
Title The incremental harmonic balance method for nonlinear
vibration of axially moving beams

Author(s) Sze, KY; Chen, SH; Huang, JL

Citation Journal Of Sound And Vibration, 2005, v. 281 n. 3-5, p. 611-626

Issued Date 2005

URL http://hdl.handle.net/10722/54301

Rights Creative Commons: Attribution 3.0 Hong Kong License



 

The Incremental Harmonic Balance Method for 
 

Nonlinear Vibration of Axially Moving Beams 
 

 

K.Y.Sze* 

Department of Mechanical Engineering, The University of Hong Kong, 
Pokfulam Road, Hong Kong SAR, P.R.CHINA. 

 
and 

 
S.H.Chen, J.L.Huang 

Department of Applied Mechanics and Engineering, Zhongshan University 
Guangzhou, 510275, P.R.CHINA. 

 

 

 

ABSTRACT 

In this paper, the Incremental Harmonic Balance (IHB) method is formulated for the nonlinear 

vibration analysis of axially moving beams. The Galerkin method is used to discretize the 

governing equations. A high dimensional model that can take nonlinear model coupling into 

account is derived. The forced response of an axially moving strip with internal resonance between 

the first two transverse modes is studied. Particular attention is paid to the fundamental, 

superharmonic and subharmonic resonance as the excitation frequency is close to the first, second 

or one-third of the first natural frequency of the system. Numerical results reveal the rich and 

interesting nonlinear phenomena that have not been presented in the existent literature on the 

nonlinear vibration of axially moving media.  
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1.  INTRODUCTION 

Axially moving systems can be found in a wide range of engineering problems which arise in 

industrial, civil, mechanical, electronic and automotive applications. Magnetic tapes, power 

transmission belts and band saw blades are examples where an axial transport of mass is associated 

with a transverse vibration.  

 Analytical models for axially moving systems have been extensively studied in the last few 

decades. The vast literature on axially moving material vibration has been reviewed by Wickert and 

Mote [1] up to 1988. More recently, the problem of axially moving media has been tackled in the 

analysis of particular aspects such as different solution techniques, discretization approaches, 

modeling aspects and nonlinear phenomena, see the review in reference [2]. Most of these studies 

addressed the problem of constant axial transport velocity and constant axial tension. Wickert and 

Mote [3] studied the transverse vibration of axially moving strings and beams using an 

eigenfunction method. They also used the Green function method to study the dynamic response of 

an axially moving string loaded with a traveling periodic suspended mass [4]. Wickert [5] presented 

a complete study of the nonlinear vibrations and bifurcations of moving beams using the Krylov-

Bogoliubov-Mitropolsky asymptotic method. Chakraborty et al [6,7] investigated both free and 

forced responses of a traveling beam using non-linear complex normal modes. Pellicano et al [2] 

studied the dynamic behavior of an axially moving beam using a high dimensional discrete model 

obtained by the Galerkin procedure. Al-Jawi et al. [8-10] investigated the effects of tension disorder, 

inter-span coupling and translational speed on the confinement of the natural modes of free 

vibration through the exact, the perturbation and the Galerkin approaches. By analytical and 

numerical means, Chen [11] studied the natural frequencies and stability of an axially traveling 

string in contact with a stationary load system which contains parameters such as dry friction, 

inertia, damping and stiffness. Riedel and Tan [12] studied the coupled and forced responses of an 

axially moving strip with internal resonance. The method of multiple scales is used to perform the 

perturbation analysis and to determine the frequency response numerically for both low and high 

speeds. 

 There are papers devoted to the analysis of the dynamic behavior of traveling systems with time 

dependent axial velocity or with time dependent axial tension force. Pakdemirli et al. [13] 

conducted a stability analysis using Floquet theory for sinusoidal transporting velocity function. 

