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ASYMPTOTICALLY EFFICIENT PRODUCT-LIMIT

ESTIMATORS WITH CENSORING INDICATORS

MISSING AT RANDOM

Qihua Wang1,2 and Kai W. Ng2

1Chinese Academy of Science and 2The University of Hong Kong

Abstract: In this paper, we develop methods for estimating a survival function with

censoring indicators missing at random. The resulting methods lead to the use

of imputation and inverse probability weighting. We give several asymptotically

efficient PL estimators. All the estimators are proved to be strongly uniformly

consistent and weakly convergent to a Gaussian process. Further, it is shown that

these estimators are asymptotically efficient. A simulation study was carried out

to evaluate the finite sample performances of the proposed estimators and compare

the proposed estimators with van der Laan and McKeague’s (1998) estimator under

missing at random (MAR) and missing completely at random (MCAR) assump-

tions, respectively.

Key words and phrases: Missing at random, product-limit estimator, random cen-

sorship.

1. Introduction

Statistical analysis of lifetime or failure time data is frequently based on
censored observations. Under random censorship, Kaplan and Meier (1958) sug-
gested a product-limit (PL) estimator to estimate a survival function. The PL
estimator is widely used in survival analysis and has been extensively investi-
gated. It has many desirable properties such as asymptotic efficiency (Wellner
(1982)).

To describe the product-limit estimator, let T denote a random variable
representing lifetime with distribution function (d.f.) F , and let C denote a
random variable describing right censoring time with d.f. G. It is assumed that
T is independent of C. Under random censorship, one observes (X, δ), where
X = T ∧C and δ = I[T ≤ C], with I(·) the indicator function. Suppose that the
data consist of independent and identically distributed observations {Xi, δi} for
i = 1, 2, . . . , n. Kaplan and Meier (1958) defined the PL estimator of the survival
distribution S(t) = 1 − F (t) as

ŜKM(t) =
∏

i:Xi≤t

( n − Ri

n − Ri + 1

)δi

, (1.1)
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where Ri denotes the rank of Xi with the X-sample.
Clearly, the PL estimator requires that the censoring indicator is always

observed. In some practical problems, however, the censoring indicator δ (or
cause of failure information) is missing for a variety of reasons. For example, in
a bioassay experiment some subjects might not be autopsied to save expense, or
autopsy and hospital case notes can be inconclusive; in epidemiological studies
relevant death certificate information can be missing due to emigration. When
the censoring indicator is missing, a simple method is to ignore the missing
data and invoke the Kaplan-Meier PL estimator. However, this complete case
(CC) estimator is highly inefficient if there is a significant degree of missingness.
Also, this estimator is consistent only for the special case when the censoring
indicator is missing completely at random (MCAR), in the sense that the missing
mechanism is independent of everything else.

Under MCAR, some authors have proposed improvements on the CC esti-
mator. The first attempt was made by Dinse (1982), who used the EM algorithm
to obtain a non-parametric maximum likelihood estimate (NPMLE). Lo (1991)
showed that there are infinitely many NPMLEs and some of them are consistent;
he constructed two alternative estimators, one of which is consistent and asymp-
totically normal. Gijbels, Lin and Ying (1993) and McKeague and Subramanian
(1998) further improved this estimator. Increasing attention has been paid to sur-
vival analysis with missing censoring information in recent years, and not limited
to the estimation of survival functions. Goetghebeur and Ryan (1990) derived
a modified logrank test to compare survival in two groups, and Dewanji (1992)
suggested a modification of that approach. Goetghebeur and Ryan (1995) ex-
tended the results of Goetghebeur and Ryan (1990) to the proportional hazard
regression models. Tsiatis, Davidian and Mcneney (2002) used a form of multiple
imputation methods for testing treatment differences in survival distributions.

When censoring indicators are missing under random censorship, the ob-
served data are (Xi, δi, ξi), where the X ′

is are always observed and ξi = 0 if δi is
missing, otherwise ξi = 1. Throughout this paper, we assume that δ is missing
at random (MAR). The MAR assumption implies that ξ and δ are conditionally
independent given X. That is, P (ξ = 1|X, δ) = P (ξ = 1|X). MCAR described
above is a special case of MAR. MAR is a common assumption for statisti-
cal analysis with missing data and is reasonable in many practical situations, see
Little and Rubin (1987, Chap. 1). Recently, van der Laan and McKeague (1998)
found an estimator of S(t) by an artificial reduced data approach. This estima-
tor is shown to be asymptotically efficient for the reduced data under a slightly
stronger missing assumption (See their formula (9)) than the usual MAR. Their
estimating approach is to find the nonparametric maximum likelihood estimator
(NPMLE) of S(t) based on reduced data produced by a discretization of X that
depends on a partition. The estimator can be unappealing in practice, especially
for small samples, since it requires a special partition, some artificially chosen



ASYMPTOTICALLY EFFICIENT PRODUCT-LIMIT ESTIMATORS 751

points and an artificial binning of the data. For small sample sizes, the estimator
may have serious bias since the approach restricts the NPMLE of S(t) to be dis-
crete with point masses at all complete observations (Xi, δi) and on one (or more
) artificially chosen point in each region that contains no complete observations.

