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ABSTRACT

The requirements for a system development system are defined and used as guidelines to review six

such systems: SAMM, SREM, SADT, ADS / SODA, PSL/PSA and Systematics. It is found that

current system development systems emphasise only validation and user verification. They can

perform relatively little on automatic file optimisation, process optimisation and maintenance.

Ke ywords and phrases: requirements specifications, software development, software engineering,

systems design, systems development.
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1. INTRODUCTION

In the early days of stored program computers, the cost of software made up a mere 15 per cent of

the total cost of information systems. But software cost has been escalating ever since and is currently

estimated at about 90 per cent of the total, as shown in Figure 1 taken from Boehm (1976). It is more

alarming to note that more than two-thirds of the money is spent on the maintenance of existing

software and only one-third on new dev elopments.

The high cost of software in information systems can be attributed to the following:

(a) Since the days of ENIAC and EDVA C, computer hardware has evolved from the first generation

of vacuum tubes to the fourth generation of very large scale integration. Software development

methodologies also went through a similar evolution. The first generation was simply a

consolidation of conventional techniques previously used for manual systems. New techniques

were developed in the second generation specifically for computer systems. In the third

generation, some parts of the development were automated. Finally, in the fourth generation, we

see fully automated system development systems. Unfortunately, as Couger (1973) pointed out,

the software evolution has been lagging behind the hardware evolution by one full generation.

Most systems are still being developed using second and third generation techniques.

(b) Because of the belated use of computer aids, information system development in practice has

been a manual process. Hence the adverse effects of manual systems also apply, such as the
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escalation of manpower cost and control problems of large projects.

(c) In the absence of comprehensive computer aids, errors made during the analysis stage cannot

easily be identified. The effect is multiplied when the system is implemented together with the

error. One study by IBM (Fagan, 1974) has revealed that the cost of correcting an error after

implementation is almost a hundred times that of correcting the same error during the analysis

stage.

In view of the above cost escalation, research workers have been pursuing the concept of

automated ‘‘system development systems’’, or sds for short.

A few surveys hav e been published in the line of system development systems, but the emphasis is

often on one aspect of it, namely requirements analysis. The most notable examples are Teichroew

(1970), Burns (1974), Ramamoorthy and So (1977) and Jones (1979). Little has been reviewed on the

full aspects of system development systems.

This paper attempts to

(a) Set out the comprehensive goals for a system development system, and

(b) Give a review and evaluation of six most fully developed system development systems.

2. GOALS

In this section we will identify the goals for a system development system, so that a framework of

criteria can be established before we evaluate the current practices in sds.

2.1 Validation

For a large complex system, the requirements specification may be very large. It is impractical to

leave all correctness checking as a manual process. Further, every time the requirements are changed,

the correctness of the specification will need to be confirmed again. One function of the sds is

therefore to validate the specification. We can separate the validation function into the following

areas:

2.1.1 Completeness

Waters (1979) has given a list of 77 ‘‘facts’’ that should be incorporated into a specification. The

system development system should be able to accept these facts as parameters, and verify that the vital

parameters are present at the appropriate places.

One common feature used to conceal the incompleteness of the requirements specification is the

generous use of memos or comments, whereby the user can put in anything in natural language. But

such memos cannot be analysed by the sds or compiled into program code.

2.1.2 Continuity

In the flow of information, we must make sure that:

• data items must have been input from a source or derived from other data items,

• data items input or derived must be traceable to some use or destination,

• data items must not be defined in cycles,

• data items that are used in a subsystem must not call for data items outside the subsystem

implicitly.

Precedence analysis is required to check the continuity of data flow. It was first introduced by

Langefors (1963) and further developed by others such as Waters (1976 and 1977).
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2.1.3 Consistency

The need to check the logical consistency of a requirements specification has long been known

since the second generation of information systems methodology, and has been incorporated into

numerous student texts. (See, for example, Fergus, 1969.) In essence, the sds should pin-point the

following:

• Inconsistencies among different parts of the specification;

• Parts of the requirement that have been referred to but not specified;

• Where control checks have been built in, any discrepancy between the control figures and the actual

specification.

I.1.4 Redundancy

The sds must be so designed that

• there will be no need to duplicate the requirement in different parts of the specification, such as

common areas in different modules;

• if duplicated information has been presented by mistake, it should be brought to the attention of the

user for scrutiny and possible correction.