They also investigated the principal parametric resonance and the combination of resonances for an 

axially accelerating string using the method of multiple scales [14]. Mockensturm et al. [15] applied 

the Galerkin procedure and the perturbation method of Krylov-Bogoliubov-Mitropolsky to examine 

the stability and limit cycles of parametrically excited and axially moving strings in the presence of 



tension fluctuations. Zhang and Zu [16,17] employed the method of multiple scales to study the 

nonlinear vibration of parametrically excited moving belts. Suweken and Van Horssen [18] used a 

two time-scales perturbation method to approximate the solutions of a conveyor belt with a low and 

time-varying velocity. Öz and Pakdemirli [19,20] also applied the method of multiple scales to 

study the vibration of an axially moving beam with time dependent velocity. Fung and Chang [21] 

employed the finite difference method with variable grid for numerical calculation of string/slider 

non-linear coupling system with time-dependent boundary condition. Ravindra and Zhu [22] 

studied the low-dimensional chaotic response of axially accelerating continuum in the supercritical 

regime. Moon and Wickert [23] performed an analytical and experimental study on the response of 

a belt excited by pulley eccentricities. Pellicano et al [24] studied the primary and parametric non-

linear resonance of a power transmission belt by experimental and theoretical analysis. 

 In this paper, the Incremental Harmonic Balance (IHB) method is applied to analyze the 

nonlinear vibration of axially moving systems. The IHB method was originally presented by Lau 

and Cheung [25], Cheung and Lau [26] and Lau, Cheung and Wu [27]. It has been developed and 

successfully applied to the analysis of periodic nonlinear structural vibrations and the related 

problems. However, none of these applications is related to axially moving systems. This paper 

starts with an introduction on the essence of the IHB method. Using the method, some particular 

cases of the axially moving beam problem are effectively treated. As a matter of fact, the 

generalization of the IHB method to other moving media and other nonlinear vibration problems is 

simple and straightforward. 

 

 

2.  EQUATIONS OF MOTION 

The governing equations of two dimensional, planar motion of an axially moving beam can be 

derived using Hamilton’s Principle. Following a similar derivation to that of Wickert [5], one 

obtains the following coupled nonlinear dimensionless equations of motion: 

 2 2 21
1 2( , 2 , , ) ( , , ), 0tt xt xx x x xu vu v u v u w+ + − + = , (1) 

 2 2 2 21
1 2( , 2 , , ) {[1 ( , , )] , }, , 0tt xt xx x x x x f xxxxw vw v w v u w w v w+ + − + + + =  (2) 

where 

 2/ , / , / , /u U L w W L x X L t T P ALr= = = = , (3) 

 / /v V P Ar= , 1 /v EA P= , 2/fv EI PL= . (4) 

Here, X and Z are respectively the longitudinal and transverse coordinates of the beam, U and W are 

respectively the longitudinal and transverse displacements, V is the axial speed, T denotes time and 



P is the axial tension, see Figure 1. Properties of the beam include the beam length L, the cross 

section area A, the second moment of area I, the mass density r  and the elastic modulus E. Lastly, 

( , , , ), ( 2 , ) and ( , ) are respectively the local, Coriolis and centripetal 

acceleration vectors. In particular, V, P, L, A, I, r  and I are constants whereas P must be non-zero. 

The boundary conditions for a hinged-hinged beam are: 

ttu ttw ,xtvu 2 ,xtvw 2 ,xxv u 2 ,xxv w

 (0, ) (1, ) 0u t u t= = , (5) 

  (0, ) (1, ) 0,w t w t= = , (0, ) , (1, ) 0xx xxw t w t= = . (6) 

 

X

Z

V
F(X T)

 
Figure 1. Schematic diagram for an axially moving beam and its coordinate system,  

where F denotes the force acting per unit length of the beam.  
 

 

3.  SEPARATION OF VARIABLES 

In the nonlinear vibration analysis of continuous systems, the variables and  in the 

partial differential equations (1) and (2) with boundary conditions (5) and (6) are usually separated. 