In this paper, we develop methods that produce several asymptotically ef-
ficient PL estimators of S(t). Our estimators make more efficient use of the
available data, they do not require binning of the data, and are easier to cal-
culate and implement in practice. Under the usual MAR assumption, all the
estimators are proved to be strongly uniformly consistent and weakly convergent
to a Gaussian process. Furthermore, we show that the proposed estimators are
asymptotically efficient by establishing an asymptotic linear representation with
the efficient influence curve of van der Laan and McKeague (1998).

Our estimating methods lead to the use of imputation and the inverse proba-
bility weighting. Imputation has become a popular method for handling missing
data. See, e.g., Rubin (1987), Rao and Shao (1992), Cheng (1994), Lipsitz, Zhao
and Molenberghs (1998), Barnard and Rubin (1999), Robins and Wang (2000),
Wang and Rao (2001), Wang and Rao (2002a,b), Wang, Linton and Härdle
(2004), to list just a few. This popularity largely stems from the fact that, once
the missing values are filled in, standard complete-data methods can be read-
ily applied to statistical analysis. The inverse probability weighting approach
is another popular method for handling missing data and has been paid con-
siderable attention in the literature. See, e.g., Robins and Rotnitzky (1992),
Zhao, Lipsitz and Lew (1996), Wang, Wang, Gutierrez and Carroll (1998) and
Robins, Rotnitzky and Zhao (1994). It is noted that imputation and weighting
approaches are usually applied to regression problems with missing responses or
missing covariates. They do not seem natural here. By Dikta (1998), however,
S(t) can be represented as a functional of m(x) = E[δ|X = x], a regression func-
tion of the indicator δ on X. This, together with product-limit approach, leads
to the use of imputation and weighting.

This paper is organized as follows. In Section 2, we produce four asymptoti-
cally efficient estimators through imputation and weighting methods. In Section
3, we give their asymptotic properties, including consistency, asymptotic rep-
resentations, weak convergence and asymptotic efficiency. In Section 4, some
simulation results are reported to evaluate the finite-sample performances of the
proposed estimators, and we compare our estimators with that of van der Laan
and McKeague (1998). The proofs for the main results are delayed to Appendices
A and B.

2. Estimation

Let H denote the distribution function of X, and take H1(t) = P (X ≤ t,

δ = 1). The cumulative hazard function Λ(t) corresponding to F is then given
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by

Λ(t) =

∫ t

0

1

1 − F (x)
dF (x) =

∫ t

0

1

1 − H(x)
dH1(x).

(2.1)

By Dikta (1998), we have

H1(t) = P (δ = 1, X ≤ t) =

∫ t

0
m(x)dH(x),

where m(x) = P (δ = 1|X = x) = E[δ|X = x]. This, together with (2.1), gives

Λ(t) =

∫ t

0

m(x)

1 − H(x)
dH(x). (2.2)

Let Hn(t) = n−1
∑n

i=1 I[Xi ≤ t], Hn(t−) = limx↑t Hn(x), and Hn1(t) =

n−1
∑n

i=1 I[Xi ≤ t, δi = 1]. If one can define an estimator of m(x), say mn(x),

from the observed data (Xi, δi, ξi), i = 1, . . . , n, Λ(t) can then be estimated by

Λn(t) =

∫ t

0

mn(x)

1 − Hn(x−)
dHn(x) =

∑

i:Xi≤t

mn(Xi)

n − Ri + 1
, (2.3)

where Ri is as defined in the introduction. Then S(t) = exp{−Λ(t)} can be

estimated by exp(−Λn(t)). By the approximation exp(−x) ≈ 1 − x, we have

exp(−Λn(t))=
∏

i:Xi≤t

(
exp

{
− 1

n−Ri+1

})mn(Xi)

≈
∏

i:Xi≤t

( n−Ri

n− Ri+1

)mn(Xi)
.

This motivates us to consider the PL estimator

Sn(t) =
∏

i:Xi≤t

( n − Ri

n − Ri + 1

)mn(Xi)
. (2.4)

We first use the inverse probability weighting approach to estimate m(·). Let

πn(x) =

n∑

i=1

ξiW
(x − Xi

bn

)

n∑

i=1

W
(x − Xi

bn

) ,

where W (·) is a kernel function and bn is a bandwidth sequence. Note that πn(x)

is the well-known Nadaraya-Watson kernel regression estimator of π(x) = P (ξ =
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1|X = x). Then, take

m̂n(x) =

n∑

i=1

( ξiδi

πn(Xi)

)
K

(x − Xi

hn

)

n∑

i=1

( ξi

πn(Xi)

)
K

(x − Xi

hn

) ,

where K(·) is a kernel function and hn is a bandwidth sequence. See, e.g.,

Robins et al. (1994) and Hirano, Imbens and Ridder (2003)

The first weighted estimator, say Ŝn,W (t), is Sn(t) with mn(·) taken to be

m̂n(·).
Note that Ŝn,W (t) is actually the Kaplan-Meier PL estimator (1.1) with δi

replaced by m̂n(Xi) for i = 1, . . . , n. Intuitively, this estimator can be modified

by defining an estimator to be the Kaplan-Meier estimator with the missing δi

replaced by m̂n(Xi) only. This leads to an imputation estimator given by

Ŝn,I(t) =
∏

i:Xi≤t

( n − Ri

n − Ri + 1

)ξiδi+(1−ξi) bmn(Xi)
. (2.5)

This estimator can also be motivated by the fact E[ξδ + (1 − ξ)m(X)] = E[δ]

under MAR.

