
Title Lean implementations of software testing tools using XML
representations of source codes

Author(s) Yu, XS; Huo, YC; Tse, TH

Citation Proceedings - International Conference On Computer Science
And Software Engineering, Csse 2008, 2008, v. 2, p. 708-711

Issued Date 2008

URL http://hdl.handle.net/10722/55036

Rights

Copyright 2008 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new
collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted compontent of this work in other works
must be obtained from the IEEE.

Lean Implementations of Software Testing Tools
Using XML Representations of Source Codes

Yu Xia Sun *+ Huo Yan Chen +
Department of Computer Science

* Sun Yat-sen University; + Jinan University
Guangzhou, P.R. China

jnusyx@office.jnu.edu.cn; tchy@jnu.edu.cn

T.H. Tse §
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract—By utilizing XML representations of source programs
under test, a new approach is proposed to concisely implement
some prototypes for TACCLE, a software testing methodology.
The conversions between a source program and its XML
representation can be easily realized using existing conversion
tools. In this way, the conversion tools can automatically analyze
and parse the source program, so that testing tool developers
only need to concentrate on the manipulation of the XML
document. If appropriate XML DOM APIs are chosen, the
implementations of such testing tools will be pretty lean. A
detailed case study for GMPS tool, a prototype for the TACCLE
methodology, is presented to illustrate the new approach.

Keywords—software testing; lean implementation; XML
representation; conversion tool

I. INTRODUCTION
When developing different software testing tools, the

process of analyzing and parsing the source Program Under
Test (referred to as PUT) is repetitive. For instance, when we
implemented a series of prototype tools (such as DOE [9] and
GMPS [8]) for the software testing methodology TACCLE [4],
we also repeated that process. In our previous approaches, we
adopted compiling and interpreting techniques for
implementation. Although we utilized the object-oriented
paradigm to achieve reuse in analysis and parsing, the
implementations of these tools were still complex and bulky.
Also, the codes for parsing greatly exceeded those for
manipulating the source PUT.

Actually, program parsing and analysis are widely used
when developing white-box testing tools. Hence, it is
significant to study a lean implementation of such tools. Our
lean implementation has three goals:

• Easy to program. Tool developers need not code the
parser itself.

• Easy to understand. The implemented code should
be readable.

• Practical. The software tool can be used to test real
programs with various syntax components.

The rest of the paper first discusses several potential
techniques to implement our testing tools, outlines the chosen
approach of utilizing the XML technique, and then uses a case
study to illustrate the approach in detail.

II. OUTLINE OF THE LEAN IMPLEMENTATION

A. Main Idea
To achieve the above three goals of lean implementation,

we have to utilize existing paring tools rather than developing
a parser from scratch, because parser development is still a
black art [6].

Reusing and modifying the front-end of an existing
compiler is a potential approach. However, the learning curve
of the front-ends is steep, and the representations of the
abstract syntax tree (AST) generated by different compiler
frameworks are quite different. Hence, it is cost-ineffective.
Furthermore, when an AST is transformed and unparsed, it is
difficult to preserve such features of the original source as
space, comments, and preprocessor directives.

On the other hand, we can indirectly reuse the front-ends to
achieve our goals by utilizing the XML [2] representation of
the source PUT. The XML representation is generated by such
conversion tools as JavaML [3] and srcML [5]. By modifying
the front ends of a compiler, the conversion tool can convert
the source code to its XML representation, and vice versa.

Since XML representations can reveal the structure of the
source codes very well, we can further use existing extensive
XML tools to analyze and manipulate the XML
representations according to the type of software testing
required.

• If the testing is static, we only need to extract the
interested information from the XML representation
without modifying it.

• If the testing is dynamic, such transformations as
instrumentation will be made to PUT. Hence, we need

This research is supported by the Jinan University Youth Foundation
under Grant #51208035, Union Grant of Guangdong Province and National
Natural Science Foundation of China under Grant #U0775001, and the
Guangdong Province Science Foundation under Grant #7010116.

