, y)), (x, y) ⊂ Mj ,
j = 1, ... , n.

(2)

The multiobjective functions can be constructed based on
specific applications, and are not limited to examples we have
given in this paper. The main contribution of our work is to
introduce a modified bipartite matching algorithm to provide
a solution to general multiojective optimization problems.

B. MBM Algorithm

Since individuals’ objectives may conflict with each other,
and may conflict with the overall optimization objective, a
new modified bipartite matching algorithm is proposed. In this
subsection, only the symmetric bipartite matching is discussed,
and the asymmetric case is presented in the next subsection.
It has been proved that the Hungarian algorithm can always
find the maximum weight matching for a bipartite graph. That
means it can provide an optimal solution to the above problem
(1). The following is based on the description of the procedure
of the Hungarian algorithm in [7] and [9]. Matrix W = [wij ]

W
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Fig. 1. Weighted bipartite matching.

has elements wij , which is the weight of assigning worker i
to job j as shown in Fig. 1 (a).

1) Step 1: Let X , Y be the bipartite sets. Initialize two
labels ui and vj by ui = maxjwij , vj = 0, i, j = 1, ... , k.
In Fig. 1 (b), the numbers written at the left and the top of
the matrix express the values of ui and vj , respectively.

2) Step 2: Obtain the excess matrix C by the following:
cij = ui + vj − wij . This is shown in Fig. 1 (c).

3) Step 3: Find the subgraph G′ that includes vertices i and
j satisfying cij = 0 and the corresponding edge eij . Then find
the maximum matching M in G′ and underline the entries in
M 1. In this example, the maximum matching is found to be
(1, 4), (2, 1) and (4, 2). If M is a perfect matching with k
edges, the optimal assignment is obtained. This is shown in
Fig. 1 (d).

4) Step 4: Let Q be a vertex cover of G′, and let R = X∩Q
and T = Y ∩Q. The vertex cover Q is a vertex set of G′ which
contains at least one endpoint of each edge. In this example, Q
is chosen to be the nodes corresponding to Wroker 1 and 3, and
Job 4. So R corresponds to Worker 1 and 3, and T corresponds
to Job 4. Now find ε = min{cij : xi ∈ X −R, yj ∈ Y −T}.
For example, if ε equals 1 in Fig. 1, decrease ui by ε for the
rows of X − R and increase vj by ε for the columns of T .
Then go to step 2.

Steps 2 to 4 are repeated until the perfect matching M , i.e.,
the optimal assignment, is obtained.

After the procedure of the Hungarian algorithm, the maxi-
mum weighted matching M can be achieved, and for simplic-
ity, we denote the weights of the k edges as wi, i = 1, ..., k.
To consider the multiobjective fairness optimization problem
(2), MBM calculates ηi of the different weighted edges by

1There are various ways to find the maximum matching. See, for example
[9].
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ηi = |wi − (

k∑
i=1

wi)/k|2, i = 1, ..., k. (3)

In terms of the fairness, these ηi values represent the
distance from the mean. Then we choose the edges m by

{m} = argmaxi{ηi}, i = 1, ..., k. (4)

For the original maximum matching, denoted as M1, we can
deduce that the edge m violates the fairness criterion most
seriously. So in order to improve the fairness performance,
MBM deletes the edge m in G, i.e. changing the corresponding
element to zero in the matrix W . With the updated weight
matrix, we apply the Hungarian algorithm again to find the
new maximum matching. This is repeated until there is no
edge left in G. For a square matrix W with n × n elements,
there are at most O(n2) iterations. Note that since there is
no back-tracking in the algorithm to allow us to add back
previously deleted edges, our solution does not guarantee the
maximum matching. However, in our test cases, we find that
the maximum matching is obtained most of the time. Given
each obtained maximum matching Mj (j = 1, ..., n × n),
the corresponding fairness can be evaluated by the defined
evaluation function f(wj(x, y)). Then the final solution given
by MBM is

{p} = argmaxj{f(wj(x, y))},
(x, y) ⊂ Mj , j = 1, ..., n × n.

