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Abstract

In this paper we investigate some properties of a class of C0 semigroups on Banach spaces.

Suppose that the spectrum of the infinitesimal generator is discrete and there is only finitely many

eigenvalues in each vertical strip, we show that such semigroups can be expanded by their general-

ized eigenvectors under certain conditions. As a consequence, we assert that the semigroups with

these conditions is eventually differentiable provided that the system of generalized eigenvectors is

complete. As an example, we apply our results to a one-dimensional wave control system.
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1 Introduction

Let {T (t)}t≥0 be a C0 semigroup on a Banach space X and A be its generator. In practice, there

are many problems in which we need to discuss properties of the semigroups, such as differentiability,

compactness and generalized eigenvectors expansion. Since very frequently we merely have information

about the infinitesimal generator A, so it is important to know how to deduce these properties from

those of A. One of the successful ones is the Hille-Yosida Theorem, which makes use of the information

from the resolvent R(λ;A) of A. Others such as those in [2], [3], [4], [5] and [6], which tried to provide

an answer to the statement put up by Pazy in [1]: “so far there are no known necessary and sufficient

conditions, in terms of A or the resolvent R(λ;A), which assure the continuous for t > 0 of T (t) in the

uniform operator topology”. Again, these answers more or less rely on information of R(λ;A). For

example, in the case that X is a Hilbert space, You in [2] showed that a semigroup is norm continuous
∗This work is supported by the National Science Foundation of China grant NSFC-60474017, by a grant of Liu Hui

Center for Applied Mathematics of Nankai University and Tianjin University and by the Hong Kong CERG grant HKU

7059/06P.
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if and only if lim
τ→∞

||R(ω + iτ ;A)|| = 0 for sufficiently large ω. Indeed, in a lot of cases, proving

some properties for the resolvents is not hard, for instance proving that the k-power of the resolvent,

Rk(λ,A), is compact for some integer k is possible for transport operators ( see [7]). However, finding

an explicit expression for the resolvents is usually not easy. So using other type of information in the

investigation become viable. It is along this line of thoughts that we try to use spectral information

of A to investigate properties of the semigroups.

Now suppose that the spectrum σ(A) of A consists of all isolated eigenvalues of finite algebraic

multiplicity, i.e., σ(A) = σp(A) = {λk}r
k=1, r ≤ ∞. Then the operator A has the form

A ≈
r∑

k=1

[λkE(λk,A) + Dk] +A0 (1.1)

where E(λk, A) is the Riesz projection and Dk is a nilpotent operator, and for each x ∈ X,

T (t)x ≈
r∑

k=1

eλktPk(t, x) + R(t, x), (1.2)

where Pk(t, x) is a X-valued polynomial in t and R(t, x) is the remainder term. Clearly, if (1.2)

holds as an equality, then we can deduce the desirable properties of the semigroups from the spectral

information. However, in the case that r = ∞, the series in (1.2) could diverge. Therefore, for such

class of semigroups, it is important to study the summability of the Riesz projections of A. That is

we need to know whether the sequence
n∑

i=1
E(λi;A) of Riesz projections of A is uniformly bounded in

a Banach space. It is the topic that we shall study in this paper.

In fact, many researchers have worked on this problem, for instance see Lang and Locker [8] [9],

Verduyn Lunel [10], Guo [11], Rao [12], Shubov [13] and Xu [14], etc. In [8], [9], [11]–[14], the partial

sum
n∑

i=1
E(λi;A) is shown to be uniformly bounded and unconditionally convergent in the strong

topology. However, we observe that the case that sup
n
||E(λn;A)|| = ∞ is not included there and we

shall address this in this paper.

Assume that A has a discrete spectrum. When A is a generator, its spectra are located in a left-

half plane and fall into one the two cases: (1) there exists a vertical strip in which there are infinite

many eigenvalues of A; (2) there are only finitely many number of eigenvalues of A in any vertical

strip. The first case (1) has been studied in [15]. In this paper, we are going to address the second

case (2). We shall make use of the information of A from three different portions: distribution of the

eigenvalues, Riesz projections and their actions on each root subspace E(λk,A)X. Our results will

include the case that sup
n
||E(λn;A)|| = ∞. Under these information, we shall deduce summability of

Riesz projections, compactness and differentiability of the semigroups.