2.2 User Verification

One criterion for a good requirements specification is that the user must be able to review the

specification and verify whether it really represents their needs. This can be achieved in sev eral ways:

2.2.1 Use of Natural Language

This would enhance the understanding of the specification. There are, unfortunately, few systems

which can accept natural language as input. Further, natural languages may be subject to different

interpretations.

2.2.2 Generation of Documentation

To avoid problems in compilation, pseudo-code is used as input to the sds. Since pseudo-code is

compact and difficult to read, it would be useful for the sds to generate narrative documentation to

ease the understanding of the specification. Ambiguities, however, may still appear in the narratives

thus generated, so that the user will have to trace back to the original pseudo-code.

2.2.3 Graphic Aid

It has been generally agreed that graphic presentation of complex material is much more

comprehensible than the narrative counterpart. The reasons can be summarised as follows:

Graphics are in two dimensions while narratives are in one dimension. The former gives an

additional degree of freedom in presentation.

• The person reading graphics can do so selectively, depending on the level of details he wants. If

they read a narrative description, they hav e to do so linearly.

• There is a limit in the number of concepts one can reasonably hold in short term memory in the

human brain. (This number is believed to be 7 ± 2 by Miller, 1956.) The person reading graphics

can start off generally and go into details after some degree of familiarisation. If they read

narrative, they hav e to start off with details and abstract the skeleton concepts afterwards.

In addition, graphic input usually provides a bounded rationality which is useful for such validation

aspects as completeness, continuity and consistency.
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An ideal requirements specification would therefore be documented in graphics, which is then

machine processed. Failing that, if a requirements specification is in pseudo-code, it must be

converted into graphic output for verification and correction.

2.2.4 Prototype System

The user may not be able to completely specify their requirements at an early stage without having

a ‘‘feel’’ for the outcome of the system. The sds should therefore allow the user to partially specify

their needs, compile it into a prototype system, and feed it back to the user. Giv en the prototype

output, the user can then refine their requirements through modifications and/or provision of

additional details. Jones (1979), for example, compares prototype systems favourably with other

defect detection methods, as shown in Table 1.

2.3 File Design and Optimisation

During the physical design phase, the systems analyst has to design files to suit the given hardware

environment and processing requirements. They are faced with an over-abundance of choices, which

grow exponentially with the complexity of the system and hence become unmanageable to the human

mind. As a result, they often base their choices on simple ‘‘rules of thumb’’, also known as

‘‘experience’’. The solution given by these simple rules are workable but usually far from optimal, so

that systems designed are more expensive to operate than necessary. Some authors (such as Waters,

1972) even come to the conclusion that such simple rules of thumb are so ineffective that we might as

well disregard them.

The system development system, in order to produce better file design, should include file

optimisation modules. There are three approaches available.

2.3.1 Simulation Models

Simulation techniques were mainly used in the earlier models for the evaluation of file

organisations. Examples are Senko et al. (1968) and Cardenas (1973). Since each model assumed a

specific file organisation, it was impossible to obtain an overall optimum unless multiple models were

run and compared.

2.3.2 Analytic Models

The problem of physical file design can be expressed in mathematical programming terms as

follows:

Given constraints such as hardware configuration and probabilistic details of data, we want to

determine the factors such as file structure, access method, overflow mechanism, etc., so that the cost

of data retrieval and file maintenance is minimised, where the cost is a function of response time and

storage space.

We note, however, that the problem has the following characteristics:

(a) For a given set of factors, the cost can be determined analytically, but it is a non-linear function of

the factors.

(b) For realistic situations, the number of [actors is large. Severance and Duhne (1976), for example,

list the following factors for the selection of hashing algorithm alone:

• identifier transformation

• overflow technique

• overflow area

• initial loading order

• bucket size
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• loading factor

(c) Further, each one of the factors allows a large number of discrete choices. Martin (1977), for

example, lists the following choices for identifier transformation:

• mid-square method

• dividing

• shifting

• folding

• digit analysis

• radix conversion

• Lin’s method

• polynomial division

For each discrete choice, we have to define a separate variable with {0, 1} values.

The minimisation problem therefore becomes one in non-linear integer programming with a large

number of zero-one variables.

Yao and Merten (1975) simplify the problem by concentrating only on the average characteristics

of file organisations, based on a single analytic model designed by Yao (1977). The number of

variables then becomes manageable. Using this as a first approximation, the number of subsequent

choices will be limited. The detailed structures of the file can then be worked out by simulation.