(5)
For multiobjective optimization, based on the Hungarian

algorithm, Mj is guaranteed to be the maximum weighted
matching for each updated bipartite graph. By deleting the
edge with the most serious fairness violation in the previous
matching, the fairness function is updated. By comparing the
fairness performance in O(n2) calculations, the final solution
Mp can achieve the best fairness among those maximum
weighed matchings for each updated G. Therefore, MBM can
effectively solve the multiobjective optimization problem. In
addition, if the system is given a fairness performance thresh-
old ξ, the iterations will stop once the fairness performance of
the updated matching is above ξ, so O(n2) is the upper bound
of the computational complexity.

C. Asymmetric Bipartite matching

For a bipartite graph G(V1, V2, E), if the cardinalities of V1

and V2, denoted as n1 and n2, are not equal, then this bipartite
graph is asymmetric. Firstly, let consider the case when n1 <
n2, that is, the resource to be assigned is not adequate for all
users. Then the bipartite matching can be formulated as in Fig.
2. In this case, our MBM appends (n2 − n1) all-zero rows to
the original weight matrix Wn1×n2

to form a square weight
matrix Wn2×n2

, thus the problem is transformed to a general
symmetric bipartite matching problem and we can easily solve
it by the method introduced in the previous subsection.

Secondly, if n1 > n2, that is, the resource to be assigned is
excessive for the users. In this case, if the users can not use the
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Fig. 2. Asymmetric bipartite matching (1).

redundant resource, as presented above, our MBM algorithm
will append (n1 −n2) all-zeros columns to construct a square
weight matrix and transform the problem to a symmetric
bipartite matching one, as shown in Fig. 3. However, if the
redundant resource may be used by the users, i.e. each user can
accept multiple assignments simultaneously, then the previous
method will cause resource wastage. In this case, our MBM
is enhanced as follows:

1) Step 1: Duplicate and add the whole user set to V2 till
the new cardinality of V2, denoted as n

′

2
, is equal to or larger

than the cardinality of V1. Update the graph by adding the
corresponding edges to the duplicated user sets. If n

′

2
= n1,

go to step 3.
2) Step 2: If n1 < n

′

2
, (n

′

2
−n1) all-zero rows are appended

to form a square weight matrix.
3) Step 3: Solve the bipartite matching problem as a sym-

metric one by the method presented in the above subsection.
Fig. 4 illustrates the processing of MBM when all resource

is usable for users. In the next section, an example will be
given for both symmetric and asymmetric bipartite matchings.

III. EXAMPLE

In this section, MBM is applied for antenna assignments in
the downlink of an MIMO communication system to maximize
the overall channel capacity, while keeping the fairness among
all mobile users.

A. System Model

The system model is shown in Fig. 5, where the base station
has NT antennas and each mobile user has NR (≥ NT ) an-
tennas. The number of mobile users is K. The transmit power
is equally divided among the transmit antennas. The receiver
estimates the post-detection signal-to-noise ratio (SNR) of
each transmit antenna, and passes the SNR information to the
base station through the uplink feedback channel at the start
of each time-slot (of duration Ts). Based on this information,
the scheduler selects a group of users and assigns the antennas
to them to transmit in the time-slot. The channel encounters
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path loss and shadow fading, and it is time-invariant during
each time-slot and independent between time-slots. Also, the
channel is assumed to be spatially uncorrelated. The channel
matrix Hk(t) between the base station and user k at time-slot
t is [5]

Hk(t) =
√

SNR0 · (lk/L)−β · 10Sk/10 · Gk(t), (6)

where SNR0 is the median SNR, L is the cell radius, Gk(t)
is an independent complex Gaussian random variable with
zero mean and unit variance, β is the path loss exponent, and
Sk(t) is a real Gaussian random variable with zero mean and

User
Scheduler

Spatial
Multiplexer

User 1

User 2

User K

Detector

Detector

Detector

User 1

User 2

User K

Feedback Channel

Fig. 5. Downlink MIMO system.