The organization of this paper is as follows. In section 2, we shall prove our main theorem and its

corollary. In section 3, we shall illustrate our result by an example that comes from a controlled one

dimensional wave equation.
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2 Main result and its proof

In this section we shall prove the main result of this paper as well as its corollary. We begin with

some basic notations.

Let {T (t)}t≥0 be a C0 semigroup on a Banach space X and A be its generator. Assume that A has

a discrete spectrum, that is, σ(A) = σp(A) = {λn;n ∈ N}. For each λn ∈ σ(A), denote by E(λn;A)

its Riesz projection on X. We define the T (t)−invariant spectral-subspace of X by

Sp(A) := span


m∑

j=1

E(λj ,A)x
∣∣∣ x ∈ X;∀ m ∈ N

,

and another T (t)−invariant subspace by

M∞ := {x ∈ X | E(λ;A)x = 0,∀λ ∈ σ(A)}.

Clearly. Sp(A) ∩M∞ = {0}, and Sp(A) +M∞ ⊆ X.

For each λn ∈ σ(A), we denote the algebraic multiplicity of λn by mn, and define operators

Dn := (A− λn)E(λn,A) and D0
n = E(λn,A).

Then for each n ∈ N, Dn is a bounded linear operator with the property that

Dk
n = (A− λn)kE(λn,A) and Dmn

n = 0.

Now we state our main result of this paper.

Theorem 2.1 Let T (t) be a C0 semigroup on a Banach space X and A be its generator. Suppose

that A satisfies the following conditions:

(c1). there exist positive constants M1 , ρ1 and ρ3 such that
mn∑
k=0

tk‖Dk
n‖

k!
≤ M1e

−ρ1<λneρ3t, ∀n ∈ N, t ≥ 0. (2.1)

(c2). there exists a τ0 > 0 such that the series
∞∑

n=1
e<λnτ0 converges.

Then we can define two family of operators parametrized on [τ0 + ρ1,∞),

T1(t) : X → Sp(A) and T2(t) : X →M∞,

such that

1). T1(t) is a compact operator, T1(t) and T2(t) are strongly continuous;

2). Tj(t)T (s) = T (s)Tj(t) = Tj(t + s), for t ≥ τ0 + ρ1, s ≥ 0, j = 1, 2;

3). T (t) has a decomposition

T (t) = T1(t) + T2(t), t ≥ τ0 + ρ1.

In addition, if the following condition on the spectrum of A holds:

(c3). there exist constants M2 > 0 and ρ2 > 0 such that

|=λn| ≤ M2e
−ρ2<λn ,

then, for each x ∈ X, T1(t)x is differentiable in (τ0 + ρ1 + ρ2,∞).
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Remark 2.1 In theorem 2.1, condition (c1) is a condition on the action of A on each root subspace.

If we take t = 0, then we condition (c1) is just

‖E(λn,A)‖ ≤ M1e
−ρ1<λn .

Therefore, condition (c1) includes the case that sup
n
||E(λn,A)|| = ∞. Also, it requires that ‖E(λn;A)‖

grows not faster than e−ρ1<λn as <λn → −∞.

Conditions (c2) and (c3) are requirements on the spectral distribution of A. Condition (c3) is also

a spectral condition for the differentiable semigroup (see, [1] and [6]). It is equivalent to the condition

|λn| ≤ M2e
−ρ2<λn , ∀n ∈ N.

The proof of Theorem 2.1 Let T (t) be a C0 semigroup on a Banach space X and A be its

generator. Suppose that conditions (c1) and (c2) are fulfilled. For each λn ∈ σ(A) and any x ∈ X, we

have

T (t)E(λn,A)x = eλnt
mn∑
k=0

tk

k!
(A− λn)kE(λn,A)x = eλnt

mn∑
k=0

tk

k!
Dk

nx.