One drawback of this method is that the first approximation can only give a crude result, so that we

may be making a fine adjustment based on a wrong decision.

Other techniques in file optimisation include the approximation of an integer programming model

by a continuous model, and the method of branch and bound to reduce the number of searches to a

manageable size.

2.3.3 Heuristics

We hav e already seen that over-simplified rules of thumb are not satisfactory. But some

researchers (such as Severance and Duhne, 1976, and Severance and Carlis, 1977) have derived

heuristic rules from mathematical models. Such rules are more realistic and can be implemented into

the sds for a near-optimal file design.

2.4 Process Design and Optimisation

One of the primary functions of an sds is to ‘‘compile’’ the requirements specifications into

program code. It is all too easy to generate program code by brute force. So an sds must be able to

optimise the processing. (This is known to some authors as logical design as distinct from the

physical design covered in the previous section of the paper.)

Processing requirements can be divided into two categories: transportation of data items (that is,

input and output) and derivation of data items (that is, computations). In information systems,

however, the number of derivations is small compared with transportations. Hence for purposes of

optimisation, we can concentrate on the transportation aspect.

Transportation volume can be reduced as follows (Alter, 1979, and Severance and Lohman, 1976):

(a) Vertical aggregation of processes:

Tw o sequential processes having a file as an intermediate buffer may be combined to reduce

input/output volume.
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(b) Horizontal aggregation of processes:

Processes reading the same file may be combined to reduce the input volume.

(c) Aggregation of files:

Files generated by the same process may be combined to reduce the output volume.

(d) Use of differential files:

Data items having different frequencies of access are candidates for separation into two files.

A more general treatment can be made using general net theory (Genrich et al., 1980). The

information system is expressed as a bipartite graph known as a net, having two types of nodes called

states (corresponding to our files) and transitions (our processes). A topology is defined, and hence

the concepts of open sets (our process being an extreme example) and closed sets (our files).

Morphisms can then be defined between nets. The aggregations and separations of files and processes

are specific cases of net morphisms.

Given the very large number of possibilities of net morphisms, the sds is faced with the task of

selecting the optimal one. It is even more difficult in this case to apply the mathematical

programming models discussed in the previous section. Alter (1979) proposes the use of an iteration

method. The optimisation problem is divided into two phases: file optimisation and process

optimisation.

An initial solution is input to the first phase to enable a search for an optimal file design. This

design is input to the second phase in search for an optimal process design. The latter then goes back

to the first phase for an improvement of the files. The iteration process is repeated until any more

improvement becomes insignificant. Within each phase, we can either make use of mathematical

programming, or build a smaller iterative loop. Alter, for example, suggests the latter, making use of

the steepest ascent method.

2.5 Maintenance

Modifications to an information system are frequently necessary due to changes in the

environment, technology or user needs. If the information system was created by an sds, there are

three approaches to handle its maintenance:

(a) Change the requirements manually and re-input the entire specification to the sds. A new

information system is thus generated.

(b) The sds accepts amendments to specifications of requirements. A requirements analysis phase

produces feedback on the significance of the changes. After user verification, the sds produces a

new requirements specification for input to the design and optimisation phase. A new information

system is thus generated.

(c) The sds accepts amendments to specifications of requirements and produces feedback on its

significance, as per (b) above. But instead of producing a new system, only the affected parts of

the information system are changed.

The following considerations must be made when we decide on the approach to be adapted by an

sds:

• There should be a record of the modifications made to an information system, for the purposes of

audit and control. Method (a) does not provide this facility.

• Method (b) appears simple and neat for the user, but as Teichroew (1971) has pointed out, ‘‘the cost

... would be prohibitive if every change in a Problem Statement required a complete re-run of the

whole system’’.
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• Further, a re-run of the optimisation phase, as proposed in (b), may result in drastic changes in the

file organisation methods of the system. Thus the old and new file structures may become

incompatible.

• In depth studies are still required before method (c) can be implemented. Also this method may

actually produce a sub-optimal solution since only part of the sds is re-run.

In practice method (b) is more suitable for major changes and method (c) for minor amendments.

Another aspect to consider for maintenance is the portability of the information system. The sds

preferably should be a pre-compiler that accepts as input a requirements specification and generates as

output one or more programs in a high level language. This alleviates the need to run the sds again

when there is a change in the hardware configuration.

