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Abstract

This note gives an exsmple to show that Ln/5] combimatorial diagonai guards are sometises
necessary for orthegonal polygons. This closes the gap between the lower bound and upper
bound., The example aiso gives the same lower bound for the combinatorial edge guards in
orthogonal polygons and tire bound can be shown to be tight.

1 Introduction

An orthogonal (rectilinear) polygon is one whose edges alternate between horizontal
and vertical. A diagonal guard as defined by O’Routke{1] is one which can patrol the
segment between two vertices provided that the segment lies entirely in the polygon.
A polygon is said to be covered by 2 set of diagonal gvards if every point of the
polygon is weakly visible from at least one guard of the set. A point is said to be
weakly visible from a segment if there exists a point in the segment such that the line
joining those two points is entirely inside the polygon. Given any convex quadrila-
teralization of a polygon, define a quadrilateralization graph (we will call it a quad
graph below) as follows: the nodes of the graph are the vertices of the polygon and the
arcs are the edges of the polygon plus the added diagonals of the quadrilateralization.
A combinatorial diagonal guard is a pair of nodes in the graph which across any arc
and a combinatorial edge guard is a pair of nodes which corresponds to an edge of
the original polygon. A quadrilateralization graph is said to be dominated by a set of
combinatorial guards if every quadrilateral face shares at least a node with some of the

guards.

In [1, section 3.4], O’Rourke posed the following question: Are L@n+4)/16] com-
binatorial diagonal guards always sufficient to dominate any quad graph of an



orthogonal polygon where » is the number of vertices of the polygon? The question
was answered by Shermer [2] negatively. He gave an example to show that there
exists quad graphs which require L(5n+6)/26] combinatorial diagonal guards. How-
ever, whether the bound is tight was still an open question. In this note, we gave
another example to show that sometimes |2/5] combinatorial diagonal guards are
necessary which matches the upper bound given by Aggarwal (cited in [1]). And the
same example will establish the same lower bound for the combinatonial edge guard
for orthogonal polygons and it will be shown that the bound is tight.

2 Lower Bound for Combinatorial Diagonal/Edge Guards for
Orthogonal Polygons

The following example shows that there exists quad graph of orthogonal polygons
which require |n/5] combinatorial guards. Figure la shows an 10-nodes quad graph
which requires two guards. Figure 1b shows each additional of 10 nodes require 2
more guards. Each numbered quadrilateral face requires its own guard because these
quadrilateral faces are not connected to each other by any single edge or diagonal.
Figure 1(c) shows how to generalize it to # nodes.



Figure (1c)

Lower Bound: Combinatorial Mobile/Diagonal/Edge Guards for Orthogonal Polygon.
Figure (1a): 10 vertices require 2 guards,

Figure (1b); Each additional of 10 vertices require two more guards.

Figure (lc): Generalize to show that n vertices require L2/5] guards.



3 Sufficiency for Combinatorial Edge Guards in Orthogonal Polygon

In this section, we will show that Ln/5] combinatorial edge guards are always
sufficient to dominate any quad graphs of any convex quadrilateralizable polygons.

Lemma I: Let q be the number of any quadrilaterals of a convex quadrilateralizable
polygon of n vertices, n = 2q+2.

Proof: It follows directly from the equality, (n-2)x = 2mg. Hence, the term Ln/5] will
be replaced by L(2g+2)/5] throughout the proof.

Lemma 2: Let Q be a quadrilateralization of a convex quadrilateralizable polygon P.
There always exists a diagonal D in @ that partitions P into two pieces, one of which
contains 2, 3 or 4 quadrilaterals.

Proof (O’Rourke [1]): Let D be a diagonal that cuts off a minimum number of quadri-
laterals that is at least 2. Let & > 2 be this minimum number. Assume F is the quadri-
lateral face supported by D. The region cut through by the other sides of F cannot
contain more than one quadrilateral according to the minimality of k (figure 2), so £ <
4.

N

Diagonal D cuts off a minimum number of quadrilaterals > 1

Lemma 3: The piece cut out in lemma 2 can always be dominated by one edge guard
if it contains exactly 2 or 3 quadrilaterals. And it can be dominated by two edge



guards if it contains 4 quadrilaterals. In case of 2 or 4 quadrilaterals, one end of the
diagonal D can always share a node with one of the guards.