Since ∥∥∥∥∥
mn∑
k=0

tk

k!
Dk

nx

∥∥∥∥∥ ≤
mn∑
k=0

tk‖Dk
n‖

k!
‖x‖,

so condition (c1) ensures that there exist positive constants M1, ρ1 and ρ3 such that

‖T (t)E(λn,A)‖ ≤ M1e
<λn(t−ρ1)eρ3t, ∀n ∈ N, t ≥ 0.

Then, as t ≥ τ0 + ρ1, it holds that
∞∑

n=1

‖T (t)E(λn,A)‖ ≤ M1e
ρ3t

∞∑
n=1

e<λn(t−ρ1).

Since X is a Banach space, the series
∞∑

n=1
T (t)E(λn,A) converges in the operator norm. Note that for

each n, T (t)E(λn,A) is compact, so
∞∑

n=1
T (t)E(λn,A) is also compact. Now we define the operator

T1(t) for each t ≥ τ0 + ρ1 by

T1(t) :=
∞∑

n=1

T (t)E(λn,A) =
∞∑

n=1

E(λn,A)T (t). (2.2)

Evidently, T1(t) is compact for t ≥ τ0 + ρ1 and T1(t)x ∈ Sp(A).

For each x ∈ X and t ≥ τ0 + ρ1,s ≥ 0, we have

T (s)T1(t)x =
∞∑

n=1

T (s)T (t)E(λn,A)x =
∞∑

n=1

T (t)E(λn,A)T (s)x = T1(t)T (s)x

=
∞∑

n=1

T (s + t)E(λn,A)x = T1(t + s)x.

Hence

‖T1(t+h)x−T1(t)x‖ = ‖[T (t+h−(τ0+ρ1))−T (t−(τ0+ρ1))]T1(τ0+ρ1)x‖, t+h > τ0+ρ1, t > τ0+ρ1.
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So,

lim
h→0

‖T1(t + h)x− T1(t)x‖ = 0.

Now we define T2(t) for t ∈ [τ0 + ρ1,∞) by

T2(t) := T (t)− T1(t).

Clearly, {T2(t)}t≥τ0+ρ1 are bounded linear operators on X and strongly continuous with respect to t.

Furthermore,

T2(t)T (s) = T (t)T (s)− T1(t)T (s) = T (t + s)− T1(t + s) = T2(t + s), t ≥ τ0 + ρ1, s ≥ 0,

and

E(λn,A)T2(t) = E(λn,A)T (t)− E(λn,A)T1(t) = 0.

So T2(t)x ∈M∞.

We now further suppose that the (c3) holds. For x ∈ X, t ≥ τ0 + ρ1 + ρ2, we have∥∥∥∥∥
∞∑

n=1

λneλnt
mn∑
k=0

tk

k!
Dk

nx

∥∥∥∥∥ ≤
∞∑

n=1

|λn|e<λnt
mn∑
k=0

tk‖Dk
n‖

k!
‖x‖

≤ M1e
ρ3t

∞∑
n=1

|λn|e<λn(t−ρ1)‖x‖ ≤ M1(1/ρ2 + M2)eρ3t
∞∑

n=1

e<λn(t−ρ1−ρ2)‖x‖.

So the series

∞∑
n=1

AT (t)E(λn,A)x =
∞∑

n=1

[
λneλnt

mn∑
k=0

tkDk
n

k!
+ eλnt

mn−1∑
k=0

tkDk+1
n

k!

]
x

converges absolutely for t ≥ τ0 + ρ1 + ρ2. Since A is a closed linear operator, it holds that

A
∞∑

n=1

T (t)E(λn,A)x =
∞∑

n=1

AT (t)E(λn,A)x.

Therefore for t > τ0 + ρ1 + ρ2, T1(t)x is differentiable and

dT1(t)x
dt

=
∞∑

n=1

AT (t)E(λn,A)x = AT1(t)x.

The proof is then complete. �

Corollary 2.1 Let T (t) be a C0 semigroup on a Banach space X and A be its generator. Suppose that

conditions (c1)–(c3) in Theorem 2.1 hold. In addition, if one of the following conditions is fulfilled:

1) the generalized eigenvectors of A are complete in X;

2) the restriction of the resolvent of A to M∞ is an entire function with values in X of finite

exponential type h;

then T (t) is a differentiable semigroup for t > τ1, where

τ1 := max{τ0 + ρ1 + ρ2, τ0 + ρ1 + h}. (2.3)
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Proof Let A be the generator of T (t). We can assume without loss of generality that T (t) is

exponential stable.