If one replaces m̂n(·) in Ŝn,I(t) with

m̃n(x) =

n∑

i=1

ξiδiK
(x − Xi

hn

)

n∑

i=1

ξiK
(x − Xi

hn

) ,

another imputation estimator, say S̃N,I(t), is then obtained.

Let π(x) = P (ξ = 1|X = x). Note that under MAR we have E[ξδ/π(X) +

(1 − ξ/π(X))m(X)] = E[δ] and πn(x) is the kernel regression estimator of π(x).

This motivates us to define another inverse probability weighted estimator as

S̃n,W (t) =
∏

i:Xi≤t

( n − Ri

n − Ri + 1

) ξiδi
πn(Xi)

+(1−
ξi

πn(Xi)
) emn(Xi)

. (2.6)

It should be pointed out that the inverse probability weighting approach was

first introduced by Robins and Rotnitzky (1992). In the four estimators proposed

here, the two imputation estimators and the second inverse probability weighted

estimator reduce to the usual Kaplan-Meier estimator, and Ŝn,W (t) reduces to
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a smoothed Kaplan-Meier estimator when the censoring indicators are observed

completely. In this case, however, the influence curve, and hence the asymptotic

distribution of Ŝn,W (t), reduces to that of the Kaplan-Meier estimator.

The proposed estimators can be extended to some more realistic situations.

Often, in survival analysis and biomedical studies, covariate information is col-

lected when some censoring indicators are missing. A possible extension is to

estimate the conditional hazard and conditional survival function by incorpo-

rating covariate information with a kernel smoothing method when censoring

indicators are missing at random.

3. Asymptotic Properties

Let Ŝn(t) denote one of Ŝn,W (t), Ŝn,I(t), S̃n,I(t) and S̃n,W (t), and τH =

inf{t : H(t) = 1}.

Theorem 3.1. Under the assumptions given in Appendix A, we have sup0≤t≤τ0

|Ŝn(t) − S(t)| a.s.−→ 0 for 0 < τ0 < τH .

To derive the weak convergence result, and prove the asymptotic efficiency

of Ŝn(t), we first establish an asymptotic representation of Ŝn(t).

Theorem 3.2. Under the assumptions listed in Appendix B, we have

Ŝn(t) − S(t) = n−1
n∑

i=1

IC(Xi, δi, ξi; t) + op(n
− 1

2 ) for t < τH ,

where

IC(Xi, δi, ξi; t) = −S(t)

[
(ξi − π(Xi))(δi − m(Xi))

π(Xi)(1 − H(Xi))
I[Xi ≤ t]

+

∫ t∧Xi

0

dH̃1(s)

(1 − H(s))2
+

I[Xi ≤ t, δi = 1]

1 − H(Xi)

]

with H̃1(t) = P (X > t, δ = 1).

The pointwise iid representation is used only for proving weak convergence.

A separate work establishes that the remainder term in the iid representation

is uniformly negligible. van der Laan and McKeague (1998) also established a

pointwise iid representation with an efficient influence curve IC∗
t (X, δ, ξ) for the

estimator (16) of their paper. It can be shown that the asymptotic representation

is the same as that in Theorem 3.2 but it should be pointed out that their

IC∗
t (X, δ, ξ) contains two typos.
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The influence curve of the Kaplan-Meier PL estimator, say ICKM(X, δ), and

due to Lo and Singh (1985), is

ICKM (X, δ) = S(t)

( ∫ t∧X

0

dH1(x)

(1 − H(X))2
− I[X ≤ t, δ = 1]

1 − H(X)

)
.

The correct efficient influence curve IC∗
t (X, δ, ξ) in (16) of van der Laan and

McKeague (1998) is

IC∗
t (X, δ, ξ) = S(t)

[
−

(
I(X ≤ t) − I(X ≤ t, ξ = 1)

π(X)

) k(X)

1 − H(X)

−I[X ≤ t, δ = 1, ξ = 1]

(1 − H(X))π(X)

+

∫ t

0

1

(1 − H(X))2
I[X > x, ξ = 1]

π(X)
dH1(x)

+
(
1 − ξ

π(X)

) ∫ t∧X

0

dH1(x)

(1 − H(x))2

]
,

if F is continuous, where k(x) = dH1(x)/dH(x). In the proof of the following

Theorem 3.3, it is shown that

IC(X, δ, ξ; t) = IC∗
t (X, δ, ξ), (3.1)

and shows that our estimators are asymptotically efficient.

Theorem 3.3. Under assumptions of Theorem 3.2, we have

√
n(Ŝn(t) − S(t))

D−→ W (t), t ∈ [0, τH)

and Ŝn(t) is asymptotically efficient, where W (t) is a Gaussian process with

EW (t) = 0,

Cov (W (t1),W (t2)) = S(t1)S(t2)

[
−

∫ t1∧t2

0

dH̃1(s)

(1 − H(s))2

+

∫ t1∧t2

0

m(s)(1 − m(s))

(1 − H(s))2

( 1

π(s)
− 1

)
dH(s)

]
.