Proof: In figure 3, it shows the possible configurations of the cut off part and it is easy
to see that the above lemma holds for all cases where g shows the possible location of
the guard(s) in each case.

(b)

(a)

&
§ p

©
Figure 3: possible configurations of the cut off part when £ = 2 (a), 3 (b) aund 4 (c)

Before proceeding to the next lemma, let us take a look on the behaviour of the values
of the number L(2q+2)15_f. From the following table, we can see the sumber of guards
increases only at some critical values of g. We will use induction to prove our main
result, L(2g+2)/ s) guards are sufficient. According to lemma 3, we will cut off either
2, 3 or 4 quadrilaterals from the given graph and apply the induction hypothesis to the
remaining part. It works nicely for most values of ¢. For example, if ¢ = 7 and we cut
off 2 quadrilaterals from it. The remaining part will have 5 quadrilaterals and requires
only 2 guards together with one guard for the cut off part which gives the sufficiency
of three guards. However, if ¢ = 6, the induction step is not that straight forward and
requires the sharing of guards between the cut off part and the remaining portion. So,
in the induction step, two more lemmas, lemmas 4 and 5, will be used to ensure the
sharing between the two portions is possible. And the assumption used in both lemmas
is in fact the induction hypothesis of the main theorem we are going to show.



q Le2g+2)/5]
2 1
3 1
4 2
5 2
6 2
7 3
8 3
9 4
10 4
11 4
12 5

Sk 2%k

Sk+1 2%k

Sk+2 2k+1

Sk+3 2k+1

Sk+4 2k+2

Table 1: behaviour of L(2¢+2)/5]

Lemma 4: Suppose L(2g+2)/5) combinatorial edge guards are always sufficient to
dominate any quad graph of a convex quadrilateralizable polygon and an edge £ is
called essential if without placing a guard on this edge, more than |(24+2)/5] are
required. Then for g = 5k+3, all edges are not essential.

Proof: The proof is by induction on k. If k =0, there are only two configurations for
the quad graph. It is easy to check that all the edges are not essential which estab-
lishes the induction basis. Now, for the induction step, if either end of E is of degree
2, then the edge is obviously not essential. Assume both ends of E are of degree > 2.
Now, let Q be the quadrilateral face supported by ¢ and the degree of O is defined as
the number of disconnected subgraphs resulting from the removal of Q.



Case 1: Q is of degree 2.

Py @ Py

Figure 4: Q is of degree 2

Subcase la: Py has 5ky quadrilaterals and P, has (5k,42) quadrilaterals.

Partition the graph into two subgraphs, Gy and G, as shown in figure 5. Note that
the numbers in the regions denote the number of quadrilaterals in that region mod 5.
G will have (5ky+1) quadrilaterals and G, will have (5k;+3) quadrilaterals. By the.
assumption, G requires 2k edge guards while G needs 2k,+1 guards. In both sub-
graphs, if a guard is put at the edge E, it can be easily replaced by one other than £
since there exists a node of E which is degree 2 in either case. Hence, without putting
2 guard at E, the graph can stll be dominated by | (29+2)/5] guards.

G
G, E 2 G, G,

Figure 5: subcase 1a

Subcase 1b: P has (Sk;+1) quadrilaterals and P, has (5k,+1) quadrilaterals.

Partition the graph ag shown into two subgraphs, G and G,. G requires 2k; guards
while G, requires 2k, guards. If either (a,b) or (c,d) (say, (@.b)} is included in one
of G; or G, then it can be replaced by two edge guards, namely (a,e) and (b,f). i
both {a,b) and (c,d) are included, replace them by the edge guard (b,d) and two other
edge guards, (a,e) and (c,g). If none of them is included, dominate the middle qua-
drilateral by adding the edge guard (b,d). In all cases, 2k+!1 guards suffice.
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Figure 6: subcase 1b

Subcase Ic¢: Py has (Sky+3) quadrilaterals and P, has (Sky-+4) quadrilaterals.

Partition the graph as shown into Gy and G ;. By the hypothesis, G has (5k;+3) qua-
drilaterals and can be dominated by 2k;+1 edge guards without putting any guard at
(a,b). G, has (5k,+5) quadrilaterals, so can be dominated by 2k,.+2 guards, so in
total, (2k;+2kq+3) edge guards are sufficient to dominate the original graph. i.e.
(2k+1) guards suffice.