If the system of generalized eigenvectors of A is complete in X, i.e., Sp(A) = X, the desired

result follows immediately from Theorem 2.1. Now we suppose instead that the second condition 2)

is verified. From Theorem 2.1, we have a decomposition

T (t)x = T1(t)x + T2(t)x, t ≥ τ0 + ρ1,

with T1(t)x ∈ Sp(A) and T2(t)x ∈ M∞. If M∞ = {0}, then T2(t) = 0, so the desired result follows.

If M∞ 6= {0}, for each x ∈ M∞, we have T (t)x ∈ M∞, and R(λ,A)x is an entire function of finite

exponential type h, which is independent of x. From the theory of semigroups of linear bounded

operators, we have

R(λ,A)z =
∫ ∞

0
e−λtT (t)zdt, z ∈ X, <λ ≥ 0 > ω0(A).

So

R(λ,A)x =
∫ ∞

0
e−λtT (t)xdt, x ∈M∞, <λ ≥ 0 > ω0(A).

Therefore, for each f ∈ X∗, 〈R(λ,A)x, f〉 is in H2(C+). Note that 〈R(λ,A)x, f〉 is an entire function of

exponential type at most h. The Wiener-Paley Theorem says that there is a function Tx,f (t) ∈ L2[0, h]

such that

〈R(λ,A)x, f〉 =
∫ h

0
e−λtTx,f (t)dt, ∀λ ∈ C.

The uniqueness theorem on the Fourier transform ensures that Tx,f (t) = 〈T (t)x, f〉. Therefore,

T (t)x = 0, ∀x ∈M∞, t > h.

Now for any x ∈ X, we have

T (τ0 + ρ1)x = T1(τ0 + ρ1)x + T2(τ0 + ρ1)x,

and for t > τ1 := max{τ0 + ρ1 + ρ2, τ0 + ρ1 + h}, 0 < ε < t− τ1,

T (t)x = T (t− h− ε− τ0 − ρ1)T (h + ε)T (τ0 + ρ1)x = T (t− h− ε)T1(h + ε)x = T1(t)x.

This together with Theorem 2.1 asserts that T (t)x is differentiable for t ∈ (τ1,∞). The proof is then

complete. �

3 Application

In this section we shall give an example that comes from control theory to illustrate our result.

In control theory, to show that a system satisfies the spectrum determined growth condition is an

interesting but difficult problem. If the system operator generates an eventually norm continuous

semigroup, then the spectrum determined growth condition holds. However, verifying this condition

is difficult because the semigroup usually may not have a workable expression. So using the spectrum
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of the system operator to verify this property becomes an attractive alternative. The authors in

literatures [11]–[14] achieved this aim by proving the Riesz basis property of the eigenvectors of the

system operator. In our example below, the eigenvectors of the system operator fail to form a basis.

Consider a controlled wave equation:
wtt(x, t) = wxx(x, t), 0 < x < 1, t > 0

wx(0, t) = k1wt(0, t) + αw(0, t),

wx(1, t) = −k2wt(1, t)− βw(1, t)

w(x, 0) = w0(x), wt(x, 0) = w1(x).

(3.1)

where

α ≥ 0, β ≥ 0, k1 ≥ 0, k2 ≥ 0 and k1 + k2 6= 0, α + β 6= 0. (3.2)

Let the state space be

H := H1(0, 1)× L2(0, 1),

where Hk(0, 1) is the usual Sobolev space order k and H1(0, 1) is equipped with the inner product

(u, v)H1 :=
∫ 1

0
u′(x)v′(x)dx + αu(0)v(0) + βu(1)v(1).

In H, for any F = (f1, f2), G = (g1, g2) ∈ H, the inner product is defined by

< F, G >H:=
∫ 1

0
f ′1(x)g′1(x)dx + αf1(0)g1(0) + βf1(1)g1(1) +

∫ 1

0
f2(x)g2(x)dx.