The use of eigenfunctions as a complete basis is often the choice because of their promising 

accuracy and convergence. Unfortunately, the eigenfunctions of traveling beams are complex and 

dependent on the speed. In the present study, we assume the following separable solutions in terms 

of admissible functions: 

( , )u x t ( , )w x t

 
1

( , ) ( )sin
N

u
j

j

u x t q t j xp
=

=∑ , (7) 

 
1

( , ) ( )sin
N

w
j

j

w x t q t j xp
=

=∑ . (8) 

After substituting equations (7) and (8) into equations (1) and (2), the Galerkin procedure leads to 

the following set of N+M second order ordinary differential equations: 

     for 
1 1 1 1 1

0
N N N N M

u u u u u u w w w
ij j ij j ij j ijk k j

j j j j k

M q C q K q K q q
= = = = =

+ + +∑ ∑ ∑ ∑∑ = N1, 2, ,i =  (9) 



     
1 1 1 1 1 1 1 1

0
M M M M N M M M

w w w w w w u u w w w w w
ij j ij j ij j ijk k j ijkl l k j

j j j j k j k l

M q C q K q K q q K q q q
= = = = = = = =

+ + + +∑ ∑ ∑ ∑∑ ∑∑∑ =

  for       (10) 1, 2, ,i M=

where 

the dot above a variable denotes its derivative with respect to the non-dimensional time t,  
1

0
sin sin du w

ij ijM M i x j x xp p= = ∫
1
2 ij= δ , 

12 2 2 2
1 0

( ) sin sin dx xu
ijK v v j i x jp p p= − − ∫ 2 2 2 2

1
1 ( )
2 ijv v j= − − p d , 

2 21

0

4 /( ) and ( ) is even
2 sin cos d

0 otherwise
u w
ij ij

ijv i j i j i j
C C vj i x j x x

⎧ − ≠ +
= = = ⎨

⎩
∫p p p , 

12 2 3
1 0

sin cos sin dw
ijkK v jk i x j x k x x 2 2 3

1 ( , , )scsv jk I i j kp=p p p p= ∫
w
ij fK v j v j i x j xp p p= − − ∫

 , 

12 4 4 2 2 2

0
[ ( 1) ] sin sin dxp 2 4 4 2 2 21 [ ( 1)

2
]f ijv j v j= − −p p d

x

, 

12 2 3
1 0

sin cos sin du
ijkK v jk i x j x k x= ∫p p p p  + , 

12 2 3
1 0

sin cos sin dv kj i x k x j x x∫p p p p

        +  , 2 2 3
1 ( , , )scsv jk I i j k= p 2 2 3

1 ( , , )scsv kj I i k jp

12 2 4
1 0

3 sin sin cos cos d
2

w
ijklK v j kl i x j x k x l x xp p p p p= ∫ 2 2 4

1
3 ( , , , )
2 ssccv j kl I i j k l= p , 

1( , , ) [ ( , ) ( , )]
2scs cc ccI i j k I i k j I I k j= − − + , 

1( , , , ) [ ( , ) ( , ) ( , ) ( , )]
4sscc cc cc cc ccI i j k l I i j k l I i j k l I i j k l I i j k l= − + + − − − + + − + − , 

1

0

0
( , ) cos cos d 1/ 2 0

1 0
cc

i j
I i j i x j x x i j

i j

≠⎧
⎪= π π = =⎨
⎪

≠
= =⎩

∫   . 

Equations (9) and (10) can be written in matrix-vector form as: 

  , (11) u u u u u u w w w
2 ( )+ + + =M q C q K q K q q 0

  (12) w w w w w w u u w w w w
2 3( ) ( )M q C q K q K q q K q q 0+ + + + =

where  and . The entries of matrices , , , , 

 and  are respectively 

u T
1 2[ , , , ]u u u

Nq q q=q w
1 2[ , , , ]w w w

Mq q q=q T uM wM uC wC

uK wK ,u w
ij ijM M , ,  and . Furthermore, the entries of matrices 

,  and  are respectively 

,u w
ij ijC C u

ijK w
ijK

w w
2 ( )K q u u

2 ( )K q w w
3 (K q )



 ,     and   . 2
1

ij

M
w w w

ijk k
k

K k q
=

= ∑ 2
1

ij

N
u u u

ijk k
k

K K q
=

= ∑ w wq q3
1 1

ij

M M
w w

ijkl k l
k l

K K
= =

= ∑∑

Equations (11) and (12) can be grouped as:   

