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Summary 

Background: A variety of Serfling-type statistical algorithms requiring long series of historical 

data, exclusively from temperate climate zones, have been proposed for automated monitoring of 

influenza sentinel surveillance data. We evaluated three alternative statistical approaches where 

alert thresholds are based on recent data in both temperate and subtropical regions. 

Methods: We compared time series, regression, and cumulative sum (CUSUM) models on 

empirical data from Hong Kong and the US using a composite index (range = 0-1) which 

consisted of the key outcomes of sensitivity, specificity, and time to detection (lag). The index 

was calculated based on alarms generated within the first 2 or 4 weeks of the peak season 

respectively. 

Results: We found that the time series model was optimal in the Hong Kong setting, while both 

the time series and CUSUM models worked equally well on US data. For alarms generated 

within the first 2 weeks (4 weeks) of the peak season in Hong Kong, the maximum values of the 

index were: time series 0.77 (0.86); regression 0.75 (0.82); CUSUM 0.56 (0.75). In the US data 

the maximum values of the index were: time series 0.81 (0.95); regression 0.81 (0.91); CUSUM 

0.90 (0.94). 

Conclusions: Automated influenza surveillance methods based on short-term data, including 

time series and CUSUM models, can generate sensitive, specific and timely alerts, and can offer 

a useful alternative to Serfling-like methods that rely on long-term, historically-based thresholds. 

 

Keywords: Influenza, public health, detection, population surveillance. 
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Sentinel practices have been deployed in influenza surveillance in some western countries for 

decades and more recently in many others mostly outside of the temperate climate zone. Hong 

Kong, an advanced economy geographically situated in the epicenter of the influenza basin in 

southern China, established a sentinel surveillance network for influenza-like-illness (ILI) in the 

late 1990s which began reporting in 1998. Like elsewhere, the peak influenza season is 

associated with higher health care utilization in Hong Kong.1, 2 Thus it would be useful to have a 

valid and reliable way to alert the onset of the peak season to enhance case detection and 

diagnosis, and to allow timely initiation of precautionary measures in vulnerable populations 

such as the elderly.3 

 

Recent developments in computer-assisted outbreak detection offer a range of approaches to 

infectious disease monitoring.4-15 A widely-used approach is based on a seasonal regression 

model originally proposed by Serfling.16 Under this model data from three or more previous 

years are used to calculate a time-varying threshold and an alert is generated if current data 

surpass the threshold. Similar approaches incorporating historical data have been used in the 

US,4, 5 the UK,6 France,7 Australia8 and the Netherlands.9 Simpler related methods using the 

same fixed threshold throughout the year are sometimes used due to their ease in application.13, 14 

 

An alternative set of approaches to surveillance have instead set thresholds based on short-term 

data from recent weeks. Briefly, surveillance data as a type of time series data can be monitored 

with specialized methods such as Box Jenkins models17 and dynamic linear models,18 which are 

both part of a wider class of state space models.19 Reis et al.15 describe a hybrid monitoring 

method which uses ‘cuscore’ statistics based on forecast errors from Box Jenkins time series 
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models. The use of cumulative sum (CUSUM) statistics, originally developed for industrial 

quality control,20 is growing in popularity for automated surveillance. CUSUMs may incorporate 

historical information in the threshold calculation,5, 10 or be based only on recent data.11, 12 

 

In this paper, the three methods in this latter group of statistical approaches requiring only data 

from recent weeks to generate alerts are compared on influenza sentinel surveillance data from 

Hong Kong and the US. This may be particularly interesting for and applicable to surveillance 

networks in subtropical settings or with fewer numbers of reporting sentinels, where reported 

inter-epidemic levels of influenza-like-illness are subject to more fluctuation and peak seasons 

can be less distinct. 

 

METHODS 

 

Hong Kong Surveillance Data 

The sentinel surveillance data from Hong Kong are provided by a network of general 

practitioners and published online.21 At the end of each week the sentinel practitioners report the 

number of consultations with patients complaining of ILI symptoms (defined as fever plus cough 

or sore throat), and the total number of consultations. Data are collated and analyzed by the 

following Wednesday or Thursday, thus the reporting delay is approximately one week. The 

sentinel surveillance system was initiated in 1998 with 18 practitioners, and a further 42 sentinels 

were added throughout 1998 and 1999 to reach the current level of 50 practitioners covering a 

population of 6.8 million (0.74 per 100,000) giving weekly reports. 
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The start of the influenza peak season may be determined from laboratory data on influenza 

isolates. Each month a median of 1300 specimens (inter-quartile range 970-1850) were sent to 

the Government Virus Unit of the Department of Health primarily from hospitals, and the 

number of influenza A and B isolates were reported. We calculated the highest proportion of 

positive influenza isolations each season, and we define the onset of each peak season when the 

proportion of isolates positive for influenza surpassed 30% of the maximum seasonal level. To 

investigate the sensitivity of our results to this definition of the start of the peak season, we 

further adopted two alternative definitions that the onset of the peak season occurred when the 

proportion of influenza isolations passed 20% or 40% of the maximum seasonal level. 

 

US Surveillance Data 

Each week, approximately 1,000 sentinel health-care providers (0.38 per 100,000) from across 

the US report the total number of patients seen and the number of those patients with ILI 

(similarly defined as in Hong Kong). The sentinel data from 1997 onwards are reported online.22 

However other than in 2003 sentinel data were not available during the periods of low influenza 

activity from June to September each year. Careful analysis of the period June to September 

2003 showed a low degree of homogeneous variation in ILI reports around a constant level, with 

no autocorrelation between successive weeks. Where data were missing in other years between 

June and September, simulated values were randomly generated from a Normal distribution with 

mean equal to the level of the observed data at the start of October that year and variance equal 

to that observed in the data from June to September 2003. 

 

 5



Weekly laboratory surveillance data are also published for the same period, and may be used as 

the gold standard measure of the onset of the peak influenza season each year as described above 

for the Hong Kong laboratory data. 

 

Methods for Generating Early Alerts 

We considered three alternative approaches to the early detection of the onset of the peak season, 

where no method required more than a maximum of 9 weeks baseline data. In the first two 

approaches an alert is generated only if the current observation falls outside a forecast interval 

calculated from previous weeks’ data. The third approach uses CUSUMs. 

 

The first approach is a time series technique, the dynamic linear model.18 This model will have 

similar performance to Box Jenkins methods19 and is typically simpler to implement since it does 

not require specialized statistical software and can be directly applied to raw data. The proposed 

model for the series of observations   is described by the equations ty

  ttt vy += θ  where ( )VNvt ,0~ , 

 and ttt w+= −1θθ  where ( )WNwt ,0~ , 

where the series of unobserved system parameters tθ  describe the correlation between successive 

weeks.  The errors  and  are internally and mutually independent, and the variance V can be 

estimated from the data.  The parameter W must be prespecified, and represents the assumed 

smoothness of the changes in influenza prevalence in the community from week to week. In this 

model information from all preceding weeks is used to construct a 100(1-α)% forecast interval 

and if the data for the current week falls outside this forecast interval then an alert is raised. 

tv tw
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Further details on the time series method, and an implementation in MS Excel, are available in 

the online supplementary materials. 

 

The second approach is a simple regression model.4 An alert is generated if data from the current 

week fall outside a 100(1-α)% forecast interval from a Normal distribution with ‘running’ 

mean  and running sample variance )(
~

my 2
)(

~
ms  calculated from the preceding m weeks. The 

forecast interval is calculated as mstmy mm /11~ ~
)(2/)( +± α1,1 −− , where  is the 100(1-α)th 

percentile of Student’s t-distribution with m-1 degrees of freedom. 

2/1,1 α−−mt

 

The final approach is the CUSUM method. For the series of observations , , we 

define the d-week upper CUSUM at time t, , as 
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 are calculated from the series 

of seven weeks  preceding the most recent d weeks. The alarm is raised if the 

upper CUSUM  exceeds a pre-specified threshold of 

17 ,, −−−− didi yy K

+
tC 1 α−Φ  for some α, where  is a 

standard Normal deviate (z value). The parameter k represents the minimum standardized 

difference from the running mean which is not ignored by the CUSUM calculation. 

Φ

 

Metrics for Comparing the Methods 

The performance of an early warning system can be measured by three relevant indices, namely 

the sensitivity, specificity, and timeliness of the alarms that are generated.11, 24 Sensitivity is 
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defined as whether there was at least one alarm during the peak season.11 Specificity is defined 

as 1-r/n, where r is the number of alarms outside the peak season periods (i.e. false alarms) and n 

is the total number of weeks outside the peak season periods.11 Timeliness, or lag, is defined as 

the number of weeks between the beginning of the peak season and the first week that an alarm 

was raised.11 The most desirable method will have maximum sensitivity and specificity, and 

minimum lag.  

 

These three measures of sensitivity, specificity and timeliness may be combined in a single 

metric analogous to the area under the receiver operating characteristic (ROC) curve for 

sensitivity and specificity. By adding information on timeliness as a third dimension to the 

traditional ROC curve, the resulting volume under the ROC surface (VUTROCS) provides an 

overall measure of performance.25 The VUTROCS for a particular method can be calculated as 

follows. Incorporating only alerts from the first week of the peak season, compute the sensitivity 

and specificity given a range of thresholds, and calculate the corresponding area under the ROC 

curve. Repeat this procedure up to the longest time for which an alarm is considered useful, and 

average the areas to estimate the VUTROCS. A higher VUTROCS would indicate superior 

performance, and the maximum VUTROCS of 1 would indicate that alarms are generated with 

perfect sensitivity and specificity, and at the soonest possible moment (i.e. the same week as the 

start of the peak season). Given the range of VUTROCS values is from 0 to 1, a difference of 

greater than 0.1 could be considered meaningful. 

 

For sentinel surveillance, the usefulness of an early warning of the onset of the peak season is 

highly dependent on how early that warning is. In Hong Kong, the majority of excess hospital 
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admissions associated with the influenza peak season occur during the first 8-10 weeks of the 

peak season.1 For an early warning to have any impact, it needs to be issued ideally in the first 

three weeks and at most within the first five weeks. Acknowledging a potential 1-week reporting 

delay due to data collection, collation and analysis, we consider two versions of the VUTROCS, 

the first where evaluation is limited to data on the first 2 weeks of the peak season, and the 

second where it is limited to the first 4 weeks. 

 

The three early warning detection approaches were implemented on both sets of empirical data 

each with four choices of parameter combinations as given in Table 1. For each parameter 

combination, a set of 10 different thresholds were used in order to give broad coverage in terms 

of sensitivity, specificity and timeliness. These 10 resulting triplets could then be combined into 

a single VUTROCS for each of the parameter combinations. The sensitivity and timeliness of 

each method for a fixed specificity of 0.95, and the threshold required to obtain this specificity, 

were calculated by linear interpolation. 

 

(Table 1 here) 

 

All analyses were conducted in R version 2.1.0 26. 

 

RESULTS 

The seven annual cycles of Hong Kong surveillance data are shown in Figure 1. The sentinel 

data typically varied around a level of 40 or 50 ILI diagnoses per 1000 consultations before the 

start of the peak season. After the peak season onset the sentinel data rapidly rose from baseline 
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levels to a maximum within 3-5 weeks. This was followed by a decline back to baseline levels 

after about three months. The eight annual cycles of sentinel data from the US in the years 1997-

2005 are presented in Figure 2. Compared to epidemiologic patterns in the temperate climate 

zones, Hong Kong’s seasonal swings were much less distinct where there appeared to be a much 

smaller but definite summer peak during some years and/or a long plateau between the winter 

and summer surges. In the years where the milder H1N1 strain dominated, peaks in the sentinel 

data were slightly smaller. 

 

The results for the two alternative versions of the VUTROCS (2-week and 4-week evaluation) 

are summarized in Table 2. For the Hong Kong data, the time series method seems most optimal 

under both scenarios, and the CUSUM method performs particularly poorly. Conversely for the 

US data, there appears to be much less difference between the three methods. In particular the 

CUSUM method is optimal under the 2-week VUTROCS, while the performance of the time 

series and CUSUM methods is similar when measured by the 4-week VUTROCS. 

 

(Table 2 here) 

 

While the VUTROCS summarizes overall performance, table 3 shows the sensitivity and 

timeliness of each method and parameter combination for a fixed specificity of 0.95.  The 

thresholds required to achieve this specificity are also presented in terms of the parameter α.  For 

the Hong Kong data, the time series method with 88% forecast intervals (i.e. α=0.12) could 

achieve specificity of 0.95 with sensitivity 1 and timeliness around 1.4 to 1.5 weeks.  The 

regression method could also achieve high sensitivity, but had worse timeliness.  The best 
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parameter combination for the CUSUM method had sensitivity 0.86 and timeliness 1.91 weeks.  

For the US data, the time series method again had superior performance. 

 

(Table 3 here) 

 

In the sensitivity analyses (Figure 3), we found that our conclusions were unchanged by 

alternative definitions of the start of the peak season. In the Hong Kong data (Figures 3a and 3b), 

the time series method outperformed the other methods, although the difference was less under 

the stricter definition of the onset of the peak season requiring laboratory isolations above 40% 

of peak levels. In the US data (Figures 3c and 3d) there was little discernable difference between 

the three methods under comparison. 

 

DISCUSSION 

Our findings suggest that the time series approach is superior to the CUSUM method for the 

Hong Kong data with the regression model having intermediate performance, but that there is 

little difference between the time series and CUSUM methods on the US data while both 

outperformed the regression-based technique. This apparent divergence of results may be 

explained by further consideration of the underlying epidemiologic patterns of influenza and the 

characteristics of the sentinel systems. The Hong Kong data are provided by far fewer sentinels, 

in absolute terms, compared to the network in the US, and the Hong Kong data are noticeably 

more variable (Figure 1) than the US data (Figure 2). Secondly, the Hong Kong influenza peak 

typically arrives abruptly with the sentinel data rising from baseline levels to peak within a 

period of 3-5 weeks, whereas the American ILI activity typically rises more slowly and more 
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exponentially to the peak over 8-10 weeks. Thus for the latter, the CUSUM method is expectedly 

better at aggregating a number of initially smaller increases in the early weeks of the peak season 

to detect a significant change, whereas none of those smaller rises fall outside the forecast 

intervals of the time series and regression models. Furthermore the annual peaks in Hong Kong 

were typically sharper and more sudden than in the American data where peaks slowly emerged, 

perhaps because the former represents one city whereas the latter is a wide geographical area 

where the peak season may emerge earlier in some geographical areas than others while data are 

summarised across the whole country. The peaks in sentinel data in years dominated by the 

milder influenza A (H1N1) strain seemed slightly smaller; however there was too little data to 

investigate this thoroughly. 

 

Of the two methods based on forecast intervals evaluated here, it is perhaps unsurprising that 

time series typically outperformed simple regression. This was most likely because the time 

series model was better at dynamically adapting to changes in the underlying level of reports, 

and unlike the regression method could exploit the correlation structure in previous reports. 

Nevertheless, the results suggest that the simpler regression approach can under most 

circumstances produce reasonably useful and timely alarms, albeit inferior to more sophisticated 

approaches. We note that the regression model performed better in the American setting than in 

Hong Kong, probably because the seasonal patterns in the American data are more clear, and the 

peak more distinct rather than the subtropical seasonality observed in Hong Kong.27, 28 

 

It is important to recognize that the calibration of alarm thresholds depends on the inherent 

tradeoff between the cost of false alarms (specificity) and the expected benefit of earlier 
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detection (sensitivity and timeliness).24 It is thus important to formally and explicitly calibrate 

the parameters which affect the decision limit. A typical choice for regression models is to use 

two standard deviations from the mean, corresponding to a 95% forecast interval,8, 12 or three 

standard deviations, corresponding to a 99.9% forecast interval.11 Our results suggest that for the 

time series method high specificity of 0.95 could be obtained by using 90% forecast intervals, 

and this would allow alarms to be generated after an average of 1.4 to 1.5 weeks in Hong Kong 

(table 3), corresponding to warnings within 2-3 weeks allowing for short reporting delays. In any 

novel application of these methods it would be important to appropriately calibrate the threshold 

since the sensitivity or specificity of a given threshold will vary in different settings.  

 

In this study we have focused on methods which specify thresholds based on short-term data (i.e. 

from the current year only), rather than historical threshold methods such as Serfling. One reason 

that short-term methods may be more useful in Hong Kong is the larger degree of variation 

between weekly reports, and also between seasons (Figure 1). For example, the ‘baseline’ level 

of reports of 5-6% in May-December 1999 was barely exceeded by the levels of reports during 

the peak seasons of 2001, 2003 and 2004. A recent study by the CDC11 suggested that regression 

and CUSUM approaches based on short-term data may be equivalent or superior to regression 

approaches based on historical data across a wide range of syndromes with daily reporting. 

However, this study did not include other statistical approaches (e.g. time series), and 

furthermore daily reported data can have different statistical properties to weekly reported data: 

in particular there is likely to be higher variance and higher autocorrelation in daily series.  
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We further note the difference in objective between prospective surveillance, studied here, and 

the quantification of excess mortality due to influenza for which purpose the Serfling method 

was originally designed. A prospective surveillance algorithm should be highly sensitive and 

specific, that is it should track the data before the peak season while generating very few false 

alarms, and be able to quickly generate an alarm when the peak season starts, therefore interest is 

primarily in the performance of forecast intervals. Whereas quantifying the excess mortality due 

to influenza requires methods which can retrospectively fit seasonality in observed data, and 

interest is primarily in the residuals, or the difference between observed data and the mean levels 

predicted by the model.  Recent estimates of the number of excess influenza-associated 

hospitalisations28 and deaths27 in Hong Kong used Poisson regression methods allowing for 

historical trends, where Poisson regression was used in preference to multiple linear (Normal) 

regression due to small event counts. 

 

A potential caveat of our analysis is the small number of annual cycles of sentinel data available 

for study. However with each cycle taking a year to generate it will be many years before a 

larger dataset is available. In the meantime sentinel systems are being introduced in more 

countries, while there is a lack of evidence-based information on how best to generate timely and 

reliable intelligence on which to base public health policy. A further limitation is that there 

remains no agreed gold standard measure of when the peak influenza season starts every year. In 

this paper we have used laboratory data which should provide a reliable measure of when 

influenza begins to circulate in the community, and defined the onset of the peak season when 

laboratory levels surpassed 30% (20%-40%) of peak levels. An alternative choice of gold 

standard would have been to use mortality data or hospital admission data to define the onset of 
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the peak season. But coding difficulties and misclassification bias often make these data even 

more unreliable, and moreover, there is an unspecified lead time lag between the onset of the 

influenza season and when one would expect to observe corresponding increases in morbidity 

and mortality. Lastly, there is some evidence to suggest that influenza-associated hospitalization 

and deaths are seriously under-coded in Hong Kong.27 However it is possible that a useful 

sentinel surveillance system could be implemented based on rapid reporting of chief complaints 

in accident and emergency departments, or at the time of admission. One final caution is that we 

have evaluated specific methods with only a few chosen parameter combinations. However we 

have tried to find a balance between investigating a range of practical parameter combinations 

without overfitting the models to the data. Given the broadly similar results for the different 

parameter combinations within each method, we believe that our conclusions are robust to a 

range of parameter sets. 

 

In conclusion, this study has described three different methods for automated monitoring of 

surveillance data, including a time series approach which has not previously appeared in the 

surveillance literature. These results may be useful to other subtropical countries with varying 

levels of influenza activity outside the peak seasons, or for developing surveillance systems with 

fewer sentinels. We should compare results on data from these places to confirm the 

generalizability of our findings. As few as 10 sentinels could potentially provide useful data on 

trends in influenza incidence.  If data were collected within say a week, and our results were 

applicable, the methods outlined here could be utilised to detect the onset of an annual peak 

season within 2-3 weeks. Dissemination of alerts could facilitate enhanced case detection and 

diagnosis, and could allow timely initiation of precautionary measures in vulnerable populations.
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Key messages 

In settings where sentinel networks are established to detect the start of the annual influenza peak 

season, it is important to use appropriate methodology to detect significant increases in disease 

incidence. Acknowledging that such networks may not have long series of historical data, we 

investigate the performance of methods where specification of alert thresholds only requires 

recent data. We find that for weekly surveillance data, such methods can generate sensitive, 

specific and timely alerts. 
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Table 1: Choice of methods and parameter combinations 

Method Parameter Description Range 

Time series W Represents the assumed 

smoothness of the underlying 

system  

0.025, 0.050, 0.075 

or 0.100 

Regression  m Represents the number of 

prior weeks used to calculate 

the ‘running’ mean and 

variance 

3, 5, 7, 9 

CUSUM  d Represents the number of 

days to sum over 

2, 3 

 k Represents the minimum 

standardized difference which 

must be exceeded for a data 

point to be included in the 

CUSUM calculation 

1, 2 

 

Footnote: Each method also has a parameter α which defines the height of the threshold (a higher 

value of α would indicate a stricter threshold). 
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Table 2: Performance of the time series, regression and CUSUM methods. 

Method Parameter 

Combinations 

 Hong Kong Data US Data 

   2-week 

VUTROCSa

4-week 

VUTROCSb

2-week 

VUTROCSa 

4-week 

VUTROCSb

       

Time series W=0.100 (least 

smooth) 

 0.77 0.82 0.81 0.95 

Time series W=0.075  0.77 0.86 0.81 0.93 

Time series W=0.050  0.77 0.86 0.80 0.92 

Time series W=0.025 (most 

smooth) 

 0.71 0.83 0.71 0.88 

       

Regression 3-day running 

mean 

 0.69 0.78 0.75 0.84 

Regression 5-day running 

mean 

 0.75 0.82 0.76 0.86 

Regression 7-day running 

mean 

 0.70 0.80 0.78 0.89 

Regression 9-day running 

mean 

 0.68 0.79 0.81 0.91 

       

CUSUM k=1, 2-week  0.56 0.75 0.80 0.90 
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CUSUM 

CUSUM k=2, 2-week 

CUSUM 

 0.52 0.75 0.85 0.91 

CUSUM k=1, 3-week 

CUSUM 

 0.55 0.73 0.83 0.93 

CUSUM k=2, 3-week 

CUSUM 

 0.52 0.74 0.90 0.94 

 

a The 2-week VUTROCS evaluates the volume under the ROC surface (higher being better) of a 

method for producing an alarm more quickly after the start of a peak season and at most within 2 

weeks, weighed against the false positive rate of the method. 

b The 4-week VUTROCS evaluates the volume under the ROC surface (higher being better) of a 

method for producing an alarm more quickly after the start of a peak season and at most within 4 

weeks, weighed against the false positive rate of the method. 
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Table 3: Sensitivity and timeliness of time series, regression and CUSUM methods for fixed 

specificity of 0.95. 

Method Parameter 

Combinations 

 Hong Kong Data US Data 

   αa Sensitivity Timeliness