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Abstract—In order to ensure reliability and quality, software 
systems must be tested. Testing object-oriented software is 
harder than testing procedure-oriented software. It involves four 
levels, namely the algorithmic level, class level, cluster level, and 
system level. We proposed a methodology TACCLE for class- 
and cluster- level testing. It includes an important algorithm GFT 
for generating fundamental equivalent pairs as class-level test 
cases based on axioms in a given algebraic specification for a 
given class. This formal methodology has many benefits. 
However, system analysts often find it difficult to construct 
axioms for algebraic specifications. In this paper, we propose a 
scheme to aid the construction of the left-hand sides of axioms. 
The scheme alleviates the difficulties of the system analysts and 
also helps them check the completeness, consistency, and 
independence of the axiom system. 

Keywords—testing; object-oriented; algebraic specification; 
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I.  INTRODUCTION  
Object-oriented program, despite its popularity, it also 

poses challenges to software testers. The testing of object-
oriented programs involves four levels, namely the algorithmic 
level, class level, cluster level, and system level [1]. Testing at 
the algorithmic and system levels is similar to that for 
traditional programs. However, testing at the class and cluster 
levels require new techniques. In [2, 3, 4], we proposed a 
methodology TACCLE for object-oriented class- and cluster-
level testing. Class-level testing is more basic. It includes 
generating test cases, executing test cases, and determining 
whether the results of execution of test cases conform to 
requirements.  

Given an algebraic specification of a class under test, we 
define a fundamental pair as two equivalent ground terms 
generated by replacing all the variables on both sides of an 
axiom in the specification with normal forms. We proposed an 
algorithm known as GFT, for Generating Finite number of 
fundamental pairs as Test cases [3]. Each fundamental pair 
corresponds to a pair of equivalent method sequences in an 
implementation. If two objects resulting from the executions of 
two method sequences corresponding to a fundamental pair are 

not observational equivalent, then a failure in the 
implementation of the class is found and reported. GFT is 
based on the axioms in a given algebraic specification for the 
class under test. It has many benefits. 

Practicing system analysts and testers often find it difficult 
to construct equational axioms for formal specifications. If a 
company uses semi-formal specifications, such as timing 
diagrams in the case of ASM Assembly Automation Ltd. [5], 
we can develop an automatic tool to transform the graphic 
specifications into algebraic specifications, keeping the latter 
internal to the testing tool and transparent to the user. In this 
technology-transfer example, the difficulty is relaxed by 
constructing the algebraic axioms from the timing diagrams via 
the concept of communicating finite-state machines. Paper [5] 
reports the details of this real-life experience. On the other 
hand, if a company uses informal specifications, in order to 
apply TACCLE to testing, analysts or testers need to manually 
construct axioms for the algebraic specifications from the 
informal counterpart. 

This paper proposes a scheme to help analysts and testers to 
construct the left-hand sides of axioms in algebraic spec-
ifications for object-oriented program testing. The scheme 
alleviates the difficulties faced by analysts and also helps them 
check the completeness, consistency, and independence of the 
constructed axiom system. 

The remainder of this paper is organized as follows: In 
Section 2, related concepts are summarized. A proposition, 
which is useful for the scheme, is presented in Section 3. The 
detail of the scheme to help analysts or testers construct the 
left-hand sides of axioms is presented in Section 4. The 
implementation and experiments of a tool to aid the scheme is 
presented in Section 5. Finally, some discussions and the 
conclusion are given in Section 6. 
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II. THE CONCEPTS 
Related basic concepts have been explained in detail in 

[2, 3]. They include algebraic specifications, axioms, terms, 
rewriting, normal forms, ground terms, canonical 
specifications, normally equivalent, creators, constructor, 
transformers, observers, and fundamental pairs of equivalent 
terms (or simply fundamental pairs).  

The following concepts and strategies are new. 