A further advantage is that programmers can change the output program directly if there is a bug in

the sds, or if some additional requirement is out of the scope of the sds. It should be noted, however,

that once programmers are allowed to tamper with program code, they tend to ‘‘short circuit’’ every

maintenance job. They go directly to the program code for modifications without bothering to re-run

the sds. This leads back to the usual control problem of manually produced information systems: that

the specification does not agree with the programs.

One solution is for the sds to generate a hash total of all amounts and figures in the requirements

specification, and to reconcile it against a similar hash total in the programs. If the hash total of the

programs is changed while that of the specification remains unaffected, it means illegal alterations to

the programs have taken place.

3. CURRENT STATE

In this section we will study six system development systems with a view to see how much they

have achieved in the goals we have set out. SAMM, SREM and SADT are chosen because they are

the latest developments. ADS, PSL / PSA and Systematics are chosen because they are the pioneers in

sds, they are still popular, and there have been new dev elopments lately, such as ADS/SODA and

META/GA.

3.1 Systematic Activity Modelling Method (SAMM)

SAMM −− a modelling method based on the Human Directed Activity Cell Model −− has been

developed by the Boeing Computer Services Company (Peters, 1978, Lamb et al., 1978 and Stephens

and Tripp, 1978). It utilises a word-graphic language, which is a combination of the more prominent

features of narratives, graphics and graph theoretic notations. The representation scheme of SAMM

consists of a labelled tree, activity diagrams and condition charts. The labelled tree structure, as

shown in Figure 2, provides hierarchical decompositions of the system and an index structure

describing the context of activity diagrams in the system.

Activity diagrams, with the fundamental building blocks of activity cell and data flow, portray the

relationships of activities and dataflows of the system. An activity diagram, as shown in Figure 3, is a

flow diagram with a network of rectangular boxes representing activities, and arrows representing

dataflows. Moreover, it contains a data table giving narrative description and decomposition trace of

the data involved. The decomposition trace provides a hierarchy of data. The node name identifies

the context of the diagram in the system. The number of activity cells in each diagram is restricted to

six to conform to the principle that ‘‘the span of absolute judgement and the span of immediate

memory of humans is in the vicinity of seven items’’ as stated by Miller (1956).

The activity-data network in each activity diagram corresponds to a directed graph. Therefore,

analysis such as connectivity and reachability can be performed to give insight into the consistency of

the specification.
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Associated with each activity diagram is a condition chart. It describes the input and

system/activity state requirements for the production of output.

A total system description in SAMM is thus an interrelated set of diagrams with a hierarchical

structure. Each layer of diagrams in the tree structure represents a semantic interpretation of the

system at a certain level of abstraction.

An automated tool, SAMM Interactive Graphic System (SIGS), is developed to implement

SAMM. The functions of SIGS include model generation, model editing, model display, verification,

report generation and model status control (see Figure 4).

Various analyses can be performed on the SAMM model input to the SIGS. These include syntax

analysis to ensure that the input conforms to SAMM methodology: decomposition analysis to ensure

consistency between a parent diagram and a child diagram, and between two child diagrams; data flow

analysis; and global analysis which determines redundancy in the model. The tree structure is

checked for connectivity and reachability. Diagnostic reports and documentation of selected subsets

of the model can be generated by using the report generation facility.

SAMM possesses many desirable features of an sds −− graphic representation, multilevel

refinement, machine processability, centralisation of information and consideration for bounded

rationality. It has, however, remained a requirements analysis system and has not tackled the aspects

of file and process design, optimisation and maintenance.

A SAMM activity diagram can be regarded as a special type of data flow diagram (DeMarco,

1979), one without the expression of files. It can therefore be implemented manually using structured

design methodologies (Stevens et al., 1974, and Yourdon and Constantine, 1979). But the SAMM

language does not include such features as performance requirements, so that automated design and

optimisation would not be possible without an extension of the language itself.

3.2 Software Requirements Engineering Methodology (SREM)

SREM −− a computer-aided methodology for the development of ‘‘no-man-in-the-loop’’ real-time

software −− has been developed by the TRW Defense and Space Systems Group (Alford, 1977 and

Bell et al., 1977). The methodology consists of the Requirements Statement Language (RSL) (Bell

and Bixler, 1976) and the Requirements Engineering and Validation System (REVS). An overview of

SREM is shown in Figure 5.

