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ABSTRACT

major tasks in natural language processing include understanding,
question answering, inferencing, and summarizing. A good knowledge
representation scheme will facilitate performing these tasks. We present
here a representation which is a semantic network consisting of three
levels of abstraction: attribute list, case frame and coherent relation. The
attribute list stores information related to a single concept. The case
frame contains information associated to an event or a state.
Relationships amongst states/events are stored in the coherent relations.
Applications of the three levels structure to question-answering and
summarization will be given.
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1. Introduction

Major tasks in natural language processing include understanding,
question answering, inferencing, and summarizing. A good knowledge
representation scheme will facilitate performing these tasks. When
analyzing a text in natural language, one needs to translate the text into an
internal representation. In question-answering phase, depending on the
question type, one needs to extract information from the properties of a
concept, find the status of an event or a state, or determine the causal
relation between events or states. During the summarizing phase, one has
to judge what is important, what is less important, what is irrelevant, and
what connection of one event with the next is brought out. In all these
processing phases, a significant amount of world knowledge (or
background knowledge) is needed. In this paper, we concentrate on the
structured representation of the knowledge.

Our proposed representation is a semantic network consisting of three
levels of abstractions, namely attribute list, case frame and inter-relation.
Associating with a concept [10], there is a set of properties. It stores
information related to an individual concept. The case frame [7] is used
to store the information associated to an event or a state. Relationship
between events and states are contained in the inter-relations [2, 3, 1,6].
To retrieve properties of a single concept, such as the colour of a car, the
attribute list is searched. For guestions related to an event or a state, such
as the agent of a certain action, the case frame is accessed. These two
levels of representation have been studied extensively in the past [8].
Question types like yes-no-question, what and who can be handled because
they do not require information about relations amongst events/states. On
the other hand, it is not sufficient in handling a coherent text with these
two levels only. Question types such as Aow question and why question
cannot be handled because causal relations amongst states/events are
needed. They are usually obtained from the hidden meaning of the input.
Also, summarization cannot be done unless we know the relations
amongst events/states. This is the reason why we need the top level
abstraction of representation.

An input text is analyzed by the natural language processing system
and transformed into an internal form which consists of three levels. The
details of the parser and the language understanding system are discussed
in [4,5]. In the next section, the details of individual level are given.
After that, applications of the network to question-answering and
summarizing are presented. The three levels knowledge representation
scheme, the question-answering system and the summarization system are

2-



parts of the natural language processing system BP [5].
2. Three Levels Knowledge Representation Scheme

2.1. Attribute List for Concepts
For a concept, says [BOY:boy#2], BOY is the corresponding concept

type while boy#2 is its corresponding referent. Each concept instance’ has
a unique referent. The referent boy#2 tells that the corresponding concept
[BOY:boy#2] is the second boy that have occurred. Every concept
implicitly asserts the existence of something of the corresponding type.
For the bottom layer of abstraction, an attribute list is associated with
each concept. Most information of the attribute lists is obtained from
adjective words, e.g. the colour of [CAR:car#13], the size of
[CAKE:cake#2] or the age of [BOY:Tom]. Since different adjectives may
have different semantic aspects [9], a very different set of inferences is
resulted, such as the examples in Figure 1.

Figure 1. Sentences exemplify some inferences.

Tom is a young president =% Tom is young

Mary is older than Ann = Mary is old

My towel is wetter than yours => My towel is wet
My car is redder than yours = your car is also red

Associating to the concept type of an adjective, there are three
semantic features, namely gradability, type of scales and relativity [9].
They are stored in an adjective information list. The list contains the
following information: gradability, type of scales, dimension of scale,
marked adjective, unmarked adjective, positive adjective, comparative
adjective, superlative adjective and relativity.

2.1.1. Semantic Features

An adjective is gradable if it can be substituted for A in the
following expressions:

tAn entity recognized by the image of a concrete concept ¢ is called a instance of c.
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Aer (or: more A) than
as A as

less A than

the Aest (or: most A) of
very A

Gradability implies the existence of scale in the semantic structure of
the adjective - a scale which grades the relevant dimension. For example,
the adjectives “‘old’", *‘young”’, ‘“full’”’, “‘empty’’, are gradable. The
corresponding concept types OLD and YOUNG grades the scale of *‘age’’,
while FULL and EMPTY grades the scale of ‘‘fullness’”.

There are two types of scale: unary and binary. Scales defined by
one adjective is referred to as unary, e.g. red. The corresponding concept
type RED grades the scale of ‘‘redness’’. For unary-scale adjectives,
“NP; is A’ signifies the presence of a property while ““NP, is not A
signifies the property is being absent.

