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One of the most frequently cited problems of low-dimensional meshes is that they have a
large diameter. In other words, it may take a long time for a processor to send a packet
to another processor. Various kinds of enhanced meshes equipped with faster means for
long-distance data movements have been proposed to counteract this diameter problem.
Examples of two-dimensional enhanced meshes include meshes with a global bus [2] [5]
[18], meshes with multiple buses [3] [6] [12], meshes with hierarchies of buses [15], meshes
with separable buses [13] [16], and reconfigurable meshes [4].! These models have been
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Abstract

To overcome the diameter problem of meshes, enhanced mesh models equipped with
various kinds of buses have been proposed. In this short note, we examime a weaker model
that does not use any bus mechanism. In this model, we stretch some of the links m an
ordinary mesh to connect non-neighboring nodes. Our model, which is just an ordinary
mesh, is more attractive from the implementation point of view when compared with the
enhanced models. The “express links” in our model turn out to be surprisingly useful:
we show that, given &V values, an N-processor two-dimensional mesh with express links
can solve semigroup computations in ©(N'/4) steps, prefix computations in G(N/1)
steps, the median row problem in ©(N1/4) steps, median finding in O{N1/log N') steps,
and the all points closest neighbor problem in ©(N1/4) steps, whereas these problems
require (/V*/2) steps on a two-dimensional mesh without express links,

Indez Terms—Interconnection networks, mesh-connected computers, parallel algorithms,
parallel processing, semigroup computation.

Introduction

In reconfigurable meshes, mesh links can be connected together to form many different configurations

of buses.



demonstrated to be powerful in solving a wide variety of problems. However, in terms of
implementation, broadcast buses and reconfigurable buses have longer propagation delay
and lower throughput than mesh links [11] [16]. Point-to-point links are easier to build
than broadcast or reconfigurable buses {which must be capable of connecting a reason-
able number of processors) because of the simplicity of the former in terms of hardware
implementation. In fact, point-to-point links appear to be the dominant choice of connec-
tion for modern-day parallel computers, as is evident in many practical examples including
Intel-CMU iWarp, Intel iPSC and Paragon, nCUBE 2, Thinking Machines CM-2, Caltech
Mosaic C, Texas Instruments C40, Inmos T9000 transputer, Ametek 2010, MIT J-Machine,
and Stanford DASH. In this paper, we show, by connecting some of the non-neighboring
nodes through ordinary links in mesh-connected parallel computers, how we can solve the
semigroup computation problem and other problems efficiently. We call these links that
connect two non-neighboring nodes “express links”. Our conclusion is that meshes with
express links can perform competitively in solving certain basic problems when compared
to meshes that are enhanced with buses. Two notes are in order. First, these express links
are just ordinary mesh links, and are unlike the express channels in Dally’s express cubes,
which require some special interchange hardware for their operation [7]. Second, as we will
see later on, such express links could be quite sparse in a given mesh and still the resulting
configuration can solve our problems with the desired performance; given this fact, 2 mesh
with express links retains its flavor of an ordinary mesh, and the additional cost due to
express links, if any, 1s minimal.

In the next section, we present the mesh with express links model and and compare our
results on semigroup computations using this model to related works. After that, we give
the lower bounds for any non-trivial problem on meshes with express links. Then we present
matching upper bounds for semigroup computations on one-, two-, and higher-dimensional
meshes with express links as well as on some variants of the model. We have also considered
other basic problems using this model; we state at the end our results for these problems.

2 Meshes with Express Links

In a two-dimensional mesh with express links, each row (resp. column) has some terminals
(processors at which express links end). Adjacent terminals, separated by a certain fixed
distance as required by the algorithm, are connected together by express links. Each pro-
cessor is capable of computing some arithmetic or boolean operations, and sending at most
one packet and receiving at most one packet in a time step—this is a one-port model [9].
Links are unidirectional in the sense that a link can transmit in one direction only during



any particular time step.? We assume that the propagation delay of the express links is one
time step, independent of their length. This is supported by some empirical findings that
node delays dominate wire delays. In other words, we can stretch links to span a moderate
distance without significantly affecting the link speed [7] [1] [8]. The constant propagation
delay assumption is also used in meshes with broadcast or reconfigurable buses [3] [4] [6]
[10] [12] [16] [18], which, however, is less reasonable. In fact, the propagation delay of buses
is likely to be proportional to log C, where C is the number of processors connected to the
bus [5] {16]. For more justifications of our model based on links only, readers are referred to
[7] {11]. Figure 1 shows examples of one- and two-dimensional meshes with express links.