The fundamental approach of SREM, based on the fact that paths of processing are invariant over

any process design (Alford and Burns, 1976), is to specify software requirements in terms of flows

through the system. The paths of processing, each representing a sequence of operations connecting

the arrival of the input message to the termination of its processing, are organised into Requirements

Nets (R-Nets) for understanding and analysis. Each Requirements Net represents the network of the

processing steps in response to a given type of stimulus. An example is shown in Figure 6.

Provisions for stating performance requirements are made by the notion of validation points in the

R-Nets. At such points, performance characteristics are defined and verified against actual data.

The description of a stimulus-response sequence of a system in the form of a Requirements Net

can be further detailed in a top-down manner. An ALPHA (processing step) in a Requirements Net

can be expanded into another flow graph with lower level ALPHAs and the original ALPHA is

replaced by a SUBNET in the parent flow graph. This decomposition process can be continued until

any further detailing will force unnecessary constraints on system design. Requirements Nets can be

input to the REVS explicitly through an interactive graphic tool, or implicitly through the structure

aspect of RSL statements.

RSL has four types of primitives: structures, elements, binary relations between elements and

attributes of elements. The structures expose the flow portion of the requirements. They are the
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images of the Requirements Nets projected on to a one-dimensional space. Elements, relations and

attributes deal with the non-procedural portion of the requirements. These primitives can formulate

ev ery concept in RSL. The structures are fixed to provide a rigid framework for communication.

However, the non-procedural aspects of the RSL are extensible to suit particular applications and

future needs.

REVS is comprised of the RSL translator, the Abstract System Semantic Model (ASSM) and a set

of analysis tools. The RSL translator is obtained by employing a compiler-writing system so that

changes in RSL can be easily and effectively accomplished. The ASSM is a relational database for

maintaining information on software requirements and the concepts used to express the requirements.

Extensions in concepts can be processed in the same way as RSL statements by the RSL translator

and are ready for use as soon as they are entered into the ASSM. The ASSM also provides a de-

coupling between the RSL and the analysis tools so that modifications on either end can be made

independently. Analysis tools have been developed to perform analyses on the information stored in

the ASSM. They include static analysis tools −− which check the correctness and consistency of the

R-Net structure and data flow; dynamic analysis tools −− which generate discrete functional and

analytic simulators semi-automatically to check dynamic system interactions; and a flexible

generalised extractor package for documentation and special reports.

SREM represents a very sophisticated requirements definition methodology. It is designed to fit

into a complete system development framework (Davis and Vick, 1977). A process design

engineering methodology has been reported, but interface smoothness and the stage of development

are not known. Details of file design, optimisation and maintenance in the complete development

framework are also not available. RSL has a graphic representation and allows multilevel refinement,

but it has no bounded rationality consideration. Consistency and continuity checks can be done

automatically. Performance requirements are formally stated by the use of validation points. Semi-

automatic simulation is provided to analyse the dynamic behaviour of the system being developed.

This provides the analyst and the user with a clear perception of the system at an early stage.

3.3 Structured Analysis and Design Technique (SADT)

SADT −− a general modelling method that can be applied to a wide range of systems −− has been

developed by SofTech (Ross, 1977, Ross and Schoman, 1977 and Dickover et al., 1978) based on the

concepts of structured analysis of Ross (1980). It is basically a structured thought and decomposition

discipline with a graphic means of expression. The structured and disciplined way of thinking and

decomposition is established and applied before thoughts are expressed by the graphic tool.

The system model behind SADT consists of ‘‘things’’, ‘‘happenings’’ and their relationships.

Therefore, each SADT model consists of two dual decompositions −− data decomposition and activity

decomposition. Each of these decompositions uses the same graphic tool.

The fundamental building block of the SADT graphic notation is the four-sided box shown in

Figure 7. Each of these boxes conveys certain details of the system being described. The INPUT,

OUTPUT and CONTROL arrows specify interfaces to other boxes. The MECHANISM arrow shows

the support to accomplish the transformation represented by the box.

An SADT system description consists of an interconnected set of diagrams in which interrelated

boxes and arrows provide a disciplined framework for the embodiment of any natural or artificial

language expression chosen for a particular application. This framework obeys rigorous semantic and

syntactic rules so that the interpretations of the embedded language expressions are restricted. The

top level diagram shows the overall network structure of the system, with boxes and arrows showing

the components and interactions. Each box may be further decomposed into a separate diagram with

another boxes-and-arrows network, as shown in Figure 8, provided the detailed diagram represents

exactly the same part of the system as the original box. Decomposition of boxes can be carried on at

all levels, and as a result a top-down hierarchical structure is established.
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Arrows in SADT diagrams do not stand for control flow, but represent constraints. Precedence

relationships, however, do exist because a box at the beginning of an arrow must precede that at the

end. These precedence relations may imply parallelism. SADT diagrams represent all these implicit

parallelisms unless the system designer explicitly decides to impose sequencing constraints by using

the SADT activation rules.

A complete SADT description of a system may consist of d set of interrelated SADT models.

Each SADT model consists of a hierarchical set of diagrams that describe a subject from an identified

viewpoint, for a particular purpose and within a specific context. The viewpoint determines what is to

be described, the purpose determines how the subject is to be described and the context enforces

proper understanding of what is described. In other words, these attributes bound and limit the

amount of the subject that can be exposed and the way it is structured. The MECHANISM arrows

provide the means to connect models having different orientations of viewpoint, purpose and context.

As a SADT model is a tree-like hierarchy, a node index is provided for each model so that the

corresponding context for a particular diagram can be easily determined.

SADT provides a graphic means of expression and multilevel refinement of problem to aid

understanding. Formal means to express performance information are not provided, nor are strict

rules to analyse the specification for desired properties such as consistency and completeness.

Moreover, as the complexity of the system increases, it is difficult to handle the technique manually.

To improve the situation, Ross (1977) has suggested that SADT can ‘‘become machine-readable in a

very straightforward manner’’ and hence extendible to include the validation facilities of the

PSL / PSA system. No result has yet been published.

It should be noted, however, that SADT is not designed to be mapped on to an automatic

development system. The fundamental concept of ‘‘omitting the obvious’’ in SADT, for instance, is

only suitable for manual development. There is, therefore, no guarantee of a smooth interface with

automatic design and optimisation.

3.4 ADS/SODA

ADS (Lynch, 1969 and NCR, 1969) was an internal standard of NCR and subsequently released

for public use. It was originally intended to be a manual procedure. However, automation of its use

has been reported (Couger, 1973 and Nunamaker et al., 1976).

An ADS system description is made up of five interrelated forms called RICHL (ritual): Report

definition form, Input definition form, Computation definition form, History definition form and

Logic definition form.

Based on the notion that system development should be results-oriented, ADS system description

starts with the definition of all systems output. It is then completed by descriptions of system input,

computations, historical data retained in the system for a period of time, and the accompanying logic

that will be used to derive the output.

Information in these forms is interrelated by the flow of data. Linking is made possible by

assigning unique names to data elements and the backward referencing of each data element to its

information source. These references are achieved by the use of the 3-tuple (Definition type, Page

number, Line number) for each line on every ADS form. The data elements are therefore chained

from output to input

ADS has been incorporated into the System Optimisation and Design Algorithm (SODA)

(Nunamaker, 1971) to form an integrated computer-aided methodology for the development of a

financial management system (Nunamaker et al., 1976). The methodology consists of ADS, SODA

Statement Language (SSL), ADS analyser, SODA Statement Analyser (SSA), SODA Generator of

Alternatives (SGA) and SODA Performance Evaluator (SPE).
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SSL statements are used to provide design parameters and performance requirements not available

in the ADS description.

The ADS description and SSL statements are analysed and validated by the two analysers. This

analysis phase produces a series of summary reports including: a data dictionary, indices to all data

elements and processes, incidence matrices of data elements required by each process, precedence

matrices of data elements and processes, and graphical displays of the input ADS forms.

The output of the analyser and a statement of the available computing resources, hardware and

utility programs are accepted by the SGA to analyse alternative hardware and software resources with

respect to a specific design generated by the SGA. The output is a set of specifications of alternative

designs stating the necessary CPU, core size, program structure and data structure.

SPE optimises feasible designs to improve system performance. It is made up of a series of

mathematical programming models and timing routines. Its functions include optimisation of the

blocking factor for files, determining the number and type of auxiliary memory devices, allocation of

files to memory devices and generation of an operation schedule.

The ADS/SODA integrated system deals with both the analysis and design phases of the system

development cycle. Requirements specification can be mechanically processed to ensure consistency

and continuity. Howev er, the ADS forms are often incomprehensible to the user and there is no

hierarchical decomposition strategy to tackle complex problems. No graphic documentation is

provided to facilitate understanding. Transition into the design phase is straight-forward.

Optimisation of files and program structures are performed by the SPE, but the optimisation of

program structures may cut across functional boundaries and may lead to maintenance difficulties.

This optimisation must therefore be constrained. Moreover, SODA is restricted to the design of batch

processing systems, sequential auxiliary storage organisation, the specification of linear data

structures, and the selection of a single CPU. The designs generated are machine dependent as a

particular design is based on a particular choice of hardware.

3.5 PSL/PSA and META/GA Systems

PSL / PSA −− a computer aided system for systems requirements documentation and analysis −−

has been developed by the ISDOS project of the University of Michigan (Teichroew, 1976 and

Teichroew and Hershey, 1977). The system consists of the Problem Statement Language (PSL), the

Problem Statement Analyser (PSA) and a database for maintaining information of the system being

developed, as shown in Figure 9.

The Problem Statement Language is a relational, non-procedural and machine processable

language. It has well-defined syntax and semantics, and is designed for systems description. The

underlying system model is the entity-relationship-attribute model. It can be described as a set of

objects, their properties and binary relations between these objects. Consequently, PSL statements are

object-relationship-object associations. Systems descriptions in PSL are classified into: system

input/output flow, system structure, data structure, data derivation, system size and volume, system

dynamics, system properties and project management. They are processed by the Problem Statement

Analyser and stored into the PSA database.

The Problem Statement Analyser is a collection of computer software developed for processing

and analysis of the PSL statements, and the management of the database information. Lexical,

syntactic and semantic analyses are performed before the PSL statements are entered into the

database. Complementary relationship statements are generated by PSA and entered into the

database. Once entered, a statement can be expanded or deleted without major change to other

statements. PSA can perform: data definition analysis; static analysis, which checks the consistency

of the input statements; dynamic analysis, which determines dynamic relationships among input,

output and timing consistency of processes; and volume analysis. Documentation and reports can be

produced by PSA interactively or in batch mode. The reports produced can be classified as database
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modification reports which deal with changes and diagnostics; reference reports which present PSL

information in various formats; summary reports which summarise information according to several

relationships; and analysis reports which present the results of the aforementioned analyses.

PSL / PSA was not originally designed to fit any particular system development framework. Its

success therefore depends on how well it suits a chosen methodology. As the number of system

development methodologies is continuously increasing, it is unlikely that the PSL/PSA will fit well

into every one of them. Attempts, for example, have been made to incorporate PSL/PSA into SODA,

but it was found that enhancements of PSL were necessary to include features of ADS and SSL

(Nunamaker et al., 1976). The META/GA system is designed to remedy the problem.

The META/CA system (Teichroew et al., 1980 and Yamamoto, 1981) consists of the META

system and the Generalized Analyser, as shown in Figure 10.

The META system, based on an entity-relationship-attribute model, takes a formal description of

the PSL and automatically generates the language processor using a table-driven generalised software

and a language reference manual. System descriptions can now be formulated in the particular PSL

and manipulated by the Generalized Analyser in a similar way to that of the PSA. META/GA has

been successfully applied to a number of methodologies such as Composite Design, Rational Design

Methodology and Jackson Methodology.

PSL / PSA is one of the most widely used and accepted requirements definition systems.

Recognising the shortcoming of the one-dimensional nature of PSL, a set of graphic reports can be

generated automatically for user verification. However, as the source PSL statements are not verified

by the user, one more pass may be needed. Moreover, there is no facility to trace back from the

graphic reports to the source PSL statements. The non-procedural PSL allows multilevel refinement

and is machine processable for static correctness. Centralisation of information is achieved via the

database. Drawbacks of the system include: no formal means to state performance information, no

aids to provide early visibility into the target system and no guarantee to fit well into a particular

system development framework. The last defect is remedied by the development of the META/GA

system.

3.6 Systematics

Systematics −− a language designed for analysing problems and specifying requirements −− was

established by Grindley (1966, 1975 and 1979). It is built on an information algebra with the

following basic concepts:

(a) Item −− Defined as ‘‘the smallest collection of signals which plays a separately definable part

within the control system’’, an item is the most fundamental building block of the system.

(b) State −− A state is a particular occurrence of an item.

(c) Data Set −− A collection of all items playing the same role in the system.