Scales defined by pairs of adjectives is called binary. In order to
define a binary scale, a pair of adjectives must be:

a) gradable

b) incompatible

¢) at least semi-reciprocal
Pairs of adjectives defining binary scales will be symbolized as: 4 : A°.
Two adjectives are incompatible if they satisfy the following entailment
formula:

NP, isA = NPi is not 4’
Two gradable adjectives are reciprocal if they satisfy the following pair of
entailment formulae:

NP, is Aer than NP.=> NP.is A’er than NP,

NPj is A’er than NP‘. = NPi is Aer than NPj
For example,

Mary is older than Jane => Jane is younger than Mary
Jane is younger than Mary = Mary is older than Jane

If for two gradable adjectives only one of the entailment formulae is true,
they are known as semi-reciprocal. This can be exemplified by

My car is more economical than yours =% Your car is more uneconomical than min
Your car is more uneconomical than mine = My car is more economical than yous

““My car is more economical than yours’™ does not entail ‘‘your car is
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more uneconomical than mine’’ since both cars may be economical, both
uneconomical, or one may be economical and the other is uneconomical.

Depending on whether pairs of adjectives are reciprocal or semi-
reciprocal, binary scales are further subdivided into two subclasses:
quasi-antonymic and antorymic. Scales defined by pairs which are only
semi-reciprocal is known as quasi-antonymic, ¢.g.
economical:uneconomical, intelligent:unintelligent, efficient:inefficient.
Scales which defined by reciprocal pairs of adjectives is known as
antonymic. Antonymic scales can be either asymmetric or symmetric.
The asymmetric scales are open at one end but bounded at the other. For
an adjective pair which defines an asymmetric scale, one adjective
signifies the ZERO-end of the scale, i.e. the absence of the corresponding
property. This can be exemplified by the pairs: smootn:rough,
dry:wet, straight:curved. The asymmetric antonymic pairs have
the following properties:

NP, is A & NP, is not A’
NPE isA’ & NP, is not A

Symmetric scales are the same at both ends, either bounded or open.
The bounded symmetric scale stretches from one to zero, i.e. from
complete presence to total absence of a feature. An example is the the
adjectives empty:full, which defines a scale bounded by O and 1.
Sentences like NP, is empty and NP, is full are interpreted as extreme
cases. Open symmetric scales are open at both ends and no terms exists
which signals the beginning or the end of the scale, e.g old:young,
short:tall, heavy:light. The open symmetric scale is the most
common binary scales. The open scale antonymic pairs have the
following properties:

NP, is not A = NP, is A’
NP, is not A’ = NP, is A

Binary-scale adjectives have the following characteristic: If an
adjective from this class is semantically relevant to one element of a set
of entities, then the underlying dimension — and the scale for it — is
relevant to every element of the set. For example, all people have some
height, all physical entities have some weight.

There are two types of relativity, known as the form relativity and
the scale relativity. The relativity of comparative-degree and positive-
degree forms of adjectives is known as form relativity. There are six

-5-



possible types of form relativity (Table 1).

[

NP, is Aer than NP. =% Nl’i isnot A
NP, is Aer than NP. =% NPJ. is A
NP, is Aer than NP, =% NPj isnot A

[ SV €™

Type Implications Example

Fully Absolute NP, is Aer than NPJ = NP is A Red
NP, is Aer than NPj = NPJ. isA

Negatively absolute | NP, is Aer than NP, = NP isnot4 | Straight
NP, is Aer than NPj = NPJ. is not 4

Semi-absolute NP, is Aer than NPJ. = NP, is A Dry
NP; is Aer than NPJ. = NPJ. isnot A

Weakly absolute NP, is Aer than NP, =» NP, is A Wet
NP, is Aer than NPj =+ NPJ. isA
NP; is Aer than NPJ =+ NPj isnot A

Semi-relative NP, is Aer than NF‘J = NP, is A Full
NP, is Aer than NPj = NP, is not A
NP, is Aer than NPJ. = NPJ. isnot A

Fully relative NP, is Aer than NP, =+ NP, is A 0}7]

Table 1. Types of form relativity.

As vagueness and context-dependence are features of natural
language, the interpretation of adjectives is a matter of ‘‘qualitative”
rather than a matter of well-defined *“‘true or false’’. For example, people
may disagree with the examples that have be given above. However, they

are based on some elicita$!