Clearly, the weak convergence result reduces to that of the Kaplan-Meier PL

estimator, derived by Gill (1983) when π(x) = 1. Theorem 3.3 implies

√
n(Ŝn(t) − S(t))

L−→ N(0, σ2(t)),

where

σ2(t)=S2(t)

[
−

∫ t

0

dH̃1(s)

(1 − H(s))2
+

∫ t

0

m(s)(1 − m(s))

(1 − H(s))2

( 1

π(s)
−1

)
dH(s)

]
.
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This shows that all the proposed estimators have the same asymptotic distri-

bution. Clearly, the asymptotic variance reduces to that of Kaplan-Meier PL

estimator when π(x) = 1. A direct method to estimate the asymptotic variance

is to use the “Plug in” technique by obtaining the estimators of H(·), H1(·),
π(·) and m(·). An alternative is to use the jackknife method to estimate the

asymptotic variance.

All the suggested estimators Ŝn(t) are global functionals of m̂n(·) or m̃n(·),
and hence n1/2-rate asymptotic normality of the estimators indicates that a

proper choice of both hn and bn depends only on the second order terms of

the mean square error of the estimators. This implies that the selection of the

bandwidths may not be critical for estimating S(t). This is also suggested by

our simulation results.

4. Simulation Results

4.1. A simulation comparison under MAR

We carried out a simulation study to evaluate the finite-sample properties of

the proposed estimators and to compare the finite sample performances of the

proposed estimators with the Kaplan-Meier estimator and with the van der Laan

and McKeague (1998) estimator under MAR, in terms of the close fit of the curves

of these estimators and their mean integrated squared errors. The Kaplan-Meier

estimator can serve as a gold standard, even though it is practically unachievable

because of the missingness of censoring indicators.

In the simulation, the life variable T and the censoring variable C were gen-

erated from exponential distributions E(1) and E(1/4) for a 20% censoring rate,

from E(1) and E(2/3) for a 40% censoring rate, and from E(1) and E(7/3) for a

70% censoring rate, respectively. The sample size was taken to be n = 30, 60, 100

and 200. The missing mechanism followed logit(π(x)) = θ1 + θ2x with different

θ = (θ1, θ2). For the censoring rate of 0.2, θ was (1.25, 0.13) and (0.5,−0.10),

so that the average missing rates were about 0.2 and 0.4, respectively; for the

censoring rate of 0.4, θ was taken to be (1.25, 0.15) and (0.70,−0.28), so that

the average missing rates were about 0.2 and 0.4, respectively; for the censoring

rate of 0.7, θ was taken to be (1.40,−0.12) and (0.45,−0.18) so that the average

missing rates were about 0.2 and 0.4, respectively. To calculate the proposed

estimators, the kernel functions W (·) and K(·) were taken to be W (u) = 1/2 for

|u| ≤ 1, 0 otherwise, and K(u) = (15/16)(1 − 2u2 + u4) for |u| ≤ 1, 0 otherwise.

The bandwidths (hn, bn) were taken to be (n−1/3, n−1/3). To calculate ŜV M (t),

we used the partition which consists of k points on a regular grid with k = 50.

We generated 5,000 Monte Carlo random samples of size n = 30, 60, 100

and 200 under every different combination of censoring rates and missing rates.
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Figure 4.1. MISE Curves of S̃n,W (t) on (α, γ), when bn = n−α and hn = n−γ .

From 5,000 simulated values of these estimators, we calculated the MISE. Also,

to evaluate the effect of the bandwidths on the MISE, as an example, we plotted

MISE curve of S̃n,W (t) on the bandwidth (hn, bn). The MISE was calculated

over the interval [0, 2]. The results are reported in Figure 4.1 and Table 4.1.

From Figure 4.1, the MISEs for different combinations of bn and hn are gen-

erally between 0.0115 and 0.0140. This suggests that the effect of the bandwidths

hn and bn on the MISE is not critical, and hence the selection of the bandwidths

may not be critical for the estimation of S(t), as pointed out in the last paragraph

of Section 3.

From Table 4.1, the proposed estimators all have similar MISE and close to

that of the Kaplan-Meier estimator. This suggests that all the estimators perform

well and have similar finite-sample performances. ŜV M (t) has about one or two

times larger MISE than the proposed estimators and the Kaplan-Meier estimator

when n = 30 or 60 and the censoring rate is 0.2 or 0.4. The MISE of ŜV M (t)

is still larger than that of the proposed estimators when the censoring rate is

70%. This shows that ŜV M (t) does not work well for small or medium sample

size, and that the proposed estimators outperform ŜV M (t) in terms of MISE.

However, the difference between the proposed estimators and ŜV M (t) decreases

in terms of MISE when sample size increases. ŜV M (t) has larger or slightly larger

MISE than the proposed estimators when n = 100 or 200. As pointed out in

the introduction, ŜV M (t) can be unappealing in practice, especially for small

samples.
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Table 4.1. Mean integrated square error under MAR.