. Terminal
One-dimensional meshes with express links:

L Aatn SSash, ASnsas

i

Express link

Two-dimensional meshes with express hinks:
{Only the express links of the first row and the first column are shown.)

Figure 1: Meshes with express links.

3 Semigroup Computations

A semigroup computation (finding maximum/minimum, parity, and sum being special
cases) can be described by a pair (6,5) where @ is an associative binary operator and

?For the algorithms in this paper, unidirectional links are sufficient. In practice, if the links are bidi-
rectional, the unused bandwidth could be used for another computation such as one of our algorithms but
running in the reversed orientation.



Model Dimension | Time

Ordinary meshes N2 N2 | g(NY/2)

Meshes with a global bus NV2x N2 @(NY/3)[5) [18] [2]
Ordinary meshes with express links N1/2x NUZ | @(NV4) [This paper]
Meshes with row and column buses N2y N1/2| @(N1/6)[12]

Meshes with row and column buses N3/8x NS/B | O(N1/8)[3] [6]

Meshes with separable row and column buses | ¥3/8 x N3/8 | @(N/8)[16]

(one bus for every N'*/® rows/columns)
Meshes with separable row and column buses | N1/2x N1/2 | O(log N) [13]
(one bus per row/column)
Meshes with hierarchies of buses N2 x N1/2 1 O(log N) [15]

Table 1: Comparison of our model to enhanced meshes on semigroup computations.

S = {ag, a1, .., ay—1}. The problem is to compute ap G a; & ... B an-1.

Table 1 summarizes the results for semigroup computations on meshes with express links
and on enhanced mesh models. For a practical range of ¥ (from a few hundred to tens
of thousand), meshes with express links represent a significant improvement over ordinary
meshes that use links to connect only nearest neighbors, and have comparable performance
to various enhanced mesh models.

The diameter of 2 mesh with express links, which is a lower bound for any non-trivial
problem~—one in which some processor must receive information from some other arbitrary
processor——is determined by the maximum of the following two quantities:

¢ The maximum terminal-to-terminal distance.

e The maximum distance between a processor and the nearest terminal.

Thus, the best choice of the length of the express links is N1/2 in the one-dimensional meshes;
hence a lower bound of Q(N/%) for the 1D case. By the same token, the best choice for
the length on the two-dimensional meshes is N'/%; hence a lower bound of Q(N'/4) for the
2D case®

*Unlike meshes with multiple broadcast buses, skewed rectangular meshes with express links are inferior
to square meshes with express links because the former have a larger diameter.




4 Semigroup Computations in One-Dimensional Meshes

Figure 2 depicts the basic idea of our algorithm (Algorithm 1) for solving the semigroup
computation on one-dimensional meshes. This solution will be used in the next section as
a building block for the higher-dimensional cases. The main technique we use is pipelining.
To emulate sending multiple values over a long broadcast bus, we send them through a
chain of express links in a pipelining fashion.

Algorithm 1 Suppose we have an N -processor one-dimensional mesh with express links,
and each express link is of length NY/2. Each processor P, has the value a; initially, 0 <
i < (N —1). There are two phases in the semigroup computation algorithm:

1. Every non-terminal processor P; sends a; to the processor on its left. When a non-
terminal receives a packet from its right neighbor, it forwards the packet to its left
neighbor. For each lerminal, it performs the semigroup computation on the new value
it receives in each step and the partial answer it has computed just before this step.
Initially, the partial enswer for a terminel is equel to the a; assigned to it in the
beginning.

2. All the partial answers gre now stored in the terminals. The terminals send their
partial answers to the leftmost terminal, which computes the final r, using only

il

the express links.

Phase 1;
N2

R ———

| QEEEE SEEmE SR

Phase 2;

| EpEE SRR SEEE

Figure 2: Semigroup computations on a 1D mesh with express links.