Relativity of comparative-degree and positive-degree forms of
adjectives shown above is known as form relativity. The sentence ‘“Mary
is tall’’ is interpreted as signifying a Ligh value on the scale of height
(more than average height) for human females. Suppose Mary is a child.
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The sentence also expresses a true proposition even if Mary’s height is
only 4 feet, provided most other children of the same age are shorter.
Hence, ‘‘Mary is tall’’ is a relative statement, and the relativity may be
due to various factors, e.g. Mary may be tall for her age, or tall by the
standard of the community she lives in. Moreover, ‘‘a tall girl”’ is not
necessarily ‘‘a tall person’’ and certainly differs in height from “‘a tall

EX]

tree’’.

The adjective ‘‘tall’” exemplifies scale-relativity. Interpreting ‘‘tall”’
as “‘of more than average height’” makes it doubly relative. Since
‘‘average height’’ is not an absolute concept, it can only be established for
a given reference set. A statement such as “‘Mary is tall”” means ‘‘Mary
is tall for a 8" where S is the name of the reference set. When such type
of sentences are encountered, there is always a pragmatic assumption that
the hearer will identify correctly the set S of which the referent of the
argument is a member.

2.1.2. Transform from Case Frames Structures to Attributes

When reading a piece of text, each sentence will be processed by the
parser first. The inference engine will then transform the case frames,
which are of concept types corresponding to adjective words, into
attributes of attribute lists in order to facilitate making inferences. A set
of adjective information lists is associate with a concept type
corresponding to an adjective word. Every adjective information list
stores the information such as: gradability, scale type defined, types of
form relativity, dimension of scale, the marked and unmarked concept

types’ (if present), the corresponding positive, comparative and superlative
concept type (if present). For example, the concept type OLDER, which
corresponds to the adjective ‘‘older”’ has only one associated adjective
information list:

*In all open-scale antonymic pairs (and in some other binary-scale pairs) one of the ad-
jectives in the pair is the unmarked term, the other being marked. The adjective ‘‘old”, for
example, is the unmarked term for the pair young:old. The unmarked term has two functions:
it can either signal a high value on the scale defined (e.g. **Mary is old""), or it can be value-
neutral, in which it represents the dimension as a whole (e.g. **Mary is eighty-five years
old.”).
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OLDER
gradability: true
scale~type: open-symmetric-antonymic
form-relativity: fully-relative
dimension: age
marked: YOUNG
unmarked: OLD
positive: OLD
relative: OLDER
superlative: OLDEST

On the other hands, the concept type SHORT, which corresponds to
the adjective *‘short’” may have two associated adjective information lists:

SHORT
gradability: true
scale~type: open-symmetric-antonymic
form-relativity: fully-relatave
dimension: height
marked: SHORT
unmarked: TALL
positive: SHORT
relative: SHORTER
superlative: SHORTEST

SHORT
gradability: true
scale~type: open-symmetric-antonymic
form-relativity: fully-relative
dimension: length
marked: SHORT
unmarked: LONG
positive: SHORT
relative: SHORTER
superlative: SHORTEST

Background knowledge such as ““All people have some height”” and
*‘All physical entities have some weight’” is stored in the lexicon. This
makes the selection of a suitable adjective information list amongst a
number of choices possible. Consider the following input frame as an
example:
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([SHORT]
(AttributeOf: [BOY:Johnl))

The first adjective information list corresponding to the concept type
SHORT will be chosen instead of the second one based on the information
in the lexicon (i.e. ‘‘All people have some height’’).

2.1.2.1. Positive Form Transformation

When transforming case frame structures corresponding to positive
form adjectives into the corresponding attributes, different scale type
defined may have different effects on the attribute list. Table 2 gives a

brief summary.

open-scale symmetric

Scale Type Structure Result
Unary-scale NP1 is A [> ZERO-dimension]
NP, is not A [= ZERO-dimension]
Open-symmetric antonymic NP is A [e MANY-dimension]
NP, is A’ [e FEW-dimension]
NP is not A [¢ MANY-dimension]
NPi is not A’ [¢ FEW-dimension]
Bounded-symmetric antonymic | NP is A [= ONE-dimension]
NP;is A’ [= ZERO-dimension]
NP; is not A [« ONE-dimension]
NP; is not A’ [> ZERO-dimension]
Asymmetric antonymic NP, is A [> ZERO-dimension]
NP is A’ [= ZERO-dimension]
NP‘. is not A [= ZERO-dimension]
NP, is not A’ [> ZERO-dimension]
Quasi-antonymic Similar to

Table 2. Summary of Positive Form Transformation.