  (13) 2 3( ) ( )+ + + + =Mq Cq Kq K q q K q q 0

where 

u w T[ , ]=q q q , , 
u

w

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

M 0
M

0 M

u

w

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C 0
C

0 C
,  

u

w

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

K 0
K

0 K
, , 

w
2

2 u
2

0 K
K

0 K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

3 w
3

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0 0
K

0 K
. 

For the forced response of the system, an excitation term can be added to the right hand side of 

equation (13), i.e. 

                                                                  (14) 2 3( ) ( ) cosn tw+ + + + =Mq Cq Kq K q q K q q F

in which  is the non-dimensional excitation frequency whose physical counterpart is w 2/P ALw r . 

 

 

4. IHB FORMULATION 

In this section, the Incremental Harmonic Balance (IHB) method is formulated to solve equation 

(14). With the new dimensionless time variable t  defined as: 

 tt w= , (15) 

equation (14) becomes  

  (16) 2
2 3[ ( ) ( )] cosnw w′′ ′+ + + + =Mq Cq K K q K q q F t

in which prime denotes differentiation with respect to t . 

 The first step of the IHB method is the incremental procedure. Let 0jq  and  denote a state of 

vibration; the neighboring state can be expressed by adding the corresponding increments as: 

0w

  ,  0w w Dw= + 0j jq q qD j= +  (17) 

where  and m N . 1,2, ,j m= M= +

Substituting equations (17) into equation (16) and neglecting the higher order incremental terms, 

one obtains the following linearized incremental equation in matrix-vector form: 

  , (18) 2 *
0 0 2 3 0 0 0( 3 ) (2′′ ′ ′′ ′+ + + + = − +M q C q K K K q R Mq Cqw D w D D w Dw)

  (19) 2
0 0 0 0 2 0 3 0 0cos { [ ( ) ( )] }nt w w′′ ′= − + + + +R F Mq Cq K K q K q q

in which 



 , DT
0 10 20 0[ , , , ]mq q q=q =q T

1 2[ , , , ]mq q qD D D ,  

*
2

2 w
2

+ u
2 2

0 K
K

K K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,   2
1

ij

M
u w
ijk k

k

K K+

=

= ∑ q

∑ ∑

and R is a residual/corrective vector that goes to zero when the (numerical) solution is exact.  

The second step of the IHB method is the harmonic balance procedure. Let 

 0
1 1

cos( 1) sin
c sn n

j jk jk
k k

q a k b kt t
= =

= − + = s jC A  , (20) 

 
1 1

cos( 1) sin
c sn n

j jk jk
k k

q a k b kD D t D t
= =

= − + =∑ ∑ s jDC A  (21) 

where 

 , [1, cos , ,cos( 1) , sin , , sin ]s cn nt t t= −C st

 , j =A T
1 2 1 2[ , , , , , , , ]

c sj j jn j j jna a a b b b

 . jD =A T
1 2 1 2[ , , , , , , , ]

c sj j jn j j jna a a b b bD D D D D D

Then,  and  can be expressed in terms of the Fourier coefficient vector  

and its increment  as 

0q Dq T
1 2[ , , ]m=A A A A

T
1 2[ , , ]mD D D D=A A A A

  0 ,=q SA D D=q S A  (22) 

in which diag. . Substituting equations (22) into equation (18) and applying the 

Galerkin procedure for one cycle, one obtains the following set of linear equations in terms of  

and Dw: 

=S s s s[ , , , ]C C C

DA

 mc mcD = −K A R R Dw  (23) 

where 

 
2 T 2 *

0 0 2 30
[ ( 3mc d

p

w w′′ ′= + + + +∫Κ S MS CS K K K S) ] t , 

 
2 T 2

0 0 2 30
{ cos [ ( ) ]}n d

p

t w w t′′ ′= − + + + +∫R S F MS CS K K K S A  , 

 
2 T

00
(2 )mc d

p

w t′′ ′= +∫R S MS CS A . 