Here we use the notation u′(x) = du
dx = ux(x) for the sake of convenience. Clearly, H is a Hilbert

space.

Define the operator A in H by

D(A) := {(u, v) ∈ H2(0, 1)×H1(0, 1) | u′(0) = αu(0) + k1v(0), u′(1) = −βu(1)− k2v(1)} (3.3)

A(u, v) := (v, u′′), (u, v) ∈ D(A). (3.4)

With the help of these notations, we can rewrite the system (3.1) into an evolutionary equation in H:
d

dt
W (t) = AW (t), t > 0,

W (0) = W0.
(3.5)

where W (t) := (w(x, t), wt(x, t)) and W0 := (w0(x), w1(x)).

It is easy to prove the following result.

Theorem 3.1 Let A be defined by (3.3) and (3.4). Then A has compact resolvents and generates a

C0 semigroup of contractions on H.

In [16], the author has discussed the case that k1 6= 1 and k2 6= 1. Here we shall discuss the case

that k1 = 1 and k2 ≥ 0.
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Theorem 3.2 Let A be defined by (3.3) and (3.4). For k1 = 1 and k2 ≥ 0, we have

σ(A) = {λ ∈ C | Γ(λ) = 0}

where

Γ(λ) := [(1 + k2)λ + β][2λ + α]eλ + α[(1− k2)λ− β]e−λ. (3.6)

The proof is a direct verification and we omit the details.

From theorem 3.2 we can see that each eigenvalue of A is a zero of Γ(λ):

Γ(λ) = [(1 + k2)λ + β][2λ + α]eλ + α[(1− k2)λ− β]e−λ

= [2λ2(1 + k2) + (α(1 + k2) + 2β)λ + αβ]eλ − [α(k2 − 1)λ + αβ]e−λ.

So Γ(λ) = 0 implies

e2λ =
α(k2 − 1)λ + αβ

2λ2(1 + k2) + [α(1 + k2) + 2β]λ + αβ
,

which means that <λ → −∞ as |λ| → ∞. Thus, we see that there exist positive constants Dj , j = 1, 2,

such that as k2 6= 1,

|λ| ≤ D1e
−2<λ, (3.7)

and as k2 = 1,

|λ2| ≤ D2e
−2<λ. (3.8)

Let σ(A) = {λn, n ∈ N}. For each λn ∈ σ(A), we now find its Riesz projection E(λn;A). It is

easy to see that the adjoint operator of A, A∗, is given by

A∗(u, v) = −(v, u′′), (u, v) ∈ D(A∗) (3.9)

where

D(A∗) = {(u, v) ∈ H2(0, 1)×H1(0, 1) | u′(0) = −v(0) + αu(0);u′(1) = k2v(1)− βu(1)}. (3.10)

For each λn ∈ σ(A), the corresponding eigenvector of A is

Φ(λn) =
(

λ−1
n

[
eλnx +

α

(2λn + α)
e−λnx

]
,

[
eλnx +

α

(2λn + α)
e−λnx

])
(3.11)

and the eigenvector of A∗ corresponding to λn is

Ψ(λn) = ξn

(
λ−1

n

[
eλnx +

α

(2λn + α)
e−λnx

]
,−

[
eλnx +

α

(2λn + α)
e−λnx

])
, (3.12)

where

ξ−1
n = − 4α

(2λn + α)
+

α

λ2
n

[
1 +

α

(2λn + α)

]2

+
β

λ2
n

[
eλn +

α

(2λn + α)
e−λn

]2

. (3.13)

Evidently,

‖Φ(λn)‖2 = |ξn|−2‖Ψ(λn)‖2 =
1− e2<λn

−2<λn
+

∣∣∣∣ α

(2λn + α)

∣∣∣∣2 e−2<λn − 1
−2<λn

and

< Φ(λn),Ψ(λn) >H= 1, < Φ(λm),Ψ(λn) >H= 0, m 6= n.
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These imply that each eigenvalue of A is simple.