For the semantic interpretation of sentences, the positive degree form
of numerical adjectives ‘‘many’’ and ‘‘few’” are useful concept. They are
psychologically simple, and at the same time appropriately fuzzy [9]. On
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the scale for a given dimension, MANY-dimension can be represented as
an interval, whose value at the lower end 1s vague, stretches upwards
towards the end of the scale (which itself may be ill-defined). The FEW-
dimension represents an interval stretching from the beginning of the scale
upwards. The upper end is ill-defined, but is a long distance from the cnd
of the scale. The MANY-dimension and FEW-dimension can be extended
to cover non-numerical adjectives. The ZERO-dimension shows the
absence of the property (or the zero of the scale for a given dimension).
The ONE-dimension shows the only maximum point in the scale for a
given dimension defined by a pairs of bounded-symmetric antonymic.

We shall illustrate the positive form transformation using the
previously example:

(ISHORT]
(AttributeOf: [BOY:John]))

As SHORT is marked (i.e. the A’ in the A:A’ pairs) and open-
symmetric-antonymic, the attribute list of the concept [BOY:John)
becomes

{ ... (height (¢ FEW-height)) ... }

2.1.2.2. Comparative Form Transformation

Comparative form transformation consists of two steps. Form
relativity tells the positive-degree forms of adjectives that can be implied
by a comparative-degree form (refer to Table 1). In the first step, the
corresponding attributes are set according to the positive form
transformation introduced in the previous section.

Consider the example ‘*This towel is drier than that towel’’. The
following case frame is input to the inference engine:

([DRIER]
(primum-comparationis [TOWEL:towel#1])
(secundum-comparationis [TOWEL:towel#21))

Associating with the concept type DRIER, we have an associating
adjective information list as follows:
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DRIER
gradability: true
scale-type: asymmetric-antonymic
form-relativity: negatively-absolute
dimension: wetness
marked: DRY
unmarked: WET
positive: DRY
relative: DRIER
superlative: DRIEST

As DRIER is negatively absolute, according to Table 1, we have
NP, is Aer than NPJ. = NP, is not 4
NP, is Aer than NPJ. = NF‘j isnot A
The attribute lists of [TOWEL:towel#1] and [TOWEL:towel#2] are
modified to reflect that ‘‘they both are not dry”’, i.e. they both are wet.
As DRIER is the comparative form of the marked DRY and asymmetric-

antonymic, referring Table 2, the attribute list of the concept
[TOWEL:towel#1] becomes

{ ... {(wetness [> ZERO-wetness)) ... }
and the attribute list of the concept [TOWEL:towel#2] becomes

{ ... (wetness [> ZERO-wetness]) ... }

The second step in the comparative form transformation involves
setting the relation between the primum-comparationis and the secundum-
comparationis. Unmarked/marked signified the high/low value of the
scale of dimension. The corresponding attributes are set to signify the
higher and lower of the scale of dimension. For the previous example,
DRIER is the comparative form of the marked DRY which signifies the

low-value of the scale of dimension wetness. The attribute list of the
concept [TOWEL:towel#1] is:

{ ... (wetness [> WemeSS{TOWEL:mweI#Z]] [> ZERO-wetness]) ... }
The attribute list of the concept [TOWEL:towel#2] becomes
{ ... (wetness [< WetneSS TowWEL 10w el#]]] [> ZERO-wetness]) ... }

2.2. Case Frame Representations

The middle layer of abstraction is the case frame representation of
the events/states within which the concepts are related together. The
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concepts are related through the case slots: Agent, Object, Theme,
AuributeOf, StateOf, PreceptOf, Instrument, Departure, Destination,
AffectedEntity, Location, Time, Recipient, Beneficiary. From the parser,
we obtain a set of case frames. These case frames will then be passed to
the inference engine and those case frames corresponding to adjectives
will be transformed into attributes of concepts. The remaining are the
case frames of the events/states. With the bottom and middle layers, the
sentence ‘“Tom moved the red pyramid to the big table’” has the
following representation:

Figure 2. Examples of the middle and lowest layers.

The lowest layer of abstraction:

Attribute list of the corresponding [PYRAMID:pyramidi#l] concept:
{ ... (redness [> ZERO-redness]) ... }

Attribute list of the corresponding [TABLE:fable#1] concept:
{ ... (size [e MANY-size]) ... }

The middle layer of abstraction:

(IMOVE]
(agent [BOY:Tom])
(object [PYRAMID:pyramid#1])
(destination [TABLE:table#11))

It is not sufficient in handling a coherent text if we only use the
middle and the bottom layers of knowledge representation since we have
not yet obtained the hidden meaning of the input and the relations
amongst the states/events. Question types like: yes/no questions, what
type questions and who type questions can be handled because they do not
require information about relations amongst event/state. The more
sophisticated question types like: how type questions and why type
questions cannot be handled because they usually need inferential

-12-
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knowledge, i.e. the relations amongst events/states, in order to obtain the
hidden meaning of the input text. Also, we cannot do the summarization
unless we have already known the relations amongst the events/states.
These are reasons why the top layer abstraction is necessary.