The solution process begins with a guessed solution. The nonlinear frequency-amplitude response 

curve is then solved point-by-point by incrementing the frequency w  or incrementing a component 

of the coefficient vector A. The Newton-Raphson iterative method can be employed.   

 

 

 



5. NUMERICAL CALCULATIONS 

To illustrate the power of the IHB method, some numerical examples are presented in this section. 

If we take  in equations (7) and (8), i.e., only one longitudinal mode and one transverse 

mode are taken, then equations (9) and (10) become 

1N M= =

 2 2 2
1 1 1( )u uq v v qp 0− − =  , (24) 

 2 2 2 2
1 1) q( 1w w

fq v vp p+ − + 2 4 3
1 1

3 ( ) 0
8

wv qp+ =  . (25) 

Obviously, the longitudinal vibration is linear and the transverse vibration is nonlinear. Moreover, 

they are not coupled. Equation (25) is the famous Duffing equation and its nonlinear dynamic 

characteristics have been thoroughly investigated by many researchers. Letting , i.e. two 

longitudinal and two transverse modes are considered, equations (9) and (10) become:  

2N M= =

 , (26) 2 2 2 2 3
1 1 2 1 1 1 1 2( )u w u w wq q v v q v q qm p p+ − − + = 0

 2 2 2 2 3 2
2 2 1 1 2 1 1

14( ) ( ) 0
2

u u u wq q v v q v qm p p+ − − + = , (27) 

 , (28) 2 3 2 3
1 1 2 11 1 12 1 2 13 1 1 1 2 2 1( ) ( ) ( ) 0w w w w w w u w u wq q k q k q q k q v q q q qm p+ + + + + + =

 2 3 2 3
2 2 1 21 2 22 2 1 23 2 1 1 1( ) ( ) 0w w w w w w u wq q k q k q q k q v q qm p+ + + + + =  (29) 

where 

 , 1 16 / 3vm = − 11k = 2 2 2 2( 1)fv vp p− + 2 4
12 13k v ,  13 12 /8k k= , ,   p=

 ,  2 1m m= − 21k = 2 2 2 24(4 1)fv vp p− + , 22 12k k= ,  23 122k k= . 

Riedel and Tan [12] investigated the forced transverse response of an axially moving strip using the 

method of multiple scales. With reference to the typical parameters of a belt drive system given in 

[12], we shall assume 

   and 2
1 1124,v = 2 0.0015fv = 0.6v =  

throughout this section. The natural frequencies can be approximated with the linear undamped 

natural frequencies by dropping the nonlinear and damping terms in equations (26) to (29). In this 

light, the linear natural frequencies are estimated to be 2.54 and 5.25 for the transverse vibration, 

and 105.31 and 210.62 for the longitudinal vibration. The natural frequencies of the transverse 

vibration are far away from that of the longitudinal vibration so that the coupled effect between 

them should be weak. Hence, we will focus on the forced transverse response of the moving beam 

by neglecting the effect of the longitudinal vibration in the following study. By setting s to zero 

and by incorporating the force terms, equations (28) and (29) become 

u
iq

  , (30) 2 3
1 1 2 11 1 12 1 2 13 1 1( ) ( ) cosw w w w w wq q k q k q q k q Fm W+ + + + = t



  (31) 2 3
2 2 1 21 2 22 2 1 23 2 2( ) ( ) cosw w w w w wq q k q k q q k q Fm+ + + + = tW

0

where Ω is the forcing frequency. By dropping the nonlinear terms, the linear natural frequencies 

can be solved from the following equation: 

  (32) 4 2
11 21 1 2 11 21( )k k k kw mm w− + − + =

For the chosen v1 and vf, Figure 2 plots the ratio of the second natural frequency  to the first 

natural frequency  versus the axial speed v. For a nonlinear system with cubic nonlinearity, the 

internal resonance usually occurs when the natural frequency 

20w

10w

20 103w w≈ . It can be found from 

Figure 2 that  when  and 20 10/w w ≈ 3 2
1 1124,v = 2 0.0015fv = 0.6v = . With this value of v, 

 and .  10 2.11641w = 20 6.3109w =
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Figure 2.  Ratio of transverse natural frequencies versus speed for  and . 2