20% censoring 40% censoring 70% censoring

n Estimators π1(x) π2(x) π1(x) π2(x) π1(x) π2(x)

ŜKM 0.0148 0.0149 0.0205 0.0204 0.0753 0.0730

Ŝn,W 0.0156 0.0174 0.0225 0.0274 0.0826 0.0975

Ŝn,I 0.0159 0.0176 0.0225 0.0278 0.0848 0.1011

30 S̃n,I 0.0156 0.0173 0.0224 0.0273 0.0842 0.1006

S̃n,W 0.0160 0.0179 0.0230 0.0287 0.0883 0.1110

ŜV M 0.0408 0.0429 0.0458 0.0463 0.1047 0.1212

ŜKM 0.0074 0.0075 0.0101 0.0099 0.0391 0.0409

Ŝn,W 0.0078 0.0084 0.0109 0.0129 0.0465 0.0565

Ŝn,I 0.0079 0.0085 0.0113 0.0131 0.0465 0.0584

60 S̃n,I 0.0078 0.0083 0.0109 0.0128 0.0451 0.0573

S̃n,W 0.0080 0.0086 0.0115 0.0135 0.0474 0.0625

ŜV M 0.0132 0.0134 0.0194 0.0195 0.0559 0.0727

ŜKM 0.0044 0.0042 0.0059 0.0060 0.0255 0.0254

Ŝn,W 0.0046 0.0057 0.0064 0.0071 0.0312 0.0375

Ŝn,I 0.0046 0.0057 0.0066 0.0073 0.0316 0.0383

100 S̃n,I 0.0046 0.0057 0.0064 0.0071 0.0301 0.0376

S̃n,W 0.0047 0.0058 0.0067 0.0075 0.0314 0.0409

ŜV M 0.0056 0.0059 0.0101 0.0103 0.0370 0.0447

ŜKM 0.0023 0.0021 0.0029 0.0029 0.0127 0.0136

Ŝn,W 0.0025 0.0026 0.0031 0.0034 0.0163 0.0217

Ŝn,I 0.0025 0.0026 0.0032 0.0035 0.0163 0.0220

200 S̃n,I 0.0025 0.0026 0.0031 0.0034 0.0149 0.0213

S̃n,W 0.0025 0.0026 0.0032 0.0036 0.0156 0.0227

ŜV M 0.0025 0.0029 0.0037 0.0042 0.0162 0.0236

Note: ŜV M and ŜKM refer to the van der Laan and Mckeague (1998) estimator and

the Kaplan-Meier PL estimator respentisy, π1(x) and π2(x) are the missing probability

functions π(x) with average missing rates about 0.2 and 0.4, respectively.

In Figures 4.2 and 4.3, we plotted the curve of the true survival distribution

function and the curves of Ŝn,W (t), Ŝn,I(t), S̃n,I(t), S̃n,W (t), ŜV M (t) and ŜKM(t),

where ŜV M (t) refers to the van der Laan and McKeague (1998) estimator and

ŜKM(t) to the Kaplan-Meier estimator given in (1.1). Each estimated curve in

Figure 4.2 is based on one samples. Each curve in Figure 4.3 is based on 5,000

samples. That is, each estimated curve in Figure 4.3 is the average of 5,000
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Figure 4.2. Curves for Ŝn,W (t), Ŝn,I(t), S̃n,I(t), S̃n,W (t), ŜV M (t), and the

true survival function of S(t), where ŜV M (t) refers to the van der Laan and

Mckeague (1998) estimator. The dotted curve is Ŝn,W (t); the dashed curve is

Ŝn,I(t); the dash-dotted curve is S̃n,I(t); the solid stair curve is S̃n,W (t); the

step solid curve is ŜV M and the smooth solid curve is S(t). Each estimated

curve is based on one sample. CR refers to censoring rate.

survival function estimators.
From Figures 4.2 and 4.3, the curves of all the estimators including ŜV M (t)

are close to the true survival curve, and the curves of the proposed estimators
overlap each other. This suggests that the estimators perform well, and that the
proposed estimators perform similarly in terms of bias.

4.2. A simulation comparison under MCAR

We carried out a simulation study to compare the finite sample performances
of the proposed estimators with that of the Kaplan-Meier PL estimator (1.1) and
the van der Laan and Mckeague (1998) estimator, ŜV M (t), under MCAR.

In the simulation, the life variable T and censoring variable C were generated
from exponential distributions E(1) and E(1/4) for a 20% censoring rate, and
from E(1) and E(2/3) for a 40% censoring rate, respectively. The sample size
was taken to be n = 30, 60, 100 and 200. π(x), the non-missing rate, was taken
to be 0.4, 0.6 or 0.8.
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a: n = 30, CR=20% and π(x) = π1(x) b: n = 30, CR=20% and π(x) = π2(x)

c: n = 30, CR=40% and π(x) = π1(x) d: n = 30, CR=40% and π(x) = π2(x)

Figure 4.3. Curves for Ŝn,W (t), Ŝn,I(t), S̃n,I(t), S̃n,W (t), ŜV M and the

true survival function of S(t), where ŜV M refers to the van der Laan and

Mckeague (1998) estimator. The star curve is Ŝn,W (t); the dash-dotted curve

is Ŝn,I(t); the dashed curve is S̃n,I(t); the circle curve is S̃n,W (t); the plus

curve is ŜV M (t) and solid curve is S(t). Each estimated curve is based on

5,000 samples. CR refers to censoring rate.