2.3. Concept Coherent Dictionary

The top layer abstraction is based on the coherence [1,6]. NEXUS
{1] mechanism for generating the relations amongst events/states is simple
and efficient. With these relations, information that is explicitly defined
in a text can be inferred. On the other hand, the coherent relations used
in NEXUS are not ready for doing those question-answering and
summarization that requires the causal relations amongst states/events.
Questions which require finding the causes and effects, and summarization
which requires determining the importancy are unable to be handled by
them. A different set of causally relevant coherent relations is used,
which makes question-answering and summarizing simple and
straightforward, improving the quality of the output, but not introducing
computational overload (which may be the case if causal neutral is
enforced).

In order to signify the difference, consider the example sentences and
the corresponding coherent dictionary in Figure 3.

Figure 3. Examples of causally neutral relations.

1 The peasant was chopping a tree in the woods by the lake.
He dropped his axe ...
2 The peasant was chopping wood. When he finished, he

dropped his axe.

@ coordinate @ antecedent /7 >

In the first sentence, the ‘‘dropping’” disables the ‘‘chopping’’, but for the
second sentence, it does not. As the relations are neutral with regards to

1y ¢

the causal relationships among ‘‘chopping’’, ‘‘holding’’ and *‘dropping’’,
-13-



the terms ‘‘chopping’” and ‘‘dropping’’ are collected when they appear in
a piece of text. The representations of the sentences are identical using
Alterman’s causal relations. On the other hand, our proposed set is able
to distinguish them.

The set of causal relations is based on results from linguistic studies
[2,3]. They are also divided into three categories: taxonomic relation
(class/subclass), partonomic relations (Sequence/subsequence, coordinate),
causal relations (cause, enablement, reason, purpose).

The class/subclass is the property inheritance relation. A class of
events inherits both properties and relationships from all its ancestors
which are all the nodes that are recursively related to it via the subclass
arcs. If one event is a part of another event, and it occurs for a
subinterval of time, then the corresponding concepts are in a
sequence/subsequence relationship. If an event has parts that occur
simultaneously over the same time interval, then the corresponding nodes
are in a coordinate relationship. If one event produces another (or makes
another event happen), the relationship between their corresponding nodes
is classified as cause. If one event makes another event possible but not
obligatory, the relationship between their corresponding nodes is classified
as enablement. If one event follows as a rational response to another
event, the relationship between their corresponding nodes is classified as
reason. If one event or situation is planned to become possible via
another event or situation, the relationship between their corresponding
nodes is classified as purpose.

Figure 4 shows the use of causal relevant relations for the example
given in Figure 3.
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Figure 4. Causal relevant relations of the example in Figure 3.

Causal relations:
holding an axe enables chopping wood
holding something enables dropping something
finished chopping is the reason of dropping the axe

finishle_reason @ enablemen@ enablement @

Consider the question ‘“Why did the peasant stop chopping?’’. Not
‘‘holding an axe’’ terminates ‘‘chopping wood’’ and ‘‘dropping the axe’’
terminates ‘‘holding the axe’’. This terminated path will be traversed
until the end node is arrived. If there is no reason for that end node, i.e.
“‘dropping the axe’” (as in the first text), we know that it is the ultimate
reason that we can obtain (in the first text, the reason is ‘*dropping the
axe’”). On the other hand, if we have found reason for the end node
‘‘dropping the axe’’ (as in the second text), we may traverse to the
corresponding node of the reason to obtain the ultimate reason (so in the
second text, the reason is ‘‘finished chopping’”).

2.4. Importancy Factor

In summarization, we have to judge what is important, what is less
important and what is irrelevant. In order to facilitate the process of
inference, we introduce another type of coherence called the weight. A
heuristic measure, called importancy-factor, is associated with each node
within the semantic representation of the text, which signifying the
corresponding weight. The values of importancy-factor range from zero
to five. Their corresponding meanings range from irrelevant to very
important.

The importancy-factors are introduced when constructing the semantic
representation. The corresponding value of each node is specified in the
constraints associated with the arcs connected to it. Connecting new arcs
to an already present node is allowed to alter the corresponding
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importancy-factor.