Definition 1. Suppose a1, a2, …, ak are axioms in an 
algebraic specification of a given class. Consider a new axiom 
ak+1: t2 = t1. There are three cases: 

 (i) Term t2 cannot be rewritten by any axioms in {a1, 
a2, …, ak} (under the appropriate condition, if any); 

(ii) Term t2 can be rewritten to the normal form of term t1 
by some axioms in {a1, a2, …, ak} (under the appropriate 
condition, if any). In this case, we say that ak+1 is dependent on 
{a1, a2, …, ak} or ak+1 is not independent of {a1, a2, …, ak}. 

(iii) Term t2 can be rewritten by some axioms in {a1, a2, …, 
ak} (under the appropriate condition, if any), but the resulting 
normal form is not the same as the normal form of term t1 by 
using axioms in {a1, a2, …, ak}. In this case, we say that ak+1 
contradicts with {a1, a2, …, ak} or that ak+1 is inconsistent with 
{a1, a2, …, ak}.  

Obviously, If ak+1 is dependent on {a1, a2, …, ak}, then 
adding ak+1 to {a1, a2, …, ak} does not affect the normal form 
of any term. In other words, it is redundant with respect to {a1, 
a2, …, ak}. Thus, we have 

Strategy 1. If ak+1 is dependent on {a1, a2, …, ak}, then we 
need not add ak+1 to {a1, a2, …, ak} when constructing an 
algebraic specification. 

On the other hand, it is also obvious that if ak+1 contradicts 
with {a1, a2, …, ak} for a canonical specification, then after 
adding ak+1 to {a1, a2, …, ak}, the specification will no longer 
be canonical. Hence, we have 

Strategy 2. For a canonical specification containing axioms 
a1, a2, …, ak, if ak+1 contradicts with {a1, a2, …, ak}, then we 
should not add ak+1 to {a1, a2, …, ak} when constructing the 
canonical specification. 

Definition 2. In case (i) of Definition 1, the new axiom ak+1 
is not dependent on {a1, a2, …, ak} and does not contradict 
with {a1, a2, …, ak}. In this case, we say that ak+1 is 
independent of and consistent with {a1, a2, …, ak}. 

Definition 3. If every ai ∈ {a1, a2, …, ak, ak+1} is 
independent of and consistent with {a1, a2, …, ak, ak+1} \ {ai}, 
then we say that {a1, a2, …, ak, ak+1} has internal independence 
and consistency. 

III. THE PROPOSITION 
The following proposition is useful for setting up a scheme 

to help construct the left-hand sides of axioms in algebraic 
specifications for object-oriented program testing via 
TACCLE. 

Proposition 1. Suppose t0 is a sub-term of term t. If t0 
appears as the left-hand side of an axiom (under an appropriate 
condition, if any) in an algebraic specification of a given class 
C, then t cannot appear as the left-hand side of another axiom 
(under the same condition, if any) in the algebraic specification 
of C.  

Proof: Let t = t0.t1. Suppose there is an axiom ai: t0 = s0 and 
another axiom ak: t = s. We have 

 ai 
t = t0.t1 ⇒ s0.t1 

If the term s0.t1 is equivalent to the term s, then the axiom ak is 
dependent on {…, ai, …}, so that ak is redundant and should be 
deleted. Otherwise, the axiom ak contradicts with {…, ai, …} 
and hence ak must also be deleted.  

IV. THE SCHEME 
The CLA scheme to aid the Construction of Left-hand sides 

of Axioms in algebraic specifications for object-oriented 
program testing via TACCLE consists of the following steps: 

(1)  By interacting with the requirement analyst, for a given 
class, determine and input the set CR of creators, the set CT 
of constructors or transformers, and the set OB of observers. 
They may contain parameters as appropriate. 

(2)  Let PL denote the set of preliminary left-hand sides of 
axioms, and let PA denote the set of preliminary axioms (or 
“pre-axioms” for short). Set PL = ∅; set PA = ∅. 