variance of σ2

S . In addition, lk is the distance between the base
station and user k. The distance of each user from the base
station is randomly initialized between zero and L. The post-
detection SNR [5] is defined as the SNR of a transmit symbol
after minimum mean-squared error (MMSE) detection, and the
corresponding value for the transmit antenna n to user k can
be calculated as

γk,n(t)=
|[Wk(t)Hk(t)]nn|2

(σ2
N

/PR)NT

∑NT

m=1
|[Wk(t)]nm|2+

∑NT

m=1,m �=n
|[Wk(t)Hk(t)]nm|2

,

(7)
where PR is the total received signal power and σ2

N is the noise
power per receive antenna. The weight matrix for MMSE is
given as

Wk(t) = HH
k (t)(Hk(t)HH

k (t) + (σ2

NNT /PR)INR
)−1, (8)

where (·)H denotes the conjugate transpose and INR
is the

NR × NR identity matrix. Therefore, the system capacity for
time slot t can be expressed as

C(t) =

NT∑
n=1

log2(1 + γk,n(t)). (9)

B. Problem Formulation

In spatial multiplexing, a data stream is split into multiple
substreams, and each substream is transmitted through a
transmit antenna. To exploit multiuser diversity, the scheduler
can simultaneously choose as many multiple users as transmit
antennas and allocate an antenna to each user. As the capacity
is a function of SNR, maximizing the sum of the weight
obtained from SNR is equivalent to the capacity maximization
of (9). We further denote C(k1, ... , kNT

) as the capacity
achieved by allocating transmit antenna i to user ki for i =
1, ... , NT . Consequently, our proposed MBM aims to search
k1, ... , kNT

, ∀i, j(�= i); ki �= kj to

max C(k1, ... , kNT
) = max

NT∑
i=1

log2(1 + γki,i). (10)
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In a wireless communication system, the fairness index is
widely used to evaluate the fairness performance [10]. It takes
values between 0 and 1, and is defined as follows:

f =
(
∑NT

i=1
Cki,i)

2

NT (
∑NT

i=1
C2

ki,i
)
, (11)

where Cki,i = log2(1 + γki,i) is the transmit rate achieved by
assigning antenna i to user ki. We assume each user has the
same QoS requirement on throughput. As presented in Section
II-B, after each update of the graph G by deleting the edge
chosen by (4), a new maximum weight matching is obtained
till there is no edge left in G. For each achieved matching
Mj , the corresponding fairness index fj (j = 1, ... , NT ×
K) could be calculated by (11). Therefore the multiobjective
optimization is achieved by choosing the maximum fp among
the updated matchings, namely,

{p} = argmaxj{fj}, j = 1, ..., NT × K. (12)

Finally, the maximum matching Mp should be the solution for
the multiobjective capacity and fairness optimization problem.

In wireless MIMO systems, if K = NT , a symmetric
bipartite matching is easily formulated by MBM. However,
in a real network, K is not necessarily equal to NT . If
K > NT , namely the channel resource is not adequate for
all mobile users, some of users will not have channels in
the current transmission slot. On the contrary, if K < NT ,
that is the number of channels is larger than the number of
mobile users, then multiple channels can be assigned to a user
and the capacity of the user is the sum of the capacities on
these multiple assigned channels. Therefore, such asymmetric
bipartite matching can be solved by our proposed MBM
and the bandwidth usage of the whole system is effectively
increased.

C. Simulation Results

In this paper, we consider a 4× 4 MIMO system, and eval-
uate the capacity and fairness performance for the best-effort
traffics. We assume SNR0 = 10 dB, the path loss exponent
β = 3.7 dB, the log standard deviation of shadow fading
σS = 8 dB, the cell radius L = 1 Km, and PR/σ2

N = 10 dB.
In this model, the distance of each user from the base station
is uniformly distributed between 0 and L. Simulation time is
2 × 103 Ts. We compared the performance of the Hungarian
maximum weighted matching, the pure fairness maximization
scheme, and our proposed MBM algorithm. Table I compares
the computational complexities of these three schemes. For
MBM, given a certain fairness index requirement, O(n6) is
the upper bound of the search complexity.