2.5. Implementation of the Three Levels Scheme

Though the three levels correspond to three different conceptual
layers of knowledge, they are highly related to each other. For
implementation, the set of states/events is represented as nodes of a graph
or network. The inter-relations are labeled arcs of the network. For
answering questions related to causality, links are traversed. Within each
node, a list of case slots is provided to store the information of the
state/event. Corresponding to each slot, a concept or another state/event 1s
attached. Each concept is associated with a list of attributes. The
information in bottom and middle levels can be retrieved easily.

In order to facilitate locating relevant case frames, the event/state
types and also the concept types are organized into a hierarchical structure
through the use of supertype and subtype pointers. Moreover, for each
event/state type, we have a list of instance pointers pointing to the frames
which belong to that type. For each concept types, we have a list of
instance pointers pointing to the corresponding concepts. These instance
pointers are index for the case frames and concepts which are used n the
question-answering system.

The concept coherent dictionary is a semantic network with nodes
being the event/state case frames and arcs being the inter-relationships
between the event/state case frames. It is not intended to be a complete
explication of the meaning of the event/state terms it contains. Instead, it
tries to capture the inter-relations of mutually defined event/state terms.
Each term may gain its relative meaning from its position in the network,
Nodes are related to one another by one of the seven binary coherent
relations.

Attached to each relationship in the dictionary is a set of constraints
between the case frames of the terms being related. The constraints are
used to control the representation building process. The representation of
a text is constructed by matching case frames of the text against the
dictionary. A path finding algorithm is used [1]. An arc is being
traversed only if it can satisfy the constraints attached to the arc. The
representation it produces is a copy of the relevant graph that has been
traversed.

Figure 5 gives part of the coherent dictionary. Figure 6 shows a
sample text together with its knowledge representation.
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Figure 5 Part of the coherent dictionary

@

reisoy ubel aﬂs

)

Coherent Dictionary:

Causg

N

AT

\‘s.,/" >,
/ \
crder | leave
/
...//\\ \.J

«ndtle nedt, /c’rz.xhh ment

(Dotted lines represent connections with other parts of the dictionary)

Examples of constraints associated with the relations: (ecnablement

LEAVE GO) -

(match (agent of LEAVE) (agent of GO))
(match (departure of LEAVE) (destination of GQO))

(enablement ORDER GO) -

(match (agent of ORDER) (agent of GO))
{match restaurant (destination of GQ))
(match food (object of ORDERY)

{rcason PAY EAT) -

(match (agent of PAY) (agent of EAT))
(match restaurant (location of EAT))
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Figure 6 An example

Mary went to the restaurant and ordered. The waitress brought her a
hamburger and she ate quickly. She tipped the waitress and left.
The knowledge representation:

{([LEAVE}

(agent [GIRL-Mary})
(departure [RESTAURANT :restaurantl]))
enablement
(GO}
(agent [GIRL:Mary])
(destination [RESTAURANT :restaurantil]))}

{(IPAY]

(agent [GIRL:Mary])
(dauve [WAITRESS: waitress#1]))
subclass
([TIP]
(agent [GIRL:Mary])
(dative [WAITRESS ‘watressi1]))
reason
((EAT)
(agent [GIRL:Mary])
(object [HAMBURGER:hamburger#1])
(location [RESTAURANT ‘restaurant#1}))
enablement
([OWN]
(possby [GIRL-Mary])
(object HAMBURGER -hamburger#1])
(locauon [RESTAURANT :restaurant#11))
cause
({BRING]
(agent [WAITRESS: waitressil))
(dative [GIRL:Mary])
(object [HAMBURGER :hamburger#1])
(location [RESTAURANT: restaurant#l]))
reason
([ORDER]
(agent [GIRL:Mary])
(object [HAMBURGER : hamburger#l])
(location [RESTAURANT :restaurant#11))
enablement
(GO}
(agent [GIRL:Mary])
{destination [RESTAURANT :restauranti#l]))}

(attribute lists have not been shown)
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3. Question-Answering System

The first application we are going to discuss is the question-answering
system. The question-answering system 1s a rule-based system. After a
question has passed through the parser, a casc trame is produced, e.g., the
question ‘“What did Mary order?”’ is of the following form:

([ORDER
(agent [GIRL:MarvD)
(object [ENTITY*)D
The case frame is then matched against the list of case frames through
instance pointers. The matched case frames are used as starting points {or
traversing the network.

