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Highly pathogenic H5N1 influenza A viruses are now endemic in avian populations in 

Southeast (SE) Asia, and human cases continue to accumulate. While currently 

incapable of sustained human-to-human transmission, H5N1 represents a serious 

pandemic threat due to the risk of a mutation or reassortment generating a virus with 

increased transmissibility. Identifying public health interventions which may be capable 

of halting a pandemic in its earliest stages is therefore a priority. Here we use a 

simulation model of influenza transmission in SE Asia to evaluate the potential 

effectiveness of targeted mass prophylactic use of antiviral drugs as a containment 

strategy. Other interventions aimed at reducing population contact rates are also 

examined as reinforcements to an antiviral-based containment policy. We demonstrate 

that elimination of a nascent pandemic may be feasible using a combination of 

geographically targeted prophylaxis and social distancing measures if the basic 

reproduction number of the novel virus is below 1.8. We predict that a 3 million course 

stockpile should be sufficient for elimination. Policy effectiveness critically depends on 

the ascertainment rate of clinical cases and the speed with which antiviral drugs can be 

distributed.  

The continuing spread of the H5N1 highly pathogenic avian influenza (HPAI) in wild and 

domestic poultry in SE Asia represents the most serious human pandemic influenza risk for 

decades1,2. Great potential benefits would be gained from any intervention capable of 

containing the spread of a pandemic strain and eliminating it from the human population. 

However, the rapid rate of spread of influenza – as witnessed both in annual epidemics and 

past pandemics3-5– poses a significant challenge to the design of a realistic control strategy.  

The basic reproduction number6, 0R , quantifies the transmissibility of any pathogen, being 

defined as the average number of secondary cases generated by a typical primary case in an 

entirely susceptible population. If 0 1R > a disease can spread, while if 0 1R < , chains of 

transmission will inevitably die out. Hence the goal of control policies is to reduce 0R  to 

below 1, by eliminating a proportion 01 1/ R−  of transmission. This can be achieved in three 

ways: (a) by reducing contact rates in the population (through ‘social distance measures’); (b) 
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by reducing the infectiousness of infected individuals (through treatment or isolation); or (c) 

by reducing the susceptibility of uninfected individuals (by vaccination or antiviral 

prophylaxis). 

Vaccination  and antiviral drugs offer protection against infection and clinical disease. 

However  while effective vaccines exist for interpandemic flu, candidate H5N1 vaccines have 

unproven effectiveness7 and production delays would in any case limit availability in the first 

months of a pandemic. Antiviral agents – and in particular the neuraminidase inhibitors, 

which show experimental effectiveness against all influenza A subtypes8,9 – are therefore a 

key plank of recently revised pandemic preparedness plans in several countries10.  

For antivirals to significantly reduce transmission, prophylactic use is necessary. Large-scale 

prophylaxis has the potential to limit spread substantially in a developed country context11, 

but the very large stocks of drug necessary make this policy impractical if the pandemic is 

already global. However, might such a policy nonetheless be a feasible strategy if applied at 

the source of a new pandemic, when repeated human-to-human transmission is first 

observed? We address this question here, focusing on identification of the threshold level of 

transmissibility below which containment of any new pandemic strain might be feasible.  

 

Modelling pandemic spread 

We model spread in SE Asia, as that region remains the focus of the ongoing avian H5N1 

epidemic and is where most human cases have occurred. Greater data availability led us to 

model Thailand, not a perceived greater risk of emergence compared with other countries in 

the region; we believe our conclusions are also valid for other parts of SE Asia.  

We constructed a spatially-explicit simulation of the 85 million people residing within 

Thailand and in a 100km zone of contiguous neighbouring countries. The model explicitly 

incorporates households, schools and workplaces as these are known to be the primary 

contexts of influenza transmission12-14(see Fig1 and Methods) and because control measures 
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can readily target these locations. Random contacts in the community associated with day-to-

day movement and travel are also modelled..  

 

Natural history and transmission parameters 

Fundamental to the feasibility of any containment strategy is the transmissibility of the 

emergent virus, as quantified by 0R . Reliable past estimates of transmissibility are rare, 

perhaps due to the antigenic diversity of the influenza and consequent complex impact of 

population immunity on transmission.  

We reanalysed incubation period and household transmission data (see Methods) and derived 

new natural history parameters which predict a profile of infectiousness through time which 

is remarkably consistent with viral shedding data from experimental infection studies (see 
Figure 1g15. This profile gives an estimate of the serial interval or generation time, gT  (the 

average interval from infection of one individual to when their contacts are infected), of 2.6 

days – to be compared with the value of ~4 days assumed by most past modelling16. 
Reanalysis of both US and UK 1918 mortality data using this new value of gT  revises 

pandemic influenza 0R  estimates5 downwards to approximately 1.8 (Figure 1a) – yielding a 

predicted infection attack rate during a pandemic of 50-60%, consistent with what was seen 

in the 1st and 2nd waves of past pandemics (see Figure 2b). A value of 1.8 is also consistent 

with annual interpandemic attack rates seen for households where all members were highly 

susceptible to the prevalent strain17 (see Supplementary Information). We additionally 

assume that 50% of infections result in clinically recognisable symptoms, with the other 50% 

being too mild to be diagnosed clinically 18. 

It is not certain that these parameter estimates would be applicable to any new pandemic 

strain. It is possible that the mutations or reassortment event that give rise to the new viral 

strain might initially only increase its transmissibility a little over the 0R =1 threshold for self-

sustaining transmission. In that case, additional mutations would need to accumulate for viral 

fitness to increase to its maximum. Given the extended viral shedding (and symptomatic 
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disease) seen in severe human cases of avian H5N1 infection, this also might mean that the 

gT  of the initial pandemic strain could be considerably greater than for currently circulating 

human influenza viruses. We therefore examine the ability of control measures to contain 

pandemic spread not just at a single value of 0R , but for different values in the range 

1< 0R <2, and analyse model sensitivity to the assumed value of gT . 

 

Baseline epidemic dynamics. 

We consider the scenario that a novel transmissible ( 0R >1) pandemic strain arises as a result 

of mutations or a reassortment event in a single individual infected with an avian virus. We 

seed simulations with a single infection in the most rural (i.e. lowest population density) third 

of the population, assuming rural populations are most likely to be exposed to the avian virus. 

Figure 2 shows the typical pattern of spread for an emergent pandemic initiated by such a 

seeding event assuming 0R =1.5 – though note that for low 0R  most epidemics seeded by a 

single individual go extinct by chance before becoming established in the population.  

The pattern of spatial spread (Figure 2a and Supplementary Information video 1) is of 

interest: for the first 30 days, cases tend to be limited to the region around the seeding 

location, with few ‘sparks’ outside that area. However, as case numbers increase 

exponentially, so does the frequency with which infection events span large distances, and 

the epidemic rapidly transforms from being predominantly local to country-wide between day 

60 and 90. Any containment policy needs to be effective before this transition – in part 

because logistic constraints are likely to preclude containment of a widely disseminated 

epidemic, but also because the probability of international export of infection becomes high 

once case numbers reach the thousands19. 

For 0R =1.5, the epidemic in the modelled population of 85 million peaks around day 150, 

and is largely over by day 200, at which point 33% of the population have been infected. At 

0R =1.8 the epidemic peaks around day 100 and infects around 50% of the population. 
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Impact of antiviral prophylaxis 

In containment strategies, we focus on 2 principal outcome measures: (a) the probability of 

preventing a large outbreak (which would eventually lead to a global pandemic); (b) the 

number of courses of drug (here assumed to be oseltamivir) required to achieve containment. 

Blanket prophylaxis of an entire country or region should be able to eliminate a pandemic 

virus with an 0R  of 3.6 or greater (see Methods). However, such a policy would require 

enough drug to prophylax everyone for up to 3 weeks (i.e. at least 2 courses per person), and 

hence is unfeasible . Targeted strategies are therefore needed which minimise drug usage 

while maximising impact.  

Social targeting is the most straightforward approach – namely prophylaxing individuals in 

the same household, school or workplace as a newly diagnosed symptomatic case. 

Unfortunately, if such a policy is only initiated after 20 or more cases, purely social targeting 

only has a has ≥90% probability of eliminating the pandemic strain if 0R ≤1. 25 (lowest curve 

of Figure 3a; see also Supplementary Information). In reality, at least 10 cases might need to 

be detected to be sure that viral transmissibility had significantly increased20, and detection 

and decision-making delays could easily mean 20-30 cases had arisen before policy initiation. 

A containment policy will therefore probably need to go beyond social targeting to succeed.  

Since most community contacts are local, geographic targeting – namely when a case is 

detected, prophylaxing the whole population in neighbourhood of the household of the case – 

is an obvious policy extension, though one which undoubtedly will dramatically increase the 

logistical challenges to delivery. In the absence of detailed administrative boundary data, we 

simulated geographic targeting as the prophylaxis of the population within a ring of a certain 

radius centred around each detected case, though in reality targeting administrative areas is 

likely to be more practical. For socially or geographically prophylaxis, we assume individuals 

are given a single course of 10 days of drug, after which time they come off drug unless more 

cases have arisen in their vicinity, in which case a second round of prophylaxis is delivered. 

The policies therefore automatically cease within 10 days of the last case being reported.  
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 Our analysis indicates that the substantial additional effort required to deliver a geographic 

policy pays substantial dividends in policy effectiveness. With a 2 day delay from case onset 

to prophylaxis, a 5km ring policy is capable of containing pandemics with an 0R  of 1.5 

(Figure 3a) at the cost of an average of 2 million courses (Figure 3b) - though the maximum 

number of courses needed can by an (unfeasible) order of magnitude for scenarios where 

cases arise in Bangkok at an early stage of the outbreak. Policy effectiveness increases with 

the radius of the treatment ring selected (though little benefit is gained from exceeding 

10km), but so does the number of courses required (Figure 3b). Policy outcome is still 

sensitive to the speed of case detection and drug delivery, but containment is always 

substantially better than for the purely socially targeted policy (Figure 3d). 

Since pure radial prophylaxis is costly in terms of drug, we also examined a policy variant 

which limits the number of people targeted for prophylaxis per case by only targeting the 

nearest m people (where m=10,000-50,000) within 10km of a newly diagnosed case. In areas 

of low population density, this drug-sparing policy has the impact of a pure 10km policy, but 

in high density areas many fewer courses of drug are used. The improved effectiveness in 

rural areas outweighs decreased effectiveness in urban areas resulting in greater impact than a 

pure 5km policy and much lower drug use (Figure 3e-f).  

Epidemiologically, elimination either occurs because the treatment strategy reduces 0R  to 

below 1, or because it reduces it to close to 1 when the epidemic is small, hence enhancing 

the probability of random extinction. In scenarios where the pandemic strain is successfully 

eliminated, geographic spread is usually limited. For example,  the root-mean-square (rms) 

radius of spread is 27km for 0R =1.5 using the 5km radial geographic targeting strategy. 

When containment is successful, total case numbers are also limited to an average of fewer 

than 150 cases. 

 

Policies to increase social distance 
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Measures to increase social distance have been employed in past pandemics, and remain 

important options for responding to future pandemics1. Predicting the impact of policies such 

as closing schools and workplaces is difficult, however, as potentially infectious contacts may 

be displaced into other settings. Furthermore, it is likely that population contact rates change 

spontaneously (as well as a result of policy) during severe epidemics (e.g. 1918) in response 

to the perceived risk.  Therefore the estimates of pandemic transmissibility we derive from 

past pandemics may implicitly incorporate the effects of some degree of social distancing.  

We are therefore deliberately conservative in the assumptions made as to the impact of school 

and workplace closure here, by assuming household and random contact rates increase by 

100% and 50% respectively for individuals no longer able to attend school or work. Figure 4a 

illustrates how adding area-based school and workplace closure, to a drug-sparing 

prophylaxis policy increases policy effectiveness significantly, with the combined policy 

having a >90% chance of elimination for 0R =1.7. 

Quarantine zones – in which movements in and out of the affected area are restricted – are 

another strategy for enhancing containment, and may in any case be thought necessary to 

prevent population flight from affected areas or people deliberately entering prophylaxis 

zones to receive drug. Figure 4a  (see also Supplementary Information video 2) shows that 

such a strategy can dramatically boost  the effectiveness (to 90% containment at 0R =1.8) of a 

radial geographic targeted prophylaxis even if only 80% effective at reducing movements. 

Combining school and workplace closure with area quarantine and prophylaxis further 

increases policy effectiveness (90% containment at 0R =1.9)  and as importantly, the 

robustness of the policy to shortcomings in case identification or treatment rates. For all these 

policies, containment is typically achieved after fewer then 200 cases have been detected. 

 

Logistical constraints and sensitivity to parameter assumptions 

Other constraints may affect the ability of public health authorities to deliver containment 

policies. Figures 4c shows that size of antiviral stockpile can have a substantial effect on 



 9

policies which use pure radial geographic prophylaxis since very large numbers of courses 

are required to prophylax around cases arising in large urban areas. However policies 

employing drug-sparing geographically-targeted prophylaxis (Figure 4d) retain high 

effectiveness so long as at least 3 million drug courses are available. For the scenarios where 

containment fails given a finite stockpile, Figure 4e shows that even an unsuccessful 

containment strategy can delay wide-scale spread by a month or more – a potentially critical 

window of opportunity for accelerating vaccine production. 

Another possible constraint is that capacity to implement these containment policies may not 

be present in all countries in the region, A policy restricted to one country alone may have a 

substantially reduced chance of success (Figure 4f and Supplementary Information video 3),  

should the initial case cluster arise in a border region.  

Multiple assumptions inevitably need to be made in undertaking preparedness modelling for a 

future emergent infection. Sensitivity analyses are therefore critical to assessing the 

robustness of policy conclusions. Here, critical assumptions not already discussed include (a) 
the ratio of within-place to community transmission, (b) the expected generation time,  gT , of 

a new pandemic strain (largely determined by the duration of viral shedding and therefore 

infectiousness), (c) the level of heterogeneity in individual infectiousness (e.g. 

‘superspreaders’21), (d) antiviral efficacy/take-up, and (e) the sensitivity and specificity of 

case detection during the control programme. The impact of these assumptions on model 

output is presented in the Supplementary Information, but in summary, (d) and (e) are – as 

one might expect – the most critical. If antiviral coverage or efficacy is considerably less than 

assumed, then policy effectiveness is substantially reduced. Similarly, if surveillance picks up 

fewer than 40% of infections  (i.e. 80% of symptomatic cases), again policy effectiveness is 

reduced. Poor surveillance specificity (i.e. false positives) has an indirect effect on 

effectiveness through wasted drug and logistical capacity.. 

 

Conclusions 
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We have shown that containment and elimination of an emergent pandemic strain of 

influenza at the point of origin is potentially feasible using a combination of antiviral 

prophylaxis and social distance measures. A key conclusion is the need for multiple 

approaches: simple socially-targeted prophylaxis is unlikely to be sufficient if the emergent 

virus has transmissibility near that of past pandemic viruses. Geographically targeted policies 

are needed to achieve high levels of containment, with area quarantine being particularly 

effective at further boosting policy effectiveness. The only scenario under which purely 

socially targeted strategies might be sufficient would be if viral transmissibility evolved 

incrementally and the emergent virus initially had 0R  only slightly above one (see 

Supplementary Information); however 0R  will be probably be uncertain at the time 

containment policies have to be implemented, arguing for policies be precautionary in 

assuming transmissibility will be comparable with that seen in past pandemics. 

A number of key criteria need to be met for a high probability of success: (a) rapid 

identification of the original case cluster, (b) rapid and sensitive case detection and then 

delivery of treatment to targeted groups – preferably within 48 hours of a case arising, (c) 

effective delivery of treatment to a high proportion of the targeted population – preferably 

>90%, (d) sufficient stockpiles of drug – preferably 3+ million courses of oseltamivir, (e) 

population cooperation with the containment strategy and, in particular, any social distance 

measures introduced, (f) international cooperation in policy development, epidemic 

surveillance, and control strategy implementation. Lastly, containment is unlikely if 0R  

exceeds 1.8 for the new pandemic strain. While our analysis of past pandemics suggests that 

transmissibility will be in this range, it is unlikely that sufficient data will exist to verify this 

before a containment policy needs to be introduced. 

The mathematical model we have used to examine the feasibility of pandemic containment is 

perhaps the largest-scale detailed epidemic microsimulation yet developed. A key modelling 

goal was parsimony. While the representation of the population is detailed, this detail is 

underpinned by available demographic data. The natural history parameters used here have 

been estimated from primary data on existing influenza strains. The model has 5 key 
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transmission parameters, of which 2 were estimated from household data and the remaining 3 

were qualitatively calibrated to historical age-dependent attack rates. We believe that this 

type of simulation will increasingly become a standard tool for preparedness planning and 

modelling of novel disease outbreaks. 

Given the set of criteria listed above for successful containment, the obstacles to practical 

implementation of such a strategy are undoubtedly formidable. Surveillance is perhaps the 

single greatest challenge. Success depends on early identification of the first cluster of cases 

caused by the pandemic strain20, and on detection of a high proportion of ongoing cases. 

Some level of mildly symptomatic infection is to be expected (and has been observed for 

human H5N1 infections22), but key to successful containment is the proportion of such cases 

and their infectiousness. Should the high pathogenicity of recently reported human infections 

with the H5N1 virus be even partly maintained, then containment might paradoxically be 

more likely as case-ascertainment levels would be higher.  

Achieving the rapid delivery of antiviral drug to a large proportion of the population poses 

many challenges. Thailand, the country modelled here, is one of the best prepared and 

equipped countries in the region in being able to implement a large-scale and very rapid 

public health intervention. Other countries in the region need considerable development input 

in basic healthcare and disease surveillance infrastructure in order to meet the needs of 

containment.  

Antiviral resistance represents an as yet unquantifiable challenge to a prophylaxis-based 

containment strategy. Key is not whether genotypic or clinical resistance is seen in a 

percentage of individuals, but whether resistant viruses are capable of self-sustaining 

transmission (i.e. have 0R >1). As yet, the evidence is indicative that fitness deficits mean 

transmissibility is limited for oseltamivir-resistant strains23,24 but the possibility that 

compensatory mutations which increase transmissibility might be selected cannot be ruled 

out completely. If a transmissible resistant strain did emerge during a containment policy, it 

would be essential for prophylaxis to cease, lest wild-type virus be eliminated and the world 

be left with a pandemic of resistant virus. If prophylaxis were abandoned, the likely higher 
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fitness of wild type would give every chance that the resistant strain would then be excluded 

from the population.  

A feasible strategy for containment of the next pandemic offers the potential of preventing 

millions of deaths. It is therefore in the interest of all countries to contribute to ensuring the 

resources, infrastructure and collaborative relationships are in place within the region 

currently most likely to be the source of a new pandemic. Even if the challenges are great, the 

costs of failure are potentially so catastrophic that it is imperative for the international 

community to prepare now to ensure containment is given the best possible chance of 

success.   

 

Methods 

Demographic data: The model used Landscan data25 to generate a simulated population 

realistically distributed across geographic space (Figure 1a).  Thai census data26,27 on 

household size and age distributions was used for demographic parameterisation (Figure 

1b,c). Thai National Statistical Office data27 was used to determine the number and 

proportions of children in school as a function of age, and Thai Dept. of Education28 data on 

24,000 schools was used to determine the distribution of school sizes (Figure 1d). Data on 

travel distances within Thailand was limited; here we used data collected in  the 1994 

National Migration Survey29,30 on distances travelled to work (Figure 1e and see 

Supplementary Information) to estimate movement kernel parameters. The best fit kernel had 
asymptotic power law form as a function of distance d given by ( ) ( )~ 1 1 / bf d d a⎡ ⎤+⎣ ⎦ , 

where a=4 km and b=3.8. Thai workplace sizes31 also follow a power law distribution32 with 

an estimated maximum single workplace size of approximately 2300, and a mean of 21.  

Disease data: The natural history of any H5 based pandemic strain will not be known until it 

emerges, so we used parameter estimates for current human influenza subtypes, and 

employed sensitivity analyses to investigate what impact deviation from these estimates 

would have on policy effectiveness (see Supplementary Information).  The mean and 
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standard deviation of the incubation period distribution were estimated as 1.48 and 0.47 days 

respectively from data on a multiple exposure event occurring on an aeroplane33 

We adopt a more biologically realistic approach than most past modelling studies (though see 

ref. 34), and rather than assuming infectiousness is constant from the end of the latent period 
to recovery, we model it as a function, ( )Tκ  (assumed normalized), depending on the time 

elapsed from the end of the latent period. The generation time, gT , is just given by the mean 

latent period plus ( )
0

T T dTκ
∞

∫ .  Experimental infection data35 indicates the start of 

symptoms to be coincident with a sharp increase in viral shedding, so we assume 

infectiousness starts at the end of the incubation period. We further assume a 0.25 day delay 

from when symptoms start to when diagnosis or health-care seeking behaviour is likely.  We 
employed Bayesian methods (see Supplementary Information) to estimate ( )Tκ  from data 

collected in a recent household study of respiratory disease incidence36,37. Combined with the 

estimated incubation period distribution, this gives the profile of infectiousness shown in 
Figure 1f. gT  is estimates as 2.6 days  (95% credible interval: 2.1-3.0) – shorter than 

previously assumed (though see ref. 38). 

Transmission  model: The model is a stochastic, spatially structured, individual-based 

discrete time simulation. Individuals are co-located in households, with households being 

constructed to reflect typical generational structure while matching empirical distributions of 

age structure and household size for Thailand (Figure 1b,c). Households are randomly 

distributed in the modelled geographic region with a local density determined by the 

Landscan data25. In any timestep of T∆ =0.25 days, a susceptible individual i has probability 

[ ]1 exp i Tλ− − ∆ of being infected, where iλ  is the instantaneous infection risk for individual i. 

Infection risk comes from 3 sources: (a) household, (b) place, and (c) random contacts in the 

community. The last of these depends on distance and represents random contacts associated 

with movements and travel, and is the only means by which infection can cross national 

borders. Analysis of household infection data (see Supplementary Information), gave a 

within-household 0R  of 0.6 and an overall 0R  of 1.8. We partition non-household 

transmission to give levels of within-place transmission comparable with household 
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transmission (i.e. 0 0.6R ≈ ) and to qualitatively match 1957 pandemic age-specific attack 

rates. When varying 0R , the relative proportions of household, place and community 

transmission were kept fixed. Full model details are given in the Supplementary Information. 

Antiviral drug action: We use recent statistically rigorous estimates of antiviral efficacy39, 

but these are broadly consistent with previous estimates23. Prophylaxis of uninfected 

individuals is assumed to reduce susceptibility to infection by 30%, infectiousness if infection 

occurs by 60%, and the probability of clinically recognisable symptoms by 65%39.  In theory 

therefore, blanket prophylaxis of a population should be able to contain a pandemic with an 

0R  of [ ]1/ (1 0.6)(1 0.3)− − , approximately 3.6. Treatment of a symptomatic case is assumed 

to reduce infectiousness by 60% from when treatment is initiated. Overall, for the parameter 

values used here, antiviral treatment of a symptomatic case can reduce total infectiousness 

throughout the course of infection by a maximum of 28%. 

 

Correspondence and requests for materials should be addressed to N.M.F.  

(email: neil.ferguson@imperial.ac.uk). 
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Figure Legends 
 
Figure 1. Data. (a) Modelled population density of Thailand and 100km contiguous zone of 
neighbouring countries, based on Landscan25 data, plotted on logarithmic scale (light=low density, 
dark=high density). Inset shows Bangkok in more detail. (b) Age distribution of Thai population in 
2003 in 5 year bands and corresponding age distribution of simulated population. (c) as (b) but 
showing distribution of household sizes. (d) Observed (solid lines) and modelled (dashed lines) 
distributions of school sizes (blue=elementary, green=secondary, red=mixed). (e) Probability of 
travelling over a certain distance to work estimated from data and from the simulated population . (f) 
Weekly excess influenza-related mortality in 1918-19 in GB and corresponding estimates of the 
reproduction number, R, calculated assuming gT =2.6. (g) Viral shedding data for experimental 
influenza infection35 compared with the modelled profile of infectiousness over time. Note that the 
infectiousness profile was not fitted to shedding data. See Methods and Supplementary Information 
for more details. 
 
Figure 2. Expected pattern of spread of an uncontrolled epidemic. (a) Sequence of snapshots of the 
epidemic showing extent of spread of a single simulation of a  0R =1.5 epidemic. Red indicates 
presence of infectives, green the density of people who have recovered from infection or died. (b) 
Daily incidence of infection over time in the absence of controls for 0R =1.5. Thick blue line 
represents average for realisations resulting in a large epidemic, grey shading represents 95% 
envelope of incidence timeseries. Multiple coloured thin lines show a sample of realisations, 
illustrating large degree of stochastic variability. (c) Root Mean Square (RMS) distance from seed 
infective of all individuals infected since the start of the epidemic as a function of time. Thick blue 
line represents average distance for realisations resulting in a large epidemic, grey shading represents 
95% envelope. (d) Proportion of the population infected by age averaged across realisations giving 
large epidemics, for R0 = 1.5. The infection attack rate is 33% for  0R =1.5, and 50% for  0R =1.8. (e) 
Distribution of number of secondary cases per primary case during the exponential growth phase of a  

0R =1.5 epidemic. Between 50 and 1000 realisations were used to calculate all averages (see 
Supplementary information). 
 
Figure 3. Prophylaxis strategies. We assume 90% of clinical cases (=45% of infections) are detected. 
Social targeting assumes prophylaxis of 90% of household members and 90% of pupils or colleagues 
in 90% of the schools or workplaces of detected cases. Geographic targeting assumes 90% of people 
within 5, 10 or 15km of a detected case are also prophylaxed. (a) Probability of eliminating an 
otherwise large epidemic using social plus geographic targeting, as a function of 0R  of the new strain 
and the radius of prophylaxis. Results assume policy initiation after 20 cases detected and a 2 day 
delay from case detection to prophylaxis. Error bars show exact 95% confidence limits. (b) as (a) but 
showing average numbers of drug courses required for containment of an otherwise large outbreak. 
(c) Map (of 150x150km square of northern Thailand) showing extent of spread during one contained 

0R =1.8 epidemic assuming 10k radial prophylaxis and other parameters as (a). Blue represents 
treated areas. (d) as (a), but varying the delay (from 0-4 days) from case detection to prophylaxis for 
the 5km radius policy. (e-f) as (a-b) but for drug-sparing policies which target only the nearest 10, 20, 
30 or 50 thousand people within 10km of a detected case.  
. 
Figure 4. Social distance measures. (a-b) as Fig 3(a-b), but showing impact of drug-sparing 
prophylaxis (50,000 courses per case, as Fig 3e) combined with: no social distance measures (as Fig 
3); closure of 90% of schools and 50% of workplaces within 5km of a detected case for 21 days; 80% 
‘area quarantine’ (i.e. reduction by 80% of travel in and out of a zone defined by merging 5km rings 
around all detected cases) for 21 days; combination of school/workplace closure and area quarantine. 
(c) as (a) but showing effect of limiting availability of antiviral drugs to 1, 3 or 5 million courses on 
the effectiveness of the combined area quarantine and 5km radial prophylaxis policy. (d) as (c) but for 
drug-sparing geographic prophylaxis (50,000 courses per case) plus area quarantine. (e) Case 
incidence over time without pandemic control and with the 3 million course policy of (d), showing the 
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approximate 1 month delay achieved even when containment is unsuccessful ( 0R =1.9). (f) as (a), but 
showing the reduction in policy effectiveness seen if the combined school/workplace closure and 
drug-sparing prophylaxis policy is restricted to Thailand alone. 
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