§ All correspondence should be addressed to Prof. T.H. Tse at
Department of Computer Science, The University of Hong Kong, Pokfulam,
Hong Kong. Tel: (+852) 2859 2183. Fax: (+852) 2858 4141. Email:
thtse@cs.hku.hk.

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.515

708

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.515

708

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

to manipulate and transform the XML representation
according to the testing target.

The idea of using XML technologies in developing
program analysis tools are also mentioned by the authors of
some conversion tools [3, 5, 7]. To the best of our knowledge,
however, this paper is the first in discussing its application to
both types of software testing, illustrated with a complete case
study.

B. Approach
The approach of our lean implementation consists of four

steps as follows:

1) Select an appropriate conversion tool according to the
language of the PUT. The tool should be able to automatically
make bidirectional conversions between the source PUT and
its equivalent XML representation. For example, if the PUT is
programmed in Java, we can choose JavaML as the
conversion tool.

2) Using the conversion tool, convert source PUT to its
equivalent XML representation.

3) Select an appropriate XML DOM API package
according to the programming language of the testing tool.
For example, if the testing tool is programmed in Java, we can
utilize the APIs supplied by DOM4J [1].

4) By utilizing the API package in 3), manipulate the
source XML representation according to the type of software
testing:

a) If the testing is static, extract interested information
from the XML representation, according to the testing target.
The testing task is complete.

b) If the testing is dynamic,
• Transform the XML representation according to

the testing target such as instrumentation, to
obtain a transformed XML documentation;

• By using the conversion tool in 1), convert the
transformed XML document to its equivalent
transformed source program;

• Execute the transformed source program, and the
testing tasks will be performed.

III. A CASE STUDY

A. Target of GMPS
GMPS [8] is one of the CASE tools of the TACCLE

methodology [4] for object-oriented software testing. As a
dynamic testing tool, GMPS aims to generate the composite
sequences of passing messages and related actions of an
object-oriented PUT.

GMPS has to deal with the following syntax components
of the PUT: conditional statements, loop statements, return
statements, method invoking statements, and assignment
statements of data members of a class. When the PUT is
executed, GMPS will monitor all the messages passing among
methods and monitor all the modifications of class data

members. The intercepted information will be naturally
segmented according to the location of information within a
condition block or a loop block. Moreover, GMPS also needs
to extract block-related components such as conditional
predications to mark the blocks.

Our case study develops a GMPS tool for Java source
programs. We firstly use the JavaML tool to convert a Java
source program (called Source_Java) into its XML
equivalence (called Source_XML), and then utilize DOM4J to
parse and manipulate the Source_XML to obtain a new XML
file (called Transformed_XML), followed by the use of the
JavaML tool once again to obtain the equivalent Java source
program (called Transformed_Java) of the Transformed_XML.
Finally, we execute the Transformed_Java and obtain a
message-passing sequence of the PUT.

B. GMPS and JavaML DTD
Before utilizing JavaML, we have to ensure that JavaML is

powerful enough to support the implementation of our GMPS
tool. According to the DTD of JavaML, fortunately, we find
that all the syntax components described above can be well-
depicted by the JavaML representation of the source code
under test.

Based on [3], the DTD elements in JavaML corresponding
to the above syntax components in Java source are briefly
listed as follows:

<!ELEMENT if (test, true-case, false-case?)>

<!ELEMENT loop (init*, test?, update*,
(%stmt-elems;)?) >

<!ELEMENT do-loop ((%stmt-elems;)?, test?)>

<!ELEMENT return (%expr-elems;)?>

<!ELEMENT send(target?, arguments)>

<!ELEMENT field-set(%expr-elems)>

During the processing of the above syntax components,
GMPS also extracts such information as the conditions of
conditional or loop statements, and the class names of methods
or data members. All the information is also uncovered easily
by the JavaML representation. For example, the sub-elements
named test, true-case, and false-case of an if element in
Source_XML depict, respectively, the conditional predicate,
true branch, and false branch of an if statement in Source_Java.