G G,
E

a)
3 1 4
b

Figure 7: subecase 1c

Case 2: Q is of degree 3.
Py, Py and P35 are the quad graphs obtained by cutting off Q. Let ¢y, g5 and g3 be
the number of quadrilaterals in P, P, and P3 respectively.



P3

Figure 8: Q is of degree 3

Subcase 2a: q, = (5ky) and @4 + g3 = (5k2+2).

Partition the original graph into two subgraphs, G; and G,, as shown. By the assump-
tion, Gy requires 2k; guards and G requires (2k;+1) guards and none of the guards
will be placed at E (if one is placed at E, it can be easily fixed as described in the
above), so (2k+1) guards suffice to dominate the original graph.

G
G, 2

Figure 9: subcase 2a
Subcase 2b: g1 = (5k1+1) and g4 + g3 = (Ska+1).

There are five possible configurations. In case (a), G; has (5py+3) quadrilaterals and
G, has (5py+1) quadrilaterals. By the hypothesis and assumption, G; requires
(2p(+1) guards without putting any at E while G, requires 2p, guards. Since there
must be a guard placed at vertex a or b in G, so if a guard is placed at (a,b) in G,
then it can replaced by another one easily. Case (b) is the same as subcase 2a. Case



(c) is the same as subcase 2¢. Case (d) is the same as subcase 2e and case (e) is the
same as subcase 2d.

E G,
1 1] o
1 1 JREAR 1
1
[)] 1
General Case G2 (b)
(a)
1|1 2 Lha| 4 1 1] 3
4 2 3
(c) (d) (e)

Figure 10: subcase Zb
Subcase 2¢: g1 = (5k1+2) and g4 + q3 = (5k2).
Partition the original graph into two subgraphs, G{ and G, as shown. By the assump-

tion, G requires (2k1+1) guards and G, requires 2ky guards and none of the guards
will be placed at E, so (2k+1) guards suffice to dominate the original graph.
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Figure 11: subease 2¢

Subcase 2d: q1 = (5k+3) and g, + g3 = (Sko+4).
Partition it into G'1 and G;. G requires at most (2k;+1) guards without putting any

at {(a,b) and G, requires at most (2k,+2) guards, so at most (2k+1) guards are
required.

G,

Figure 12: subcase 2d

Subcase 2e: gy = (5k1+4) and g5 + g3 = (Ska2+3).

Cut off Py and Q. Augment the graph as shown by adding one extra quadrilaterals
abcd to it (figure a). The augmented graph will have (5k;+6) quadrilaterals, so
requires (2k;+2) guards. To domunate the quadrilateral abed, the guard at d must
exist, otherwise the guard which dominates the quadrilateral abcd can be replaced by
one at d since it will only dominate the added quadrilaterals. Assume the guard at d
exists, augment the remaining graph by adding two quadrilaterals as shown (figure b).

1



Again if a guard is placed at (e,f), it can be deleted when the two augmented pieces
are recombined to form the original graph since Q is already covered by the guard at
d. Otherwise, (g,h) must exist and it can be deleted in the original graph since 4 and
d coincide in the original graph. In all cases, at most (2k+1) guards suffice.

e f
4)1 , 4 |1 1| 1|1
i b P— 3
a
(a) (b)

Figure 13: subcase 2e

Lemma 5: Suppose l_(2q+2)/5,| combinatorial edge guards are always sufficient to
dominate any quad graph of a convex quadrilateralizable polygon, let E be any edge
of a quad graph, if a vertex guard is available that we may choose to place at either
end of E, then for ¢ = 5k+4, an addition of (2k+1) edge guards are sufficient to dom-
inate any quad graph.

Proof: The proof is by induction on k. If & = 0, there are only four possible
configurations and it is not hard to check that for each edge, if a vertex guard can be
placed at either end of it, an addition of 1 edge guard is sufficient to dominate the
graph. This establishes the induction basis. Now, let Q be the quadrilateral supported
by E. There are two cases depending on the degree of Q.

12



Figure 14: possible configurations of 4 quadrilaterals

Case 1: Degree of Q@ is 1.

In this case, cut off Q at the only diagonal f and leave the graph with (5k+3) quadrila-
terals and apply lemma 4, the graph can be dominated by (2k+1) edge guards without
putting any guards at f,

Case 2: Degree of @ > 1.

Without loss of generality, assume Q is of degree 3. Py, P, and P4 are the quad
graphs obtained by cutting off Q. Let g1, g and g3 be the number of quadrilaterals
in P, P, and Pj respectively. And assume g > 0.

P3

Figure 15: Q is of degree 3

Subcase 2a: g1 = 5k and g,+q3 = (Ska+3).
Partition the graph as shown into two subgraphs, G and G,. Apply the induction and
hypothesis, G requires at most 2k guards and G, requires at most (2k,+1) guards.

13



G,

Figure 16: subcase 2a

Subcase 2b: q1 = (Sk1+1) and g4 + g3 = (Sk+2).

Partition the graph as shown. G, requires at most 2k; guards while G, requires at
most (2ko+1) guards. If in G|, a guard is placed at (a,b), then the vertex guard can
be put at g and replace the guard (a,b) by another one at b.

G,

Figure 17: subcase 2b

Subcase 2¢: q1 = (Sky+2) and g4 + g3 = (5ka+1).

There are five possible cases. Case (a) is the same as subcase 2b. Case (b) is the same
as subcase 2a. In case (c), partition the graph into three subgraphs, G, G, and Gj.
In Gi, apply lemma 4, at most (2k;+1) guards are required without putting any at
(a.d). To dominate Q, either the guard (a,b) exists, in this case, it can be deleted and
replaced by the vertex guard at a since it only dominates the quadrilateral Q. Or the
guard at ¢ must exist. Similarly for G3. If one guard is deleted from either G or G,
append @ to G;. Otherwise, there must be guards at ¢ and e, we can apply the

14



hypothesis to G4, in all cases, at most (2k+1) guards are needed. Case (d) is the same
as case (€) of subcase 2¢ and case (e) is the same as subcase 2d. Lastly, there is a spe-
cial case when g = 0 (case (f)), Partidon it into two subgraphs, G; and G,. G,
requires at most (2k;+1) guards without putting any at (a,b). Similar to the above
argument, either one guard can be deleted or a guard must exist at ¢. Then, G, will
require at most 2k, guards without putting one at (¢,d).

E
2 1 2] 1]y 2 1y 0
1
0 1
General Case
(b)
Gl (a)
a G?’
GQ 1e D 2] 1] 4 2| 1| 3
4 2 3
G,
© ) (e)
G
: b a
CZ:C,/A\d
G,
4]

Figure 18: subcase 2¢
Subcase 2d: qy = (Sk{+3) and g, + g3 = (5k7).

Partition the graph into two subgraphs, G| and G,. G, requires at most (2k;+1)
guards and G, requires at most 2k, guards. If any guard is placed at (a,b), it can be

15



fixed easily as in previous cases.

G,
G

Figure 19: subcase 2d

Subcase 2e: q1 = (5k{+4) and g5 + g3 = (Ska+4).

There are five possible cases. In case (a), partition the graph into two subgraphs, G,
and G,. Apply the assumption and hypothesis, at most (2k+1) guards are required.
Case (b) is the same as subcase 2a. Case (c) is the same as subcase 2d and case (d) is
the same as subcase 2b. For case (¢), cut off G and augment the remaining subgraph
G, as shown. (F; requires at most (2k,+2) guards. If the guard (a,b) exists, then it
can be deleted by putting the vertex guard at b. Otherwise, the guard at ¢ must exist.
In the former case, append @ back to G and the resulting subgraph will need at most
(2k1+2) guards. In the latter case, place the vertex guard of £ at a and apply the
hypothesis to Gy since both a and ¢ are covered. Two other special cases, cases (f)
and (g) when g, or g3 is equal to 0. In case (f), assume a vertex guard can be put at
either @ or b and apply the hypothesis to G1. If the vertex guard is required at a,
append Q to G, which requires at most (2k,+2) guards. The result follows. Other-
wise, if the vertex guard is required at b, we put an additional guard at (b,c) and
assign the vertex guard to 4, apply the induction to G;. In case (g), assign the vertex
guard at ¢ and add a guard at (b,c), apply induction to both subgraphs, G and G,.