In the simulations, we assume K = NT for the symmetric
bipartite matching. For the asymmetric bipartite matchings,
we vary K to 3 and 5 to test the performance of MBM.
Fig. 6 shows the throughput performance comparisons for the
symmetric bipartite matching case. For the generated network
scenario, the Hungarian algorithm can provide the maximum

TABLE I

COMPUTATIONAL COMPLEXITIES

Assignment scheme Computational complexity

Hungarian Algorithm O(n4)
Pure fairness O(n!)

MBM O(n6)

system capacity of around 33.6 bps/Hz and a fairness index
of around 0.77. If we assume the system fairness optimization
target is to have a fairness index above 0.8, the Hungarian
algorithm is inadequate. MBM can optimize the throughput
for the given fairness requirements. We show the MBM
throughput for different fairness index thresholds (ξ) from 0.8
to 0.9. By exhaustive search, the pure fairness maximization
scheme gives the best fairness performance of over 0.9, but it
sacrifices the system capacity.

For the asymmetric bipartite matching, Fig. 7 shows the
throughput performance comparisons when K = 5 (K >
NT ). The analysis is similar to the case above. The maximum
throughput obtained by the Hungarian algorithm is around
44.8 bps/Hz, but the fairness index is lower than 0.8. Our
MBM can improve the throughput, while satisfying different
fairness requirements. Fig. 8 and Fig. 9 show the throughput
performance when K = 3 (K < NT ). In Fig. 8, we do not
consider the utilization of the redundant antenna resource. The
maximum throughput achieved by the Hungarian algorithm is
around 30.3 bps/Hz and the fairness index is also lower than
0.8. For the pure fairness maximization scheme, since the rate
fluctuation of a mobile user is closely related to its location,
the best performance of the fairness index is around 0.88. As
shown in Fig. 8, for our MBM, if the fairness index threshold is
0.88, the throughput performance is similar to the pure fairness
maximization scheme. However our MBM can achieve higher
fairness performance by abandoning certain edges at the cost
of sacrificing the system capacity. In Fig. 9, we assume a
user can receive signals from multiple antennas in the MIMO
system, the throughput performance is greatly improved and
much higher than the maximum throughput achieved by the
Hungarian algorithm. In addition, as observed from Fig. 9,
different fairness requirements can also be satisfied by our
MBM algorithm.

IV. CONCLUSIONS

In this paper, based on the Hungarian algorithm, a modified
bipartite matching (MBM) algorithm is proposed for multi-
objective optimization. This algorithm can effectively balance
conflicting objectives in multiobjective optimization problems,
and is widely applicable to resource assignment problems.
In addition, MBM is enhanced to solve not only symmetric
bipartite matching problems but also asymmetric problems. In
this paper, we illustrate the application of MBM to antenna
assignments in wireless MIMO systems. The simulation results
show that MBM enjoys low computational complexity and
maximizes the system capacity, while keeping the fairness

670 2007 International Symposium on Communications and Information Technologies (ISCIT 2007)

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 3, 2009 at 04:17 from IEEE Xplore.  Restrictions apply.



0 400 800 1200 1600 2000
26

27

28

29

30

31

32

33

Time ( Ts )

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

 b
ps

/H
z 

)

 

 

MBM f=0.80
MBM f=0.82
MBM f=0.84
MBM f=0.86
MBM f=0.88
MBM f=0.90
Fairness
Maximization

Fig. 6. Throughput comparisons for K = NT .

0 400 800 1200 1600 2000
28

32

36

40

44

48

Time ( Ts )

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

 b
ps

/H
z 

)

 

 

MBM f=0.80
MBM f=0.82
MBM f=0.84
MBM f=0.86
MBM f=0.88
MBM f=0.90
Fairness
Maximization

Fig. 7. Throughput comparisons for K > NT .

among mobile users for both symmetric and asymmetric
network scenarios.
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