C. Key Implementation
The JavaML tool can automatically convert between a Java

source program and its corresponding XML representation.
Existing DOM4J APIs as well as Java library utilities make the
parsing and manipulation of the XML file very easy.
Therefore, most of the development of our GMPS tool is
programming based on DOM4J APIs and Java libraries, which
enables a pretty lean implementation.

In order to use Java utilities and DOM4J APIs, GMPS has
to firstly import them. Then GMPS uses DOM4J to parse the
Source_XML into a Document element as follows:

709709

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

import java.util.* ;
import org.dom4j.*;
String srXML = “d:/source_xml.xml”;
SAXReader reader = new SAXReader();
Document doc = reader.read(srXML);

According to the target of GMPS, we can now make
transformations to the Document element doc that represents
Source_Java, the Java source code under testing. In GMPS,
actually, all the transformations to Source_Java are
instrumentations. Hence, all the transformations to doc should
be insertion of elements.

For instance, when processing if statements of
Source_Java, GMPS searches both the true branch and the
false branch of each if statement, and instruments at the
beginning and at the end of each branch. The instrumentation
contains the keyword if as well as its conditional predicate.
The following segment illustrates how to instrument at the
beginning of the true branches of if statements. When
replacing the two annotated statements by its annotations in the
following code, the resultant segment can instrument at the end
of the true branches of if statements. When replacing the
“true_case” in the code with a “false_case”, the resultant
segment will instrument the false branches of if statements.

List kwList = doc.selectNodes("//if");

for (Iterator iter = list.iterator(); iter.hasNext();) {

Element keyword = (Element) iter.next();

String kwName = keyword.getName();

// String kwName = "end_" + keyword.getName();

String condition =
keyword.element("test").getText();

Element branch = keyword.elment("true_case");

List brElements = branch.elements();

String instruTxt =
"<if> <test> bFisrtLoop </test>
<true_case> <send message = \"write\">
<target> <var_ref name = \"mp\"/> </target>
<arguments> <binary_expr op = \"+\">
<binary_expr op = \"+\">
<literal_string value = \" " + kwName + " \"/>
<var_ref name = \" " + condition + " \">
<binary_expr> <literal_string value = \"\n\"/>
</arguments> </send> </true_case> </if> ";

Document docTmp =
DocumentHelper.parseText(instruTxt);

Element instru =
(Element) docTmp.getRootElement().detach();

brElements.add(0, instru);

// brElements.add(brElements.size(),instru);

}

In a way similar to the segment above, GMPS instruments
loop statements, return statements, method invoking
statements, and assignment statements of class data
members. The primary differences are the searched keywords.

D. Important Details
New GMPS analyzes and manipulates the above syntax

components in Source_XML one by one. The components
analyzed contain condition statements, loop statements, return
statements, method invoking statements, and assignment
statements of data members. The manipulation is the insertion
of statements. If the inserted statements also fall within the
analyzed components, measures must be taken to avoid
confusions.

In GMPS, all inserted statements fall into two types:
conditional statements (if statements) and method invoking
statements (mp.write). For example, when processing an if
statement in Source_Java, GMPS will insert the following
Java code at the beginning of the true branch of the if
statement:

if (bFirstLoop)
mp.write (“if” + condition + “\n”);

In order to avoid any confusion between statements being
analyzed and the ones being inserted, our GMPS takes two
measures:

1) Limit the order of the processing of the syntax
components. GMPS deals with conditional if statements first,
followed by statements of other types.

2) Exclude the processing of special statements. When
GMPS analyzes method invoking statements, it will not
operate on any method invoking statement starting with
“mp.write”.

E. Analysis of Empirical Results
The original GMPS tool [8] was programmed in C++ using

interpreting technique. The development time for the core code
(excluding the code for GUI) was about 3 months by one
programmer, and the size of the core code was 113 KB. Since
it is difficult to develop a full-fledged interpreter for an object-
oriented program, the old GMPS was a prototype tool which
could only process a limited number of syntax components of
the PUT.