According to different question types, we have different methods of
traversing the network. Rules are divided into three packets because of
their usage and efficiency. The first packet corresponds to extract
mformation trom the attribute list level and case frame level. Tt is used to
answer questions of types who, whom, what, which and yes/no. For
question type why and how, causal relation between states is needed to
obtain an answer. The rules in the second and third packet are designed
for this purpose.

3.1. Packet One

The Packet One mainly concems with question types who, whom,
what, which and yes-no-question. These types of questions correspond to
locate a concept, retrieve information from the attribute list of a concept,
or extract information from a case frame slot. Matching the case frame
from the question against the internal representation of a text is sufficient
to generate the answer. There are four rules in this packet, two of them
are shown below. Figure 7 is a list of sample questions answered by the
system.

Pl.1 Do the match operation (The list of frames matched successfully
will be returned).

If the returned list is not null;

Then they arc passed to the text generator as the answer to the
question.

P1.2 (The returned list is null)

If there are offspring types for the corresponding question;
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Then we can choose the frames from the pointer lists of the
offspring types as the candidates and restart this rule packet (i.e.
back to rule 1).

P1.1 corresponds to a successful match. The answer can be
generated using the information in the matched case frame. For
question 1, the case frame representation of the question, as
shown in the above section, is matched against the represtation
of the text, as shown in Figure 3. A successful match is
encountered and an answer is generated. P1.2 is triggered when
an unsuccessful match is encountered. Instead of skipping the
question, case frames of subtype of the current case frame will
be searched, e.g. the question 4 and 5 in Figure 7. In question
5, the action ‘‘serve’’ is not explicitly defined in the text. On
the other hand, ‘‘bring’’ is a subtype of ‘‘serve’’, which is
searched when rule P1.2 is fired. Question 4 is another example
of searching the subtype.

Figure 7. Example Questions for Packet One.

Question 1: What did Mary order?

Answer: Mary ordered a hamburger.

Question 2: Did Mary leave the restaurant?

Answer: Yes, she left the restaurant.

Question 3: What did Mary eat?

Answer: Mary ate a hamburger.

Question 4: What had Mary done?

Answer: Mary went to the restaurant. She ordered a hamburger. She ate
the hamburger. She tipped the waitress. She left the restaurant.
Question 5: Who served Mary with the hamburger?

Answer: It is the waitress who served Mary with the hamburger.
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3.2. Packet Two

The Packet Two handles question type why. For an incoming
question of type why, it is transformed into a case frame tagged with type
why. For example, the question *‘Why did the waitress bring Mary the
hamburger’’ is represented as

([BRING
(agent [WAITRESS: waitress#i])
(recipient [GIRL: Maryl)
(object [HAMBURGER: hamburger#il)])

The case frame of the question is then matched against the list of case

frames through instance pointers. The matched case is then used as the
starting point, follow the subsequence, reason or purpose links, and the
target case frames are the answer. Following is some of the rules:

P2.1 Do the match operation (The list of frames matched successfully
will be returned).

If the returned list is null and there are offspring types for the
corresponding question;

Then we can choose the frames from the instance pointer lists
of these offspring types as the candidates and restart this rule
packet (i.e. back to the beginning of rulel).

P2.2 If the returned list is null and no corresponding offspring types
exist;

Then we can signal *‘I haven’t been told”’.

P23 If the answer is implicitly implied from the matched frames (e.g.
with case relation like in order to, or the matched frame is
nested in another frame and connected by case relation by means
of, etc)

Then a selected subgraph will be passed to the text generator as
the solution.

P24 If there are concept coherent relations with type reason pointing
out from the matched frames (i.e. the corresponding frames are
the reason of the matched frames);

Then the corresponding frames of these relations will be passed
to the text generator as the solution.
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P25 If there are concept coherent relauons with type purpose
pointing out from the matched frames (i.e. the corresponding
frames are the purpose of the matched frames);

Then the corresponding frames of these relations will be passed
to the text generator as the solution.

Rules P2.1 and P2.2 are used to handle successful match and
unsuccessful matches. Rule P2.3 corresponds to case frame which
contains a slot storing the reason of the event or statc. Rules P2.4 and
P2.5 are used to following pointers along the links reason and purpose. In
order to answer the above question with respect to the text on Figure 6,
rule P2.5 is fired and the target case frame is used to generate the answer:

([ORDER
(agent [GIRL:Mary])
(object [HAMBURGER:hamburger#1])
(location [RESTAURANT :restaurant#1])])
The answer is:
Answer: Because Mary ordered it.