For any F ∈ H, we have

E(λn,A)F =< F, Ψ(λn) >H Φ(λn)

and

‖E(λn;A)‖ = ‖Ψ(λn)‖‖Φ(λn)‖ = |ξn|‖Φ(λn)‖2. (3.14)

Since

lim
n→∞

∣∣∣λ−4
n e−2λnξn

∣∣∣ =
4

βα2
,

lim
n→∞

|λ2
n<λne2<λn |‖Φ(λn)‖2 =

α2

8
,

we have

lim
n→∞

|ξn|‖Φ(λn)‖2|λ−2
n <λn| =

1
2β

. (3.15)

This implies that supn ‖E(λn,A)‖ = ∞ and so the eigenvectors fail to be a basis for H when α > 0

and β > 0.

Combining (3.14), (3.15) and (3.7) (or (3.8)) yield

‖E(λn;A)‖ ≈ |λ2
n|

2|<λn|β
≤

{
M1e

−4<λn , as k2 6= 1,

M1e
−2<λn , as k2 = 1,

(3.16)

where M1 > 0 is a positive constant.

Note that Γ(λ) is an entire function of finite exponential type 1 and λn, n ∈ N, are zeros of Γ(λ).

So we have
∞∑

n=1

1
|λn|1+ε

< ∞, ∀ε > 0.

Obviously, when k2 6= 1 and τ0 > 2, we have

∞∑
n=1

e<λnτ0 ≤ D1

∞∑
n=1

1
|λn|τ0/2

< ∞, (3.17)

and when k2 = 1 and τ0 > 1, the series

∞∑
n=1

e<λnτ0 ≤ D2

∞∑
n=1

1
|λn|τ0

< ∞ (3.18)

converges.

Therefore, we have the following result.

Theorem 3.3 Let A be defined as (3.3) and (3.4) and T (t) be the semigroups generated by A. Then

for k1 = 1, k2 ≥ 0 and αβ > 0, T (t) is differentiable for t > 8.

Proof Let A be defined as (3.3) and (3.4) and T (t) be the semigroup generated by A. From (3.16)

we see that condition (c1) is satisfied with

ρ1 =

{
4, if k2 6= 1

2, if k2 = 1.
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Equations (3.7) and (3.8) lead to

ρ2 =

{
2, if k2 6= 1

1, if k2 = 1.

Also, (3.17) and (3.18) show that for any small ε > 0, we can take

τ0 =

{
2 + ε, if k2 6= 1

1 + ε, if k2 = 1.

For λ ∈ ρ(A), we can get from the resolvent equation (λI −A)(f, g) = (u, v) that

R(λ,A)

[
u

v

]
=

[
f(x)

λf(x)− u(x)

]

with

f(x) = eλxu(0)−
[
(α + 2λ)

α
eλx − e−λx

]
b(λ)− 1

λ

∫ x

0
sinhλ(x− s)[λu(s) + v(s)]ds,

and

Γ(λ)b(λ) = [β + λ(1 + k2)]eλu(0)− αk2u(1)− α(β + λk2)
λ

∫ 1

0
sinhλ(1− s)[λu(s) + v(s)]ds

−α

∫ 1

0
coshλ(1− s)[λu(s) + v(s)]ds.

Note that Γ(λ)b(λ) is an entire function of finite exponential type 1 and

|f(x)| ≤ e|λ||u(0)|+
[
(α + 2|λ|)

α
+ 1

]
e|λ||b(λ)|+ 2e|λ|

|λ|

∫ 1

0
|λu(s) + v(s)|ds.

So R(λ,A)(u, v)T is a meromorphic function of finite exponential type at most h = 2. According to

Corollary 2.1, the semigroup T (t) is differentiable for t > τ1 = 8+ ε. So the proof is complete because

ε > 0 is arbitrary. �

As a consequence of the spectral mapping theorem for differential semigroups, we have the following

result.

Corollary 3.1 System (3.5) satisfies the spectrum determined growth assumption.

Remark 3.1 In this example, we have only used the distribution information of the spectrum of A
which is determined by the equation Γ(λ) = 0. More detailed description can be found in the recent

paper [17].
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