The new GMPS tool in the present case study utilizes the
JavaML tool and is programmed in Java based on DOM4J
APIs. The JavaML tool is used to convert Source_Java to
Source_XML, as well as converting Transformed_XML to
Transformed_Java. We do not need any programming during
these two conversions, because it is done automatically by the
JavaML tool.

The programmer of our new GMPS only needs to program
the transformation of Source_XML into Transformed_XML.
The corresponding code size is about 70 KB, which can be
developed within only one month by one programmer.

Although the new GMPS takes less time to develop, it can
process any Java PUT without syntax limitation. This is
because the parsing of the program is achieved by the DOM4J

710710

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

APIs. The liberated GMPS programmer can concentrate on the
transformation of Source_XML.

The running time of the new GMPS consists of 2 parts: (t1)
the time for the two conversions using JavaML and (t2) the
time for the transformation from Source_XML to
Transformed_XML. According to two experiments we
performed, t2 is comparable with the running time of the old
GMPS tools. The total time t1 + t2 is less than 1 second, still
of the same order of magnitude as t2.

IV. CONCLUSION
Many software testing tools have to parse the source code

before doing the analysis. Parsing programs by compiling or
interpreting techniques is classical, but is time-consuming and
difficult. This paper illustrates a new approach to simplify the
development process.

The case study shows that our three goals in lean
implementation of testing tools can be achieved. By utilizing
conversion tools such as JavaML, testing tool developers are
released from analyzing and parsing the source PUT, and only
need to program the manipulation of XML documents. By
using XML DOM API packages such as DOM4J, programs
for manipulating XML documents are readable and easy-to-
develop. Since appropriate conversion tools can be used to
parse any real-life PUT, the testing tools can deal with
practical PUTs with various syntax components.

REFERENCES
[1] “dom4j 1.6.1 API,” available at http://www.dom4j.org/apidocs/.

[2] “Extensible markup language (XML),” W3C, available at
http://www.w3.org/XML.

[3] G.J. Badros, “JavaML: a markup language for Java source
code,” Computer Networks, vol. 33, no. 1–6, pp. 159–177,
2000.

[4] H.Y. Chen, T.H. Tse, and T.Y. Chen, “TACCLE: a
methodology for object-oriented software testing at the class
and cluster levels,” ACM Transactions on Software Engineering
and Methodology, vol. 10, no. 1, pp. 56–109, 2001.

[5] M.L. Collard, H.H. Kagdi, and J.I. Maletic, “An XML-based
lightweight C++ fact extractor,” in Proc. of the 11th IEEE
International Workshop on Program Comprehension (IWPC
2003), IEEE Computer Society Press, Los Alamitos, CA, pp.
134–143, 2003.

[6] P. Klint, R. Lmmel, and C. Verhoef, “Toward an engineering
discipline for grammarware,” ACM Transactions on Software
Engineering and Methodology, vol. 3, pp.331–380, 2005.

[7] J. Maletic, M. Collard, and H. Kagdi, “Leveraging XML
technologies in developing program analysis tools,” in Proc. of
the 4th International Workshop on Adoption-Centric Software
Engineering (ACSE 2004), Edinburgh, UK, pp. 80–85, 2004.

[8] Y.X. Sun and H.Y. Chen, “A new approach and CASE tool for
object-oriented dynamic tests at cluster-level with data types of
pointer and reference,” in Proc. of the 2003 IEEE International
Conference on Systems, Man, and Cybernetics (SMC 2003),
IEEE Computer Society Press, Los Alamitos, CA, vol. 2, pp.
1075–1080, 2003.

[9] Y.X. Sun and H.Y. Chen, “Use object-oriented paradigm to
design and implement an algorithm for object-oriented class-
level testing,” in Proc. of the 2003 IEEE International Conf-
erence on Systems, Man, and Cybernetics (SMC 2003), IEEE
Computer Society Press, Los Alamitos, CA, vol. 2, pp. 1069–
1074, 2003.

711711

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:45 from IEEE Xplore. Restrictions apply.