To calculate the proposed estimators, the kernel functions W (·) and K(·)
were taken to be W (u) = 1/2 for |u| ≤ 1, 0 otherwise, and K(u) = (15/16)(1 −
2u2 + u4) for |u| ≤ 1, 0 otherwise. The bandwidths (hn, bn) were taken to be

(n−1/3, n−1/3). To calculate ŜV M (t), the partition consists of k points on a regular

grid with k = 50.

We generated 5,000 Monte Carlo random samples of size n = 30, 60, 100 and

200 under every different combination of censoring rate and missing rate. From

5,000 simulated values of the proposed estimators, the Laan-Mckeague estimator,

and the Kaplan-Meier PL estimator, we calculated the MISE over the interval

[0, 2]. The results are reported in Table 4.2.

From Table 4.2, the MISEs of the proposed estimators are similar and slightly

larger than that of the Kaplan-Meier PL estimator when the non-missing rate is
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Table 4.2. Mean integrated square error under MCAR when sample

size n = 30, 60, 100 and 200.

20% censoring 40% censoring

Estimators π = 0.4 π = 0.6 π = 0.8 π = 0.4 π = 0.6 π = 0.8

n = 30

ŜKM 0.0144 0.0145 0.0148 0.0211 0.0205 0.0201

Ŝn,W 0.0201 0.0173 0.0156 0.0400 0.0278 0.0225

Ŝn,I 0.0202 0.0176 0.0159 0.0402 0.0279 0.0229

S̃n,I 0.0199 0.0172 0.0156 0.0397 0.0276 0.0224

S̃n,W 0.0208 0.0179 0.0161 0.0423 0.0290 0.0234

ŜV M 0.0418 0.0398 0.0357 0.0460 0.0453 0.0451

n = 60

ŜKM 0.0072 0.0073 0.0073 0.0100 0.0099 0.0100

Ŝn,W 0.0103 0.0084 0.0077 0.0184 0.0130 0.0111

Ŝn,I 0.0104 0.0085 0.0078 0.0186 0.0132 0.0114

S̃n,I 0.0101 0.0084 0.0077 0.0182 0.0129 0.0110

S̃n,W 0.0108 0.0087 0.0079 0.0194 0.0137 0.0116

ŜV M 0.0164 0.0133 0.0134 0.0220 0.0198 0.0196

n = 100

ŜKM 0.0045 0.0044 0.0044 0.0059 0.0060 0.0061

Ŝn,W 0.0066 0.0056 0.0045 0.0109 0.0080 0.0066

Ŝn,I 0.0066 0.0057 0.0046 0.0110 0.0082 0.0068

S̃n,I 0.0065 0.0056 0.0045 0.0107 0.0080 0.0066

S̃n,W 0.0065 0.0056 0.0046 0.0105 0.0084 0.0069

ŜV M 0.0095 0.0061 0.0056 0.0152 0.0116 0.0102

n = 200

ŜKM 0.0022 0.0022 0.0022 0.0029 0.0029 0.0029

Ŝn,W 0.0027 0.0024 0.0023 0.0050 0.0035 0.0030

Ŝn,I 0.0027 0.0024 0.0024 0.0050 0.0036 0.0031

S̃n,I 0.0026 0.0024 0.0023 0.0049 0.0035 0.0030

S̃n,W 0.0028 0.0025 0.0024 0.0052 0.0037 0.0031

ŜV M 0.0036 0.0026 0.0024 0.0063 0.0043 0.0036

Note: ŜV M and ŜKM refer to the estimator of van der Laan and McKeague (1998) and

to the Kaplan-Meier PL estimator, respectively.

0.6 or 0.8. This suggests that these estimators perform similarly and work well

when non-missing rate is not too low. However, it was observed that ŜV M (t) had

far larger (n = 30, 60), larger (n = 100), or slightly larger (n = 200) MISE than

the proposed estimators. This suggests that our estimators outperform ŜV M (t)

in terms of MISE.
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Appendix A: Outline of Proof for Strongly Uniform Consistency

Here, we give only an outline of the proof of Theorem 2.1. The detailed proof

is given in the on-line supplement (http://www.stat.sinica.edu.tw/statistica/sub-

mission). We first list some conditions needed for strongly uniform consis-
tency.

(A.m): m(x) is a continuous function.

(A.H): H(·) has uniformly continuous probability density function h(·).
(A.W): W (·) is a kernel function with bounded variation and bounded support

satisfying
∫

W (u)du = 1 and
∫
|W (u)|du < ∞.

(A.K): K(·) is a bounded kernel function with bounded support satisfying∫
K(u)du = 1.

(A.bn): bn → 0, (nbn)−1 log n → 0.

(A.hn): hn → 0, (nhn)−1 log n → 0.