Time complexity: Both Phases 1 and 2 require O(N/2) steps. Thus the entire algorithm
runs in O(N1/?) steps.



5 Semigroup Computations in Two- and Higher-Dimensional
Meshes

Algorithm 2 Suppose we have an nx n mesh with ezpress hinks, and cach express link is of
length n'/2. N (= n?) 1s the total number of processors i the mesh. The a,’s are arranged
in row-major order in the mesh.* That 1s, each processor P, has the value a, orgmally,
where 1 = (r x n +¢), and 7 (resp. ¢) 1s the row (resp. column) number of the processor
and 0 < r,¢ < (n~ 1). The algorithm for solving the semigroup problem 1s as follows:

1. Apply Algorithm 1 to each row of the mesh. After that, the partial answer for each
row resides in the leftmost processor of the corresponding row.

2 Apply Algorithm 1 to the leftmost column of the mesh (from bottom to top). At the

end, the answer resides in the upper-leftmost terminal.

Time complexity: Both Phases 1 and 2 require O(n'/2) steps. Thus the entire algorithm
runs in O(nt/?) steps, or O(N1/4) steps

Our results can be generalized to n X n ... X » r-dimensional meshes with express links,
each link of length n!/2. For any given (fixed) r, we can prove that ©(N'/?7) is the tight
time bound for semigroup computations. Obviously, the diameter bound is Q(n'/2). For

the upper bound, we can apply our 1D result to cach of the r dimensions successively.

To speed up the computation further, we can use the standard technique (e.g., [14])
that puts multiple numbers in each processor. Suppose we want to perform a semigroup
computation of ¥ values on a P-processor 2D square mesh with express links, P < N. We
can put (N/P) values in each processor, and have the processors compute the semigroup
computation on its (A'/P) values before invoking Algorithm 2. The running time of the
entire computation is of order max(( N/ P), P}/1). By choosing P as N1/5, we have the total
running time of O(N1/5).

6 Using Fewer Express Links

In this section, we show how to reduce the number of express links of a two-dimensional
mesh without increasing the total ranning time of the semigroup computations.

*By symmetry, our algorithm can be easily adapted to handle the case of column-major order.



If the N values are in the submesh-row-major ordering,® or the operator @ is commu-
tative (e.g., maximum, parity, sum, etc.), we can compute a semigroup computation on a
mesh with express links, in which one row (resp. column) out of every N/* rows (resp.
columns) has express links, in ©(N'/4) time steps. Figure 3 depicts this two-dimensional
mesh with fewer express links.

17

Figure 3: Meshes with fewer express links.

Algorithm 3 (submesh-row-major order) Suppose we have an n X n mesh with ezpress
links. N(= n?) is the total number of processors in the mesh. FEach express link is of
length n'/?, and only one row (resp. column) oul of every n'/? rows (resp. columns) has
express links. The mesh is partitioned into submeshes of size nt/?xn1/2, The upper-lefimost
processor in each submesh is the only terminal in that submesh. The semigroup computation

algorithm has three phases:

1. Each submesh performs the semigroup computation on all the values in that submesh
using ordinary links. The partial answer is stored in the terminal of that submesh.

2. The rest of this algorithm only uses ezpress links for communication. The rightmost
terminal of each row (that has ezpress links) sends ils partial answer to the second
rightmost terminal. The second rightmost terminal performs the semigroup computa-
tion using its own partial enswer and the one received from the rightmost terminal,
and then sends the answer to its left neighboring terminal, and so on. After that, there
are only n}/? partial answers left, one in each leftmost terminals.

3Suppose we partition an » X n mesh into submeshes of size #'/? x n'/?, where n = N'/2, and number
the submeshes in row-major order. The distribution of the N values is said to be in submesh-row-major
order if the first = values (s.¢., 80,...,0n—1) are distributed in the first submesh in row-major order, and the
next n values are distributed in the second submesh in row-major order, and so on.



3. The leftmost terminals use a procedure similar to Phase 2 to compute the final answer,
but instead of going from right to lefl, we computation goes from bottom to top. At the

end, the final answer resides in the upper-lefimost terminal.

Time complexity: Each phase completes in O(n!/?) steps. Thus the entire algorithm
runs in O(n*/?) steps, or O(N'/%) steps.