1 1124v = 2 0.0015fv =
 

5.1  FUNDAMENTAL RESONANCE AT 2 NEAR −10

In order to obtain the fundamental resonance when the forcing frequency W is near the first  

natural frequency , one should take = 0 in equation (31). In the following calculation, we take 

 = 0.03 and . As equations (30) and (31) do not contain quadratic nonlinear terms,  

and  should not contain even harmonic terms and, thus, can be expressed as  

10w 2F

1F c s 4n n= = 1
wq

2
wq

  , (33) 1 11 11 13 13cos( ) cos3( )wq A At f t f= + + + +

+  (34) 2 21 21 23 23cos( ) cos3( )wq A At f t f= + + +

where  and ™ denote phase difference. The fundamental response is expressed mainly by the 

, ,  and  curves which are shown in Figure 3 (a), (b), (c) and (d), 

tt W=

11AW− 13AW− 21AW− 23AW−



respectively.  and , defined in equation (33), are respectively the amplitudes of the first and 

the third harmonic terms in the first variable . Meanwhile,  and , defined in equation (34), 

are respectively the amplitudes of the first and the third cosine harmonic terms of the second 

variable . To facilitate the understanding of the relation between forced and free vibration, the 

free vibration backbone curves for , ,  and  are also plotted. It can be seen that | | 

>> | | and | | >> | |. Therefore,  the first and third harmonic terms are the major modes of 

 and , respectively.  

11A 13A

1
wq 21A 23A

2
wq

11A 13A 21A 23A 11A

13A 23A 21A

1
wq 2

wq

 One can note the internal resonance on the amplitudes of the responding modes in Figures 3a and 

3d. Both A11 and A23 possess three solutions. Their first solutions (1)
11A  and (1)

23A  are of different 

phases, and represent the in-phase and out-of-phase responses, respectively. Starting from P1s in the 

respective figures, both | (1)
11A | and | (1)

23A | increase with 2 to the turning points P2s. Before P2s, | (1)
11A | 

> | (1)
23A | and thus the major mode of  is the responding mode. At P1

wq 2s, | (1)
11A | jumps down and | (1)

23A | 

jumps up. Afterwards, | (1)
11A | drops and | (1)

23A | rises slowly. The responding modes switch from the 

major mode of  to that of . Though the frequency pertinent to the 1
wq 2

wq (1)
23A  is 32t, (1)

23A  here is not 

triggered by F2cos(32t) which acts on . Rather, 2
wq (1)

23A  is induced by the nonlinear effect intrinsic 

to the dynamic system. This phenomenon is typically known as internal resonance. Noticeably, the 

frequencies at P2s are close to the first natural frequency  or the exchange of the responding 

mode occurs at the vicinity of . 

10w

10w

The second solutions of A11 and A23 are respectively (2)
11A  and (2)

23A  which are of the same phase. 

(2)
11A  and (2)

23A  start from P4s and terminate at P6s via turning points P5s. In the course, | (2)
11A | 

increases gradually but | (2)
23A | decreases gradually. In other words, the responding mode transits 

gradually from the major mode of  back to that of . The third solutions of A2
wq 1

wq 11 and A23 are 

respectively (3)
11A and (3)

23A  which are again of the same phase. (3)
11A and (3)

23A  start from P7s and 

terminate at P9s via turning points P8s. In the course, both | (3)
11A | and | (3)

23A | drop gradually. There is 

no exchange of responding mode as in the first solutions ( (1)
11A  and (1)

23A ) and second solutions ( (2)
11A  

and (2)
23A ).  

 The internal resonance pattern for  and  revealed in Figures 3b and 3c are similar to that 

of A

13A 21A

11 and A23. However,  and  are only the minor modes of respectively  and  as | | 

≈ | | <<  |A

13A 21A 1
wq 2

wq 13A

21A 11| ≈ |A23|.  