(3)  For each cr ∈ CR do { 

For each ob ∈ OB do { 

Ask analyst to give a term (including condition) as the 
right-hand side of a pre-axiom ax with cr.ob as the 
left-hand side 1, and set PA = PA ∪ {ax}; 

If the condition of ax is not “always true”, then iterate 
the previous step to constructing multiple axioms with 
the same left-hand side as ax but with mutually 
exclusive conditions; 

} 

} 

(4)  For each cr∈CR do { 

For each ct∈CT do { 

Ask analyst whether cr.ct is made the left-hand side of 
a pre-axiom; 2 

If yes, { 

Ask analyst to give the right-hand side (including 
condition) to construct a pre-axiom ax;  

                                                           
1 Such as new.empty in axiom a1 of Example 1 in [3]. Some attributes, say 

empty and top, may have related semantics. Thus, we need to check the 
consistency of their corresponding preliminary axioms a1: new.empty = true 
and a5: new.top = NIL. However, such kinds of consistency cannot be 
checked by axiom rewriting, and hence we leave the checking to step (9). 

2 Such as new.pop in axiom a3 of Example 1 in [3]. 
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If the condition of ax is not “always true”, then 
iterate the previous step to constructing multiple 
axioms with the same left-hand side as ax but 
with mutually exclusive conditions; 

Check whether ax is consistent with and 
independent of the set PA of pre-axioms 
constructed; 

If yes, { 

PA = PA ∪ {ax}; 3  

For every previous pre-axiom ax0 that can be 
derived from ax and others, set PA = PA \ 
{ax0}  

} 

Else, { 

Ask analyst to determine whether to submit 
another term as the right-hand side; 

If submitting another one, then construct 
another pre-axiom ax and repeat the above 
process; 

If no more submission, then PL = PL ∪ 
{cr.ct}; 

} 

}, 

Else, skip it and set PL = PL ∪ {cr.ct}; 

}; 

}; 

(5)  Take a variable A of object in the given class, and set PL = 
PL ∪ {A} and PL0 = ∅; 4  

(6)  For each X ∈ PL do { 

For each ct ∈ CT do { 

Set X = X.ct; 

Ask analyst whether X is made the left-hand side of a 
pre-axiom; 5 

If yes, { 

Ask for the right-hand side (including condition) to 
construct a pre-axiom ax; 

If the condition of ax is not “always true”, then 
iterate the previous step to constructing multiple 
axioms with the same left-hand side as ax but with 
mutually exclusive conditions; 

                                                           
3 According to Proposition 1, we do not set PL = PL ∪ {cr.ct} here. This is an 

example of pruning. 
4 PL is for this loop, and PL0 is for the next loop.  
5 Such as S.push(N).pop in a4 of Example 1 in [3], and A.debit(N) in a13 of 

Example 2 in [6]. 

Check whether ax is consistent with and 
independent of the set PA of pre-axioms 
constructed; 

If yes, { 

PA = PA ∪ {ax}; 6  

For every previous pre-axiom ax0 that can be 
derived from ax and others, set PA = PA \ {ax0}  

} 

Else, { 

Ask analyst to determine whether to submit 
another term as the right-hand side; 

If submitting another one, then construct another 
pre-axiom ax and repeat the above process; 

If no more submission, then PL = PL ∪ {cr.ct}; 

} 

}; 

If not or if the disjunction of conditions of all axioms 
(with the same left-hand side as that of ax) is not 
“always true”, { 

For each ob∈OB do { 

Ask analyst whether X.ob is made the left-hand 
side of a pre-axiom; 7 

If yes, { 

Remind analyst that the condition of the new 
pre-axiom must be mutually exclusive with that 
of the previous pre-axioms with X as the left-
hand side; 

Ask for the right-hand side (including 
condition) to construct a pre-axiom ax; 