Algorithm 3 can be adapted to handle the case in which the N values are distributed in
row-major order as well; the operator & is assumed to be non-commutative in this case.

Algorithm 4 (row-major order)

1. Every row in each submesh carries out the semigroup computation, and the partial
answer is stored in the leftmaost processor of that row within the submesh. Then, all
the partial answers of a submesh are sent to the terminal of that submesh.

2. Apply Phase 2 of Algorithm 3 to the n'/? rows of terminals. For each of these rows,

we overlap the computation of the n!/? sets of partial answers (corresponding to the
nl/2 rows in 6 submesh): In step 1, the rightmost terminal starls the computation
which goes from right to left for the first set of partial results. In step 2, the previous
computation has come to the second rightmost terminal; at this time, the rightmost
terminal staris the computation for the second set of partial answers; and so forth,

until all the partial answers have been computed and stored in the leftmost terminals.

3. Similar to Phase 2, except that the computations go from bottom o top. The final
answer is stored in the upper-leftmost terminal.

Time complexity: Although there are n!/? sets of answers to compute in both Phase
2 and Phase 3, becanse of the overlapping, the complexity of each of these phases is still
O(n'/?) steps, and hence the the algorithm runs in O(n1/?) steps.

Our technique of overlapping semigroup computations for multiple rows can be applied
to [16] to give an O(N/%) time algorithm for semigroup computations in which the values
are distributed in row-major order on an N5/8 x N3/% mesh with separable row/column
buses. The algor'ithm in [16] requires that the values be distributed in submesh-row-major
order.



7 Minimizing Node Degrees

There are two motivations for minimizing the number of links incident on each processor.
First, as pointed out by Dally [7] and Agarwal [1], the channel width® is often limited by
a node’s pin count rather than by the wire bisection.” Thus reducing the node degree can
increase channel width. Second, we may want to implement meshes with express links by
using off-the-shelf homogeneous nodes of low degrees, such as TI C40 [17] or Inmos T9000
transputer [8]. Each C40 has 6 links and each T9000 has 4 links. We note that our solutions
in the previous section require a configuration in which the terminals (except the ones along
the edges) are of degree 8. To implement our solutions using say degree-3 nodes, we could
combine multiple nodes to form a compound node. Figure 4(a) shows a compound node
of degree 8 which is made from two degree-5 nodes. Such a node can serve as a terminal
in our solutions. Alternatively, we could shorten or shift the express links a little so that
they do not concentrate on the same nodes. Figure 4(b) shows such a variant which has
a maximum node degree of 5. The algorithms in Section 6 can be easily adapted to this
architecture with the same asymptotic time complexities.

(a) a compound node of degree §

®)

Figure 4: Using degree-5 nodes only.

®The channel width is the number of wires per link.
"The wire bisection is the minj ber of wires that, when cut, separate the network mto two equal
halves.




8 Hierarchies of Express Links

In the mesh with express links model, express links can be viewed as imposing a second
level of mesh links on top of a first level of mesh links. When given a very large N, we can
generalize the idea to yield a hierarchy of express links.

In the two-dimensional case, we have a two-dimensjonal mesh of submeshes with express
links. The strategy is to compute the partial answer for each submesh in parallel, and then
to combine the partial results of the submeshes to obtain the answer for the whole mesh.
By choosing the submesh size of n?/3 x n?/3 and having express links of length n'/3, we can
perform semigroup computations in O(n'/3) steps for each submesh. There are nl/2 x /3
submeshes totally. We can combine all the partial results of the submeshes using inter-
submesh express links which have length n?3. This phase takes O(n'/3) steps. Thus the
total time is O(n'/3) steps, or O(N/8) steps.

Each submesh can be further partitioned in sub-submeshes. The total time for an r-
level scheme is O(n'/™+1). For example, the total time is equal to O(n1/4) or O(N/8) when
=3

9 Other Problems

Here, we state the time bounds for several other problems—prefix computations, the median
row problem, median finding, and the all points closest neighbor problem—on an AY/2 x
N2 mesh with express links (each of length N/4). Because the algorithms for these
problems do not reveal techniques very different from those in [12] [16] and those we have
presented above, we omit their details. The results are summarized in Table 2.
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