 To the best knowledge of the authors, the internal resonance phenomenon portrayed in Figures 

3a to 3d bodies have not been reported in the literature of axially moving bodies and nonlinear 

vibration. Nevertheless, the phenomenon is very much similar to the internal resonance previously 

reported for nonlinear vibration of clamped-hinged beams [28] and thin plates with one edge 

clamped and the opposite edge hinged [29]. Though they arises from different sets of governing 

equations and are solved by different methods, they share the common cubic nonlinearity feature 

and .  20 103w w≈

 Figure 4 shows the forced response curves of the Duffing equation as obtained by adding the 

excitation term  to the right hand side of equation (25). Comparing Figure 4 to Figure 3a, 

one can discover the important difference between the characteristics of the one and the two degree-

of-freedom systems. In the single degree-of-freedom system, 

1 cosF Wt

(1)
11A  and (2)

11A  in Figure 3a becomes 

(1)
1A  in Figure 4. The turning point P2 does not exist and there is no internal resonance for the in-

phase response curve. On the other hand, the out-of-phase responses (3)
11A and (3)

1A  in the two figures 

exhibit the same characteristic.  
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Figure 3a. Fundamental resonance asW w10≈ , ⎯  denotes forced response  
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Figure 3b. Fundamental resonance as 10W w≈ , ⎯  denotes forced response 

curve and - - denotes backbone curve. 
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Figure 3d. Fundamental resonance as 10W w≈ , ⎯  denotes forced response 

curve and - - denotes backbone curve. 
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 Figure 4. Forced response curve of Duffing equation as 10W w≈ , ⎯  denotes 
forced response curve and - - denotes backbone curve. 

 

5.2  SUPERHARMONIC RESONANCE AT 2 NEAR −10/3 

    In order to obtain the superharmonic resonance as 2 near −10/3, one should again take a non-

zero F1 and a zero F2 in equations (30) and (31). Furthermore, we set  = 0.03 and 1F c s 4n n= = . 

The solution of  and  are again taken in the form of equations (33) and (34). Results show 

| | >> | | and | | >> | |. In other words, the response is dominated by the third harmonic 

terms whose frequency is three times of the excitation frequency. Consequently, these resonance 

are called superharmonic resonance which are expressed by the 

1
wq 2

wq

13A 11A 23A 21A

13AW−  and  curves in 23AW−



Figure 5a and 5b, respectively. The superharmonic responses of 13AW−  and  show the same 

characteristics which are similar to that of the fundamental resonance of the single degree-of-

freedom system in Figure 4. The sharp turns of the frequency-amplitude response curves are 

responsible for the jump phenomenon.  

23AW−
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Figure 5a. Superharmonic resonance as 10 / 3W w≈ , ⎯  denotes forced  
response curve and - - denotes backbone curve. 
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Figure 5b. Superharmonic resonance as 10 / 3W w≈ . ⎯  denotes forced  
response curve and - - denotes backbone curve. 

 



5.3  FUNDAMENTAL RESONANCE AT 2 NEAR −20

In order to obtain the fundamental resonance as W nears the second natural frequency , one 

should take a zero F

20w

1 and a non-zero F2 in equations (30) and (31). Furthermore, we take  = 0.03 

and . The solutions of  and  are also taking the form of equations (33) and (34).  

Numerical results show that 

2F

c s 4n n= = 1
wq 2

wq

11A >> 13A and 21A >> 23A . In other words, the response is dominated 

by the first harmonic terms whose frequency is the same as the excitation frequency.  Therefore, 

these responses are termed as fundamental resonances. They are expressed by the curves 21AW−  

and  in Figure 6 a and 6b, respectively. The characteristic of  and  is similar to that of 

the single-degree-of-freedom system shown in Figure 4.  

11AW− 11A 21A
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Figure 6a.  Fundamental resonance as 20W w≈ , ⎯  denotes forced  
    response curve and - - denotes backbone curve. 
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Figure 6b.  Fundamental resonance as 20W w≈ , ⎯  denotes forced response 
 curve and - - denotes backbone curve. 