If the condition of ax is not “always true”, then 
iterate the previous step to constructing 
multiple axioms with the same left-hand side as 
ax but with mutually exclusive conditions; 

Check whether ax is consistent with and 
independent of the set PA of pre-axioms 
constructed; 

If yes, { 

PA = PA ∪ {ax};  

For every previous pre-axiom ax0 that can be 
derived from ax and others, set PA = PA \ 
{ax0}  

} 

Else, { 

                                                           
6 According to Proposition 1, we do not set PL = PL ∪ {cr.ct} here. This is 

another example of pruning. 
7 Such as S.push(N).empty in axiom a2 of Example 1 in [3]. 
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Ask analyst to determine whether to submit 
another term as the right-hand side; 

If submitting another one, then construct 
another pre-axiom ax and repeat the above 
process; 

// Note here that we do not set PL0 = PL0 ∪ 
{X.ob} when there is no more submission; 

} 

}; 

Else, skip it; 

}; 

Set PL0 = PL0 ∪ {X}; 

}; 

};  

}; 

(7)  If PL0 = ∅, go to (9); 

(8)  Ask analyst whether it is the end of the construction of pre-
axioms; 

If not, {PL = PL0; PL0 = ∅; go to (6);}; 

(9)  By interacting with analyst, convert the set PA of pre-
axioms to the set RA of required axioms by selecting, 
checking, uniting, refining, changing the names of parameter 
variables, adding, or deleting, and so on. For axioms with 
left-hand sides that match one another, remind analyst that 
the conditions must be mutually exclusive. 

(10) Output the set RA of the required axioms of the given 
class C; End the scheme.         

V. IMPLEMENTATION AND EXPERIMENTS 
We use Visual C++ 2005 under Microsoft Windows XP to 

implement a semi-automatic prototype tool for the CLA 
scheme. The tool uses dialog framework resources and control-
widget resources to realize interaction with users. 

Each axiom is represented by a structure AxiomItem, 
defined as follows: 

struct AxiomItem { 
CString m_Left;  // left-hand side of the axiom 
CString m_Right;  // right-hand side of the axiom 
CString m_Co;  // condition of the axiom 
AxiomItem * next;  // pointer for linked list   }; 

The set of axioms in an algebraic specification is denoted 
by a linked list of AxiomItem structures. 

Experiments have been conducted on various case studies, 
including, for example, a class Book in a library system and a 
class SavAcct of savings accounts in a bank system. The work 
has been implemented by the second author. Details are not 

given in this paper because of page limitation. Readers may 
refer to his master thesis [6] for more information. 

VI. DISCUSSIONS AND CONCLUSION 
A finite number of fundamental pairs can be generated as 

test cases by algorithm GFT in [3], which is based on the 
axioms of a given algebraic specification for a given class 
under test. This testing approach has many advantages. 
However, system analysts often find it difficult to construct 
axioms for algebraic specifications. This paper presents a 
scheme, named CLA, to help analysts or testers construct the 
left-hand sides of axioms in algebraic specifications. The 
scheme alleviates the difficulties faced by analysts and also 
helps them check the completeness, consistency, and 
independence of the constructed axiom system. 

The CLA scheme is based on an analysis of the patterns of 
left-hand sides of axioms in algebraic specifications. It uses an 
enumeration technique with a pruning technique based on 
Proposition 1. The pruning technique reduces the number of 
loops in executing the scheme and enhances its efficiency 
greatly.  

The implementation and experiments for a semi-automatic 
tool to aid the scheme is also described in this paper. 

In general, for a given class, the numbers of creators, 
constructors and transformers, and observers are small, and the 
number of loops in the CLA scheme is not large when the 
pruning technique is employed. Thus, the CLA scheme should 
be effective in requirements engineering. 

As future work, we would like to use Prolog to develop the 
semi-automatic tool. This will make it easier to implement the 
function to check whether a new pre-axiom is consistent with 
and independent of the set PA of pre-axioms constructed. 
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