3.3. Packet Three

The third packet concerns with handling question type Aow. The
activation of these rules is similar to rules in the Packet Two. The
difference is that the link following is performed in the opposite direction
since we are determining the effect instead of the cause. Currently, there
are around ten rules in this packets and some of them are shown below:

P3.1 Do the match operation (The list of frames matched successfully
will be returned).

If the returned list is null and there are offspring types for the
corresponding question;

Then we can choose the frames from the instance pointer lists
of these offspring types as the candidates and restart this rule
packet (i.e. back to the beginning of rulel).

P32 If the returned list is null and no corresponding offspring types
exist;

Then we can signal *‘I haven’t been told”’.
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P3.3

P34

P3.5

If the answer is implicitly mmplied from the matched frames (e.g.
with case relation like by means of, or the matched frame is
nested n another frame and connected by case relation in order
10, etc.);

Then a selected subgraph will be passed to the text generator as
the solution.

If there are concept coherent relations with type purpose
pointing to the matched frames (i.e. the matched frames are the
purpose of the corresponding frames);

Then the corresponding frames of these relations will be passed
to the text generator as the solution.

If there are concept coherent relations with type subsequence
pointing out from the matched frames;

Then the corresponding frames of these relations will be passed
to the text generator as the solution.

Since their structure is very similar to rules in Packet Two, we shall

not give any further explanation.

4. Automatic Summarizing System

The Summarizing System is another rule-based system. The input to

the system is the three levels structure of the original text while the output
is an ordered list of case frames which will then passed to the text
generator, It is based on the following three hypothesis:

1

The input to the Summarizing System composed of structured
chunks of concept coherent event/state frames (a connected
graph).

In order to produce high quality output in terms of semantics,
we must try to traverse the whole semantic representation of the
text and make a selection amongst all the nodes based on rules
of the system. The rules are constructed through a careful study
of the concept coherent relations.

Besides doing the selection of frames, the rules also determine
the order in which they are to be presented based on the
coherent relations.
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When doing summarization, the graph will firstly undergo a
topological sort into a number of directed trees. They will then pass into
the rule-baged system. The trees are then traversed starting from the root
nodes. Nodes are selected based on the types of the relation together with
the importancy factor. For example, the subtrees rooted with nodes into
which the subclass or subsequence arcs enter will not be selected because
details are suppressed. This is illustrated by rules S.2 and S.3 below.
During processing, the node that is currently visit is called the current
node and the selected nodes are stored in an ordered list. There are
around fifteen rules and some of them are as follow:

S.1 If the whole concept coherent chunks have been traversed;

Then return the ordered list as the output of the system (which
will then passed to the text generator).

S.2 If the current node has some subclass arcs coming out from it;

Then the corresponding nodes incident by these subclass arcs
will not be chosen (During summarizing, we need not give the
details).

S3 If the current node has some subsequence arcs coming out from
it;
Then the corresponding nodes incident by these subsequence
arcs are no need to be visited.

S.4 If the current node has some reason arcs coming out from it
and there is a chain of reason arcs which finally result in a node
into which a subclass or subsequence arc enters;

Then the corresponding subtrees will not be visited (As the
whole chunk of subtree is just designated to explain the
corresponding node from which the corresponding subclass or
subsequence arc leaves).

S.5 If the current node has a chain of reason arcs coming out from
it and it had not marked unprinted;

Then some of the nodes following the long chain will be
selected into the ordered list (based on the importancy factor),
also the current node will be entered into the ordered list and a
new current node will be chosen (Node that the reason of
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something is given first).

Since the rules are in English form, we shall not give additional
details here. For detail discussion, please refer to Cheung’s thesis [5].
Figure 8 contains some sample runs of the Summarizing System.

Figure 8. Examples for the Summarizing System.

1 Mary went to the restaurant and ordered. The waitress
brought her a hamburger and she ate quickly. She tipped the
waitress and left.

Summary: Mary went to the restaurant and she ate a ham-
burger.

2 Mary went to the restaurant and ordered. The waitress
brought her a hamburger and she was angry because what
she had ordered were sandwiches.

Summary: Mary went to the restaurant. She ordered
sandwiches but the waitress brought her a hamburger.

. Conclusion

This paper has introduced a technique of implementing a well-
structured three levels knowledge representation scheme. By using
attribute lists, the lowest level of abstraction handle the attributes of the
concepts which are related by a case frame. The middle level of
abstraction is the case frames representation of the the events/states. The
highest level of abstraction handles the inter-relations amongst
events/states. The technique of concept coherent dictionary has been
employed. In order to have the ability to handle the different causal
aspects of the relations, the design of the dictionary needs a great deal of
creativity and is in fact an art.

wm
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