Let

Λ̂n,W (t) =
∑

i:Xi≤t

m̂n(Xi)

n − Ri + 1
,

Λ̂n,I(t) =
∑

i:Xi≤t

ξiδi + (1 − ξi)m̂n(Xi)

n − Ri + 1
,

Λ̃n,I(t) =
∑

i:Xi≤t

ξiδi + (1 − ξi)m̃n(Xi)

n − Ri + 1
,

Λ̃n,W (t) =
∑

i:Xi≤t

ξiδi

πn(Xi)
+

(
1−ξi

πn(Xi)

)
m̃n(Xi)

n − Ri + 1
.

Let Λ̂n(t) denote one of Λ̂n,W (t), Λ̂n,I(t), Λ̃n,I(t) and Λ̃n,W (t). To prove

Theorem 3.1, we first prove the following lemma.

Lemma A.1. Under assumptions of Theorem 3.1, we have sup0≤t≤τ0 |Λ̂n(t) −
Λ(t)| a.s.−→ 0, where 0 < τ0 < τH and τH is as defined in Section 3.

Proof. We only prove that Lemma A.1 is true for Λ̃n,W (t). The other three

cases can be proved similarly.

For Λ̃n,W (t), we have

Λ̃n,W (t) − Λ(t) =

( ∑

i:Xi≤t

ξiδi

πn(Xi)
+

(
1−ξi

πn(Xi)

)
m̃n(Xi)

n − Ri + 1

−
∑

i:Xi≤t

ξiδi

πn(Xi)
+

(
1−ξi

πn(Xi)

)
m(Xi)

n − Ri + 1

)
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+

( ∑

i:Xi≤t

ξiδi

πn(Xi)
+

(
1−ξi

πn(Xi)

)
m(Xi)

n − Ri + 1

−
∑

i:Xi≤t

ξiδi

π(Xi)
+

(
1−ξi

π(Xi)

)
m(Xi)

n − Ri + 1

)

+

( ∑

i:Xi≤t

ξiδi

π(Xi)
+

(
1−ξi

π(Xi)

)
m(Xi)

n − Ri + 1
− Λ(t)

)

:= ζn1(t) + ζn2(t) + ζn3(t). (A.1)

It can be proved sup0≤t≤τ0 |ζn1(t)| a.s.−→ 0, sup0≤t≤τ0 |ζn2(t)| a.s.−→ 0 and sup0≤t≤τ0

|ζn3(t)| a.s.→ 0. This proves that Lemma A.1 is true for Λ̃n,W (t).

Proof of Theorem 3.1. By Taylor expansion, it is easy to obtain

Ŝn(t) − S(t) = (−Λ̂n(t) + Λ(t)) exp{−Λ(t)} + Rn(t), (A.2)

where

Rn(t) = (log Ŝn(t) + Λ̂n(t)) exp{−Λ(t)} +
exp{cn(t)}

2
(log Ŝn(t) + Λ(t))2,

min{log Ŝn(t),−Λ(t)} ≤ cn(t) ≤ max{log Ŝn(t),−Λ(t)}.

It can be proved that

sup
0≤t≤τ0

| log Ŝn(t) + Λ̂n(t)| a.s.−→ 0 (A.3)

for any τ0 such that 0 < τ0 < τH .

By Lemma A.1, (A.2) and (A.3), Theorem 3.1 is then proved.

Appendix B: Outline of proofs for asymptotic representation, weak

convergence and asymptotic efficiency

Here, we give only an outline of the proofs of Theorem 3.2 and 3.3. The de-

tailed proofs are given in the on-line supplement (http://www.stat.sinica.edu.tw/

statistica/submission). The following are the conditions needed for asymptotic

representation, weak convergence and asymptotic efficiency.

(C.m). m(·) has continuous derivatives up to order k > 1.

(C.K). K(·) is a kernel function of order k with bounded support.

(C.W). i. W (·) is a probability density kernel function with bounded support.

ii.
∫

W 2(s)ds < ∞.
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(C.H). H(·) has probability density h(·) and h(·) has derivatives up to order of

k > 1.

(C.π). i. π(·) has derivatives up to order of k > 1.

ii. inft π(t) > 0.

(C.hn). nhn → ∞ and nh2k
n → 0 for k in (C.H).

(C.bn). bn → 0 and nbn → ∞.

Lemma A.2. Under the assumptions of Theorem 3.2, we have

Λ̂n(t) − Λ(t) = − 1

n

n∑

i=1

IC(Xi, δi, ξi)

S(t)
+ op(n

− 1
2 ),

where IC(X, δ, ξ) is as defined in Theorem 3.2.

Proof. (a) We first prove Lemma A.2 is true for Λ̂n,W (t). We have

Λ̂n,W (t) − Λ(t) =
( ∑

i:Xi≤t

m̂n(Xi)

n − Ri + 1
−

∑

i:Xi≤t

m(Xi)

n − Ri + 1

)

+
( ∑

i:Xi≤t

m(Xi)

n − Ri + 1
− Λ(t)

)
.

:= In1(t) + In2(t). (A.4)

In1(t) can be represented as

In1(t) =
1

n

n∑

i=1

ξi(δi − m(Xi))

π(Xi)(1 − H(Xi))
I[Xi ≤ t] + op(n

− 1
2 )). (A.5)

By Dikta (1998), for In2(t) in (A.4), we have

In2(t) =
1

n

n∑

i=1

∫ t∧Xi

0

dH̃1(s)

(1 − H(s))2
+

1

n

n∑

i=1

I[Xi ≤ t, δi = 1]

1 − H(Xi)

+
1

n

n∑

i=1

m(Xi) − δi

1 − H(Xi)
I[Xi ≤ t] + op(n

− 1
2 ). (A.6)

Lemma A.2 then holds for Λ̂n,W (t) from (A.4), (A.5) and (A.6).

(b) Secondly, we prove Lemma A.2 is true for Λ̂n,I(t). We have

Λ̂n,I(t) − Λ(t) =

( ∑

i:Xi≤t

ξiδi + (1 − ξi)m(Xi)

n − Ri + 1
− Λ(t)

)

+

( ∑

i:Xi≤t

ξiδi + (1 − ξi)m̂n(Xi)

n − Ri + 1
−

∑

i:Xi≤t

ξiδi + (1 − ξi)m(Xi)

n − Ri + 1

)
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:= Tn1(t) + Tn2(t). (A.7)

For Tn1(t), we have

Tn1(t) =
1

n

n∑

i=1

(1 − ξi)(m(Xi) − δi)

1 − H(Xi)
I[Xi ≤ t]

+
1

n

n∑

i=1

(∫ t∧Xi

0

dH̃1(s)

(1 − H(s))2
+

I[Xi ≤ t, δi = 1]

1 − H(Xi)

)
+ op(n

− 1
2 ). (A.8)

It can be proved that

Tn2(t) =
1

n

n∑

j=1

(1 − π(Xj))ξj(δj − m(Xj))

π(Xj)(1 − H(Xj))
I[Xj ≤ t] + op(n

− 1
2 ). (A.9)

From (A.7), (A.8) and (A.9), Lemma A.2 is proved for Λ̂n,I(t).

(c) Similar to (b), Lemma A.2 holds for Λ̃n,I(t).

(d) Finally, we prove that Lemma A.2 holds for Λ̃n,W (t).

For ζn1(t) in (A.1), we have

ζn1(t)=
1

n

n∑

i=1

(
1 − ξi

π(Xi)

)
I[Xi ≤ t]

[
(nhn)−1

n∑
j=1

ξj(δj − m(Xj))K
(

Xi−Xj

hn

)]

(1 − H(Xi))h(Xi)π(Xi)

+
1

n

n∑

i=1

(
1− ξi

π(Xi)

)
I[Xi≤ t]

[
(nhn)−1

n∑
j=1

ξj(m(Xj)−m(Xi))K
(

Xi−Xj

hn

)]

(1 − H(Xi))h(Xi)π(Xi)

+op(n
− 1

2 ) := ζn1,1(t) + ζn1,2(t) + op(n
− 1

2 ). (A.10)

It can be proved that E(ζ2
n1,1(t))=O((n2hn)−1). This proves ζn1,1(t) = op(n

−1/2)

as nhn → ∞. Similarly, it can be proved Eζ2
n1,2(t) = O(hn/n), which implies

ζn1,2(t) = op(n
−1/2) by the condition that m(·) has bounded derivative of order

1 and K(·) is a kernel function with bounded support. By (A.10), we then have

ζn1(t) = op(n
−1/2). Similarly, we have ζn2(t) = op(n

−1/2). For ζn3(t) defined in

(A.1), we have

ζn3(t) =
1

n

n∑

i=1

(∫ t∧Xi

0

dH̃1(s)

(1 − H(s))2
+

I[Xi ≤ t, δi = 1]

1 − H(Xi)

)

+
1

n

n∑

i=1

(ξi − π(Xi))(δi − m(Xi))

π(Xi)(1 − H(Xi))
I[Xi ≤ t] + op(n

− 1
2 ). (A.11)

This, together with (A.1), gives the desired result.



766 QIHUA WANG AND KAI W. NG

Proof of Theorem 3.2. It can be proved that

log Ŝn(t) + Λ̂n(t) = op(n
− 1

2 ). (A.12)

This together with (A.2) and Lemma A.2 proves Theorem 5.2.

Proof of Theorem 3.3. van der Laan and McKeague (1998) used the iid repre-

sentation of their estimator to prove asymptotic efficiency and weak convergence.

To prove Theorem 3.3, we need only prove that our estimators have the same

asymptotic representation as that of van der Laan and McKeague (1998). This

is done by showing that the influence curves I(X, δ, ξ; t) and IC∗
t (X, δ, ξ) are

equal.

By the fact k(x) = m(x), easily seen from H1(t) =
∫ t
0 m(x)dH(x), we have

IC∗
t (X, δ, ξ) = S(t)

[
− I[X ≤ t](π(X) − ξ)m(X)

π(X)S(X)

−I[X ≤ t](π(X) − ξ)δ

π(X)S(X)
+

∫ t∧

0

dH1(x)

(1 − H(x))2

]

= −(ξ − π(X))(δ − m(X))

π(X)(1 − H(X))
I[X ≤ t]

−
∫ t∧X

0

dH̃1(s)

(1 − H(s))2
− I[X ≤ t, δ = 1]

1 − H(X)

= IC(X, δ, ξ; t).
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