5.4  SUBHARMONIC RESONANCE AT  2 NEAR −20

Besides the fundamental resonance, there is another kind of resonance named subharmonic 

resonance that occurs when . To obtain the subharmonic resonance, one should take a zero 

F

20W w≈

1 in equation (30) and a nonzero F2 on the third harmonic term in equation (31). Let , 

the solution of  and  in the present case are taken to be  

13tt W t= =

1
wq 2

wq

                                   for  j=1, 2   (35)  1 1
1 1

cos(2 1) sin(2 1)
c sn n

w
j jk jk

k k

q a k b kt t
= =

= − +∑ ∑ −

Again, we take f2 = 0.03 and . Numerical results show that the coefficients c s 4n n= = jka  and 

jkb (j=1,2, k=3, 4) are near to zero. Hence, the assumed solutions are simplified to be 

                                          1 11 11 13 13
1cos ( ) cos( )
3

wq A At f t f= + + + +  ,                                  (36) 

                                          2 21 21 23 23
1cos ( ) cos( )
3

wq A At f t f= + + + +   .                                (37) 

Results show that | | >>| | and | |>>| |. In other words, the response is dominated by the 

first harmonic terms whose frequency is one-third of the excitation frequency. Hence, these 

resonances are called subharmonic resonances which are expressed by the  and 

11A 13A 21A 23A

11AW− 21AW−  

curves in Figure 7a and 7b, respectively. In other words, the excitation at a high frequency may 

produce significant responses in the low frequency modes and, particularly, the fundamental mode. 

Figures 7a to 7d show how complicated the solution can be when 20W w≈ . Some interesting 

phenomena are noted below:  

(1) There are two solutions in the subharmonic resonance as 20W w≈ .  

(2) | | in Figure 7a can be as large as 6| | in Figure 7b, 10| | in Figure 7d and even 20| | in 

Figure 7c. Clearly, the subharmonic response is dominated by  or the subharmonic term of 

the first variable.  

11A 21A 23A 13A

11A

(3) Double roots are encountered for  and  as shown in Figures 7c and 7d. In other words, 13A 23A

(1) (2)
13 13A A= , (1) (2)

23 23A A= .  

(4) There is no jump phenomenon in all subharmonic resonance. 

 

Lastly, it is worth pointing out that one can calculate another set of solutions when . 

As , the pertinent response curves 

11 21 0A A= =

20W w≈ 13AW− and 23AW−  express the fundamental resonance 

and are similar to the  and  curves in Figures 6a and 6b.   11AW− 21AW−
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               Figure 7a.  Subharmonic resonance as 20W w≈ , ⎯  denotes forced response curve and - - 
denotes backbone curve. 
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                Figure 7b. Subharmonic resonance as 20W w≈ , ⎯  denotes forced response 
 curve and - - denotes backbone curve. 
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              Figure 7c. Subharmonic resonance as 20W w≈ , ⎯  denotes forced response 

 curve and - - denotes backbone curve.  
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              Figure 7d. Subharmonic resonance as 20W w≈ , ⎯  denotes forced response 
 curve and - - denotes backbone curve. 
 

 

 

 

 

 

 

 



6.  CONCLUDING REMARKS  

1. The Incremental Harmonic Balance (IHB) method has been shown to be a straightforward, 

efficient and reliable method for treating the nonlinear vibration of axially moving systems. 

2. The forced response of an axially moving beam with internal resonance between the first two 

transverse modes is studied. In the presence of internal resonance due to the coupling of the 

two modes, numerical results reveal that excitation at a frequency close to the fundamental 

frequency can produce a significant response at a higher harmonic frequency. Conversely, 

excitation at a frequency close to a higher harmonic frequency may produce a significant 

response at a lower harmonic frequency and, in particular, at the fundamental frequency. The 

observed internal resonances are rich and complicated. To the best knowledge of the authors, 

the observations have not been reported in the literature on nonlinear vibration analysis of 

axially moving media. 

3. Stability analysis of the periodic response has not been studied here. It will be discussed in a 

separate paper. 
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