
Title A scheme to aid construction of left-hand sides of axioms in
algebraic specifications for object-oriented program testing

Author(s) Huo, YC; Lin, T; Tse, TH

Citation Proceedings - International Conference On Computer Science
And Software Engineering, Csse 2008, 2008, v. 2, p. 747-750

Issued Date 2008

URL http://hdl.handle.net/10722/54696

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37891186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Scheme to Aid Construction of Left-Hand Sides
of Axioms in Algebraic Specifications
for Object-Oriented Program Testing

Huo Yan Chen, Lin Tan
Department of Computer Science

Jinan University
Guangzhou, 510632, P.R. China

tchy@jnu.edu.cn

T.H. Tse
Department of Computer Science

The University of Hong Kong
Pokfulam, Hong Kong

thtse@cs.hku.hk

Abstract—In order to ensure reliability and quality, software
systems must be tested. Testing object-oriented software is
harder than testing procedure-oriented software. It involves four
levels, namely the algorithmic level, class level, cluster level, and
system level. We proposed a methodology TACCLE for class-
and cluster- level testing. It includes an important algorithm GFT
for generating fundamental equivalent pairs as class-level test
cases based on axioms in a given algebraic specification for a
given class. This formal methodology has many benefits.
However, system analysts often find it difficult to construct
axioms for algebraic specifications. In this paper, we propose a
scheme to aid the construction of the left-hand sides of axioms.
The scheme alleviates the difficulties of the system analysts and
also helps them check the completeness, consistency, and
independence of the axiom system.

Keywords—testing; object-oriented; algebraic specification;
axiom; prototype tool

I. INTRODUCTION
Object-oriented program, despite its popularity, it also

poses challenges to software testers. The testing of object-
oriented programs involves four levels, namely the algorithmic
level, class level, cluster level, and system level [1]. Testing at
the algorithmic and system levels is similar to that for
traditional programs. However, testing at the class and cluster
levels require new techniques. In [2, 3, 4], we proposed a
methodology TACCLE for object-oriented class- and cluster-
level testing. Class-level testing is more basic. It includes
generating test cases, executing test cases, and determining
whether the results of execution of test cases conform to
requirements.

Given an algebraic specification of a class under test, we
define a fundamental pair as two equivalent ground terms
generated by replacing all the variables on both sides of an
axiom in the specification with normal forms. We proposed an
algorithm known as GFT, for Generating Finite number of
fundamental pairs as Test cases [3]. Each fundamental pair
corresponds to a pair of equivalent method sequences in an
implementation. If two objects resulting from the executions of
two method sequences corresponding to a fundamental pair are

not observational equivalent, then a failure in the
implementation of the class is found and reported. GFT is
based on the axioms in a given algebraic specification for the
class under test. It has many benefits.

Practicing system analysts and testers often find it difficult
to construct equational axioms for formal specifications. If a
company uses semi-formal specifications, such as timing
diagrams in the case of ASM Assembly Automation Ltd. [5],
we can develop an automatic tool to transform the graphic
specifications into algebraic specifications, keeping the latter
internal to the testing tool and transparent to the user. In this
technology-transfer example, the difficulty is relaxed by
constructing the algebraic axioms from the timing diagrams via
the concept of communicating finite-state machines. Paper [5]
reports the details of this real-life experience. On the other
hand, if a company uses informal specifications, in order to
apply TACCLE to testing, analysts or testers need to manually
construct axioms for the algebraic specifications from the
informal counterpart.

This paper proposes a scheme to help analysts and testers to
construct the left-hand sides of axioms in algebraic spec-
ifications for object-oriented program testing. The scheme
alleviates the difficulties faced by analysts and also helps them
check the completeness, consistency, and independence of the
constructed axiom system.

The remainder of this paper is organized as follows: In
Section 2, related concepts are summarized. A proposition,
which is useful for the scheme, is presented in Section 3. The
detail of the scheme to help analysts or testers construct the
left-hand sides of axioms is presented in Section 4. The
implementation and experiments of a tool to aid the scheme is
presented in Section 5. Finally, some discussions and the
conclusion are given in Section 6.

This research is supported by a Union Grant of Guangdong Province and
National Natural Science Foundation of China (#U0775001), by a grant of the
Guangdong Province Science Foundation (#7010116), and by a grant of the
Youth Science Foundation of Jinan University (#51208035). Lin Tan is a
master degree student supervised by Huo Yan Chen.

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.600

747

2008 International Conference on Computer Science and Software Engineering

978-0-7695-3336-0/08 $25.00 © 2008 IEEE

DOI 10.1109/CSSE.2008.600

747

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:44 from IEEE Xplore. Restrictions apply.

II. THE CONCEPTS
Related basic concepts have been explained in detail in

[2, 3]. They include algebraic specifications, axioms, terms,
rewriting, normal forms, ground terms, canonical
specifications, normally equivalent, creators, constructor,
transformers, observers, and fundamental pairs of equivalent
terms (or simply fundamental pairs).

The following concepts and strategies are new.

Definition 1. Suppose a1, a2, …, ak are axioms in an
algebraic specification of a given class. Consider a new axiom
ak+1: t2 = t1. There are three cases:

 (i) Term t2 cannot be rewritten by any axioms in {a1,
a2, …, ak} (under the appropriate condition, if any);

(ii) Term t2 can be rewritten to the normal form of term t1
by some axioms in {a1, a2, …, ak} (under the appropriate
condition, if any). In this case, we say that ak+1 is dependent on
{a1, a2, …, ak} or ak+1 is not independent of {a1, a2, …, ak}.

(iii) Term t2 can be rewritten by some axioms in {a1, a2, …,
ak} (under the appropriate condition, if any), but the resulting
normal form is not the same as the normal form of term t1 by
using axioms in {a1, a2, …, ak}. In this case, we say that ak+1
contradicts with {a1, a2, …, ak} or that ak+1 is inconsistent with
{a1, a2, …, ak}.

Obviously, If ak+1 is dependent on {a1, a2, …, ak}, then
adding ak+1 to {a1, a2, …, ak} does not affect the normal form
of any term. In other words, it is redundant with respect to {a1,
a2, …, ak}. Thus, we have

Strategy 1. If ak+1 is dependent on {a1, a2, …, ak}, then we
need not add ak+1 to {a1, a2, …, ak} when constructing an
algebraic specification.

On the other hand, it is also obvious that if ak+1 contradicts
with {a1, a2, …, ak} for a canonical specification, then after
adding ak+1 to {a1, a2, …, ak}, the specification will no longer
be canonical. Hence, we have

Strategy 2. For a canonical specification containing axioms
a1, a2, …, ak, if ak+1 contradicts with {a1, a2, …, ak}, then we
should not add ak+1 to {a1, a2, …, ak} when constructing the
canonical specification.

Definition 2. In case (i) of Definition 1, the new axiom ak+1
is not dependent on {a1, a2, …, ak} and does not contradict
with {a1, a2, …, ak}. In this case, we say that ak+1 is
independent of and consistent with {a1, a2, …, ak}.

Definition 3. If every ai ∈ {a1, a2, …, ak, ak+1} is
independent of and consistent with {a1, a2, …, ak, ak+1} \ {ai},
then we say that {a1, a2, …, ak, ak+1} has internal independence
and consistency.

III. THE PROPOSITION
The following proposition is useful for setting up a scheme

to help construct the left-hand sides of axioms in algebraic
specifications for object-oriented program testing via
TACCLE.

Proposition 1. Suppose t0 is a sub-term of term t. If t0
appears as the left-hand side of an axiom (under an appropriate
condition, if any) in an algebraic specification of a given class
C, then t cannot appear as the left-hand side of another axiom
(under the same condition, if any) in the algebraic specification
of C.

Proof: Let t = t0.t1. Suppose there is an axiom ai: t0 = s0 and
another axiom ak: t = s. We have

 ai
t = t0.t1 ⇒ s0.t1

If the term s0.t1 is equivalent to the term s, then the axiom ak is
dependent on {…, ai, …}, so that ak is redundant and should be
deleted. Otherwise, the axiom ak contradicts with {…, ai, …}
and hence ak must also be deleted.

IV. THE SCHEME
The CLA scheme to aid the Construction of Left-hand sides

of Axioms in algebraic specifications for object-oriented
program testing via TACCLE consists of the following steps:

(1) By interacting with the requirement analyst, for a given
class, determine and input the set CR of creators, the set CT
of constructors or transformers, and the set OB of observers.
They may contain parameters as appropriate.

(2) Let PL denote the set of preliminary left-hand sides of
axioms, and let PA denote the set of preliminary axioms (or
“pre-axioms” for short). Set PL = ∅; set PA = ∅.

(3) For each cr ∈ CR do {

For each ob ∈ OB do {

Ask analyst to give a term (including condition) as the
right-hand side of a pre-axiom ax with cr.ob as the
left-hand side 1, and set PA = PA ∪ {ax};

If the condition of ax is not “always true”, then iterate
the previous step to constructing multiple axioms with
the same left-hand side as ax but with mutually
exclusive conditions;

}

}

(4) For each cr∈CR do {

For each ct∈CT do {

Ask analyst whether cr.ct is made the left-hand side of
a pre-axiom; 2

If yes, {

Ask analyst to give the right-hand side (including
condition) to construct a pre-axiom ax;

1 Such as new.empty in axiom a1 of Example 1 in [3]. Some attributes, say

empty and top, may have related semantics. Thus, we need to check the
consistency of their corresponding preliminary axioms a1: new.empty = true
and a5: new.top = NIL. However, such kinds of consistency cannot be
checked by axiom rewriting, and hence we leave the checking to step (9).

2 Such as new.pop in axiom a3 of Example 1 in [3].

748748

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:44 from IEEE Xplore. Restrictions apply.

If the condition of ax is not “always true”, then
iterate the previous step to constructing multiple
axioms with the same left-hand side as ax but
with mutually exclusive conditions;

Check whether ax is consistent with and
independent of the set PA of pre-axioms
constructed;

If yes, {

PA = PA ∪ {ax}; 3

For every previous pre-axiom ax0 that can be
derived from ax and others, set PA = PA \
{ax0}

}

Else, {

Ask analyst to determine whether to submit
another term as the right-hand side;

If submitting another one, then construct
another pre-axiom ax and repeat the above
process;

If no more submission, then PL = PL ∪
{cr.ct};

}

},

Else, skip it and set PL = PL ∪ {cr.ct};

};

};

(5) Take a variable A of object in the given class, and set PL =
PL ∪ {A} and PL0 = ∅; 4

(6) For each X ∈ PL do {

For each ct ∈ CT do {

Set X = X.ct;

Ask analyst whether X is made the left-hand side of a
pre-axiom; 5

If yes, {

Ask for the right-hand side (including condition) to
construct a pre-axiom ax;

If the condition of ax is not “always true”, then
iterate the previous step to constructing multiple
axioms with the same left-hand side as ax but with
mutually exclusive conditions;

3 According to Proposition 1, we do not set PL = PL ∪ {cr.ct} here. This is an

example of pruning.
4 PL is for this loop, and PL0 is for the next loop.
5 Such as S.push(N).pop in a4 of Example 1 in [3], and A.debit(N) in a13 of

Example 2 in [6].

Check whether ax is consistent with and
independent of the set PA of pre-axioms
constructed;

If yes, {

PA = PA ∪ {ax}; 6

For every previous pre-axiom ax0 that can be
derived from ax and others, set PA = PA \ {ax0}

}

Else, {

Ask analyst to determine whether to submit
another term as the right-hand side;

If submitting another one, then construct another
pre-axiom ax and repeat the above process;

If no more submission, then PL = PL ∪ {cr.ct};

}

};

If not or if the disjunction of conditions of all axioms
(with the same left-hand side as that of ax) is not
“always true”, {

For each ob∈OB do {

Ask analyst whether X.ob is made the left-hand
side of a pre-axiom; 7

If yes, {

Remind analyst that the condition of the new
pre-axiom must be mutually exclusive with that
of the previous pre-axioms with X as the left-
hand side;

Ask for the right-hand side (including
condition) to construct a pre-axiom ax;

If the condition of ax is not “always true”, then
iterate the previous step to constructing
multiple axioms with the same left-hand side as
ax but with mutually exclusive conditions;

Check whether ax is consistent with and
independent of the set PA of pre-axioms
constructed;

If yes, {

PA = PA ∪ {ax};

For every previous pre-axiom ax0 that can be
derived from ax and others, set PA = PA \
{ax0}

}

Else, {

6 According to Proposition 1, we do not set PL = PL ∪ {cr.ct} here. This is

another example of pruning.
7 Such as S.push(N).empty in axiom a2 of Example 1 in [3].

749749

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:44 from IEEE Xplore. Restrictions apply.

Ask analyst to determine whether to submit
another term as the right-hand side;

If submitting another one, then construct
another pre-axiom ax and repeat the above
process;

// Note here that we do not set PL0 = PL0 ∪
{X.ob} when there is no more submission;

}

};

Else, skip it;

};

Set PL0 = PL0 ∪ {X};

};

};

};

(7) If PL0 = ∅, go to (9);

(8) Ask analyst whether it is the end of the construction of pre-
axioms;

If not, {PL = PL0; PL0 = ∅; go to (6);};

(9) By interacting with analyst, convert the set PA of pre-
axioms to the set RA of required axioms by selecting,
checking, uniting, refining, changing the names of parameter
variables, adding, or deleting, and so on. For axioms with
left-hand sides that match one another, remind analyst that
the conditions must be mutually exclusive.

(10) Output the set RA of the required axioms of the given
class C; End the scheme.

V. IMPLEMENTATION AND EXPERIMENTS
We use Visual C++ 2005 under Microsoft Windows XP to

implement a semi-automatic prototype tool for the CLA
scheme. The tool uses dialog framework resources and control-
widget resources to realize interaction with users.

Each axiom is represented by a structure AxiomItem,
defined as follows:

struct AxiomItem {
CString m_Left; // left-hand side of the axiom
CString m_Right; // right-hand side of the axiom
CString m_Co; // condition of the axiom
AxiomItem * next; // pointer for linked list };

The set of axioms in an algebraic specification is denoted
by a linked list of AxiomItem structures.

Experiments have been conducted on various case studies,
including, for example, a class Book in a library system and a
class SavAcct of savings accounts in a bank system. The work
has been implemented by the second author. Details are not

given in this paper because of page limitation. Readers may
refer to his master thesis [6] for more information.

VI. DISCUSSIONS AND CONCLUSION
A finite number of fundamental pairs can be generated as

test cases by algorithm GFT in [3], which is based on the
axioms of a given algebraic specification for a given class
under test. This testing approach has many advantages.
However, system analysts often find it difficult to construct
axioms for algebraic specifications. This paper presents a
scheme, named CLA, to help analysts or testers construct the
left-hand sides of axioms in algebraic specifications. The
scheme alleviates the difficulties faced by analysts and also
helps them check the completeness, consistency, and
independence of the constructed axiom system.

The CLA scheme is based on an analysis of the patterns of
left-hand sides of axioms in algebraic specifications. It uses an
enumeration technique with a pruning technique based on
Proposition 1. The pruning technique reduces the number of
loops in executing the scheme and enhances its efficiency
greatly.

The implementation and experiments for a semi-automatic
tool to aid the scheme is also described in this paper.

In general, for a given class, the numbers of creators,
constructors and transformers, and observers are small, and the
number of loops in the CLA scheme is not large when the
pruning technique is employed. Thus, the CLA scheme should
be effective in requirements engineering.

As future work, we would like to use Prolog to develop the
semi-automatic tool. This will make it easier to implement the
function to check whether a new pre-axiom is consistent with
and independent of the set PA of pre-axioms constructed.

REFERENCES

[1] M.D. Smith and D.J. Robson, “A framework for testing object-oriented
programs,” Journal of Object-Oriented Programming, vol. 5, no. 3, pp.
45–53, 1992.

[2] Huo Yan Chen, T.H. Tse, and T.Y. Chen, “TACCLE: a methodology for
object-oriented software testing at the class and cluster levels,” ACM
Transactions on Software Engineering and Methodology, vol. 10, no. 1,
pp. 56–109, 2001.

[3] Huo Yan Chen, T.H. Tse, F.T. Chan, and T.Y. Chen, “In black and
white: an integrated approach to class-level testing of object-oriented
programs,” ACM Transactions on Software Engineering and
Methodology, vol. 7, no. 3, pp. 250–295, 1998.

[4] Huo Yan Chen, T.H. Tse, and Y.T. Deng, “ROCS: an object-oriented
class-level testing system based on the relevant observable contexts
technique,” Information and Software Technology, vol. 42, no. 10, pp.
677–686, 2000.

[5] T.H. Tse, F.C.M. Lau, W.K. Chan, P.C.K. Liu, and C.K.F. Luk, “Testing
object-oriented industrial software without precise oracles or results,”
Communications of the ACM, vol. 50, no. 8, pp. 78-85, 2007.

[6] Lin Tan, The Design and Implementation of the Semi-automatic Aid
Tool for Constructing Algebraic Specification, Master's Thesis,
Department of Computer Science, Jinan University, Guangzhou, China,
2008.

750750

Authorized licensed use limited to: The University of Hong Kong. Downloaded on June 10, 2009 at 22:44 from IEEE Xplore. Restrictions apply.