(d) Primary Identifier −− Data set A is a primary identifier for data set B if a given state in A identifies

one and only one state in B.

(e) Secondary Identifier −− Data set A is a secondary identifier for data set B if a given state in A

identifies a set of states in B.

(f) Given Item −− A giv en item has its states submitted directly to the system.

(g) Derived Item −− A derived item has its states computed by the system.

(h) Information Set −− A collection of related items having the same primary identifier.

(i) Input and Output Sets −− An input set is an information set which is supplied to the system from

outside. An output set is an information set that is used to notify states of items to outside. They
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are the input and output records in physical terms.

(j) Trigger −− An input set that causes an output set to be produced.

(k) Effective Time −− A data set may vary its state over time. In this case there is an identifier of

time implied. It is known as effective time (ET) in Systematics.

(l) Discrete and Continuous Identifications −− In discrete identification, a single state of a data set

can identify other data sets. In the continuous case, a range of states is required for identification.

(m) Time Substitute −− An identifier which increases serially with time can be used as a time

substitute in cases where it is impractical to specify time directly.

These fundamental concepts are used to construct specifications. Construction starts off in output

sets and works its way to input sets.

An output set is defined by a Systematics sentence, which consists of three parts: the trigger, the

output items, and the identifiers for each output item. Any output report or user enquiry is thus

specified by a Systematics sentence. For users not familiar with Systematics, however, an output

definition form is provided, so that the syntax of Systematics sentence becomes transparent to them.

To reduce the troublesome work of specifying the primary identifiers for all items on the output

sets, a primary identification dictionary is employed, leaving only the non-primary ones in the output

definition. The primary identification dictionary is in the form of a matrix.

A derivation dictionary is constructed to give the formulae for all items that are computed within

the system. These formulae also provide an identification chain linking each component of the

formulae with other formulae or other dictionaries.

Items must either be input or derived. Any item not included in the derivation dictionary must

therefore be entered into the input dictionary. The latter is in a simple grid form showing the given

data sets against the input sets. This dictionary facilitates the backward tracing of output to their

given origins.

A graphic convention for presenting Systematics specifications has been developed

correspondingly. An example is given in Figure 11.

Systematics is meant to be a manual sds to ease requirements analysis, file design and process

design. It provides a well-defined methodology to determine the output requirements and hence the

input and derivations. Though the graphic convention can be used to aid understanding, there is no

hierarchical decomposition strategy.

Despite the humble remark that ‘‘it is not intended to inhibit the development of Systematics by

providing it with a compiler’’ (Grindley, 1966), one of the authors (Tse) has been informed by

Grindley that a Systematics compiler has already been written. Since published information is not yet

available, details of optimisation and maintenance are not known.

4. CONCLUSION

In this paper we have drawn up the goals or the ‘‘requirements’’ of a system development system.

They fall into five categories: validation, user verification, file design and optimisation, process

design and optimisation and maintenance.

Six of the most popular sds have been chosen for review and evaluation. They are SAMM, SREM,

SADT, ADS / SODA, PSL/PSA and Systematics. A summary of findings is given in Table 2.

It has been found that most of the sds emphasise only the validation aspect of the full system

development spectrum. In addition, some of the systems provide user-friendly verification aids such

as graphic input or graphic feedback. Relatively little work has been done in providing automatic aids

in the areas of file optimisation, process optimisation and maintenance.
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Table 1. Comparison of defect detection methods 
(from Jones, 1979) 

Design Machine Correct-
Review Testing ness 

Proofs 

Omitted Functions Good Fair Poor 
Added Functions Good Poor Poor 
Structural Problems Good Fair Poor 
Algorithm Problems Fair Fair Good 
Human-factor Problems Fair Poor Poor 

Models 
or Pro-
totypes 

Good 
Fair 
Fair 
Good 
Good 



Table 2. Summary of findings 

SAMM SREM SADT ADS/ PSL/ Sys-
SODA PSA tem-

atics 

Validation 
- Completeness 
- Continuity I I I' I I 1* 
- Consistency I I I I 
- Redundancy I 

User Verification 
- Use of Natural 

Language 
- Generation of I I I I 

Docu mentation 
- Graphic Aid 
- Bounded 

I I I I I 

Rationality I I I 
- Simulation/ 

Prototype 
System I 

Optimisation 
- File I 
- Process I 

Maintenance 

* Manual 