16



4 | 1| 4 1]\4 4| Llo
0 4
G,
General Case (b)
(@
G1 G 2
411 3 4/ 1|1 4 )1 2
1 3 2
{© (@)
G,
b
G a d__GC2 G a 2
P 1 1] 2
4 )1 4 b 1 - ;
4 c 4
® Ve ©
®

Figure 20: subcase 2e

Theorem: |(2q+2)/5] combinatorial edge guards are always sufficient to dominate any
quad graph of a convex quadnlateralizable polygon for g = 2.

Proof: The proof is by induction on g, the number of quadrilaterals. If ¢ = 2, then one
guard suffices. Assume for all ¢’ < g, L(2¢"+2)/5) guards suffices. Lemma 3 shows
that there exists a diagonal d that cuts off a mimimum of 2, 3 or 4 quadrilaterals.

Case 1: 2 quadrilaterals are cut off.

After 2 quadrilaterals are cut off, the remaining graph will have (g-2) faces. By the
hypothesis, it can be dominated by [[2(g~21+2]/5] guards. This gives L(2g+2)/5}-1
guards except when g = 5k+1. If D is assigned a guard, it can be replaced by another
one easily since by lemma 3, one end of D can always share a node with a guard for
the cut off part. Now consider the exceptional case:

17



The remaining portion will have 5(k-1)+4 quadrilaterals. There are only two possible
configurations for the cut off part. In either case, there exists an edge in the remaining
part with either of its end points covered by the guard in the cut off part, so by lemma
5, the remaining portion can be dominated by an addition of (2k+1) guards.

Case 2: 3 quadrilaterals are cut off.

In this case, the remaining quad graph will have only (¢-3) faces. By the hypothesis,
it can be dominated by L[2(g-3)+21/5] guards. If one of these guards is located at the
diagonal D, it can be removed easily as shown in the following diagrams. So,
L2g+2)15) edge guards are always sufficient.

L2 21 £2

. D,

&1

82

) W)

Figure 21: bow to remove the guard at D

Case 3: 4 quadrilaterals are cut off.

18



Similarly in this case, the straight forward induction works except when ¢ = Sk+1 or
Sk+3 where sharing with the edge guard for the cut off part is needed. Again, if a
guard is placed at D, it can be easily replaced since by lemma 3, D always shares a
vertex with a guard of the cut off part. Now consider the two exceptional cases. As
shown in the graph, there is always a guard at either end of D which lies on an edge
of the remaining graph.

g1 &1

82 g2

Figure 22: two possible locations of the guards for the cut off part

Subcase 1: q = 5k+3.

The remaining part of the graph will have 5(k-1)+4 faces. By the above observation,
the condition of lemma 5 is satisfied, so it can be dominated by an addition of (2k-1)
edge guards. Together with the two guards for the cut off part, at most (2k+1) guards
suffice.

Subcase 2: q = 5k+1.

In this case, the remaining subgraph will have 5(k~1)+2 faces. Let M be the quadrila-
teral supported by D in the remaining subgraph, there will be three possible cases
depending on the degree of M.

Subase 2a: Degree of M = 1.

Let E be the diagonal connecting M to the rest of the subgraph. Cut through E, leave a
subgraph with only 5(k—1)+1 faces, by the induction hypothesis, it can be dominated
by (2k-2) guards. If E is assigned a guard, it can be replaced easily since one of the
end point of E can always be shared by one guard of the cut off part. In other words,

19



2k edge guards are sufficient to dominate the whole graph.

Subcase 2b: Degree of M > 2.
Let Py, P, and P3 be the subgraphs obtained by cutting off M and gy, ¢, and g3 be
the number of quadrilaterals in P, P, and P3 respectively.

D

P; M P3
E
Py

Figure 23z M is of degree > 2

Subcase 2b1: gy = (5’61) and qa+qgy = (S'kr"l)

It can be further divided into five cases. Case (a) is the same as subcase 2b2. In case
(b), partition the graph into three subgraphs, Gy, G and G3. Gy requires at most 2k,
guards. if (g,¢) is assigned a goard, it can be deleted since the guard for the cut off
part can be placed at (a,c) (please recall that one guard of the cut off part can be
placed on the edge of the remaining graph as long as one of the end vertices of d'is
covered), similarly for G4. Therefore, if either (a,c) or (b.d) is assigned, one can be
deleted. Otherwise, there must be guards at vertices ¢ and £. In all cases, if {e,f) has
been assigned in G, it can be replaced by two edge guards in the former case and by
one edge guard in the latter case. At most 2k edge guards are required. In case (c),
place the guard for the cut off part at (b,d). Apply lemma 3 to G4, the result follows
easily. Case (d) is the same as subcase 2b4. Lastly, for case (e), the total number of
guards required by three suvgrapns  Zrri, one guard must be deleted otherwise we
will spend one more gurad. Similar to case (b), either one guard can be deleted in G
or G3 or there must be guards at vertices ¢ and f. In the former case, append M to
G to make sure no guard will be placed at (e,f). In the latter case, apply lemma 5 to
G, which requires one less guard since both vertices of (e,f) has been covered. There
is a special case when g3 = 0, case (f). Partition the graph as shown, and for G, if
the guard (a,b) exists, it can be replaced by the guard for the cut off part and if {(c,d)

20



is assigned a guard in G, it can be replaced by two edge guards at ¢ and d. Other-
wise, the guard at ¢ must exist in G, in this case, if (c,d) is assigned a guard, it can
be replaced by one at d, the result follows easily.

b G G3
) Rl )
0 1
General Case G,
@ (b)
Gy G
¢ d ¢ g d &
3 1
T G CED
2 3
G:
© @
(&
G
; b a
0 1
Cl~J
K/
1
G,
®

Figure 24: subcase 2b1

Subcase 2b2: q = (5ky+1) and g4 + g3 = (5k3)

Assign the guard of the cut off part at (a,¢) and partition the graph into two sub-
graphs, Gy and G . G requires at most 2k guards without putting any in (a,e) since
a has been covered (if a guard is placed at (a,e), it can be replaced by one at vertex
¢). Altogether 2k edge guards are sufficient to dominate the whole graph.

21



Gy G,

Figure 25: subcase 2b3

Subcase 2b3: qy = (Sky+2) and @3 + @3 = (Sko+4)

There are five possible cases. Case (a) is the same as case(c) of subcase 2bl. Case (b)
is the same as case (e) of subcase 2bi. €ase (c) is the same as subcase 2b4, Case (d)
is the same as subcase 2b2. In case (¢), partition the graph into three subgraphs, G,
G1 and G3. Apply lemma 4 to G; without putting any guard at ¢e,2), and similarly
apply lemma 4 to G5 without putting any guard at (f,k). So, either (a,c) or (b,d)
exists and one can be deleted since the guard for the cut off part can be put at either
(a.c) or (b.d). Or both Gy and G 3 need a guard at (e,f). In this case, replace them by
(e,i) and (f, /). Since for-G 1, a guard must exist at {¢,i) or (f, /), so in G, one guaed
can be deleted. In all cases, one guard can be deleted, so at most” 2k guards are
needed. Lastly, there is a special case when g3 = 0, case (f). In this case, G{ will
either have a guard at (a,c), so it can be deleted or have a guard at e. In the latter
case, place the guard for the cut off part at (b,d), apply lemma 5 to G, since e and d
are covered, the result follows.



2 1 2] 11 4 2 1| ¢
4 0 4
General Case ®)
(@)
211 3 20 111
1 M3
© @

(e)

U
Figure 26: subcase 2b3

Subcase 2b4: q1 = (5k+3) and g» + q3 = (5k2+3)

Partition the graph into Gy and G, as shown. Apply lemma 4 to Gy without putting
any guard at (a,e). Place the guard for the cut off part at (,d) and apply lemma 5, so
at most 2k guards are needed.



Figure 27: subcase 2b4

Subcase 2b5: qy = (Sky+4) and q; + g3 = (Sk2+2)
This case is exactly the same as case (c) of subcase 2bl.

Corollary: Ln15) combinatorial edge guards are always sufficient to dominate any
quad graph of an orthogonal polygon.

Proof: It has been proved that orthagonal polygons are convexly quadrilateralizable
{13, so the resuit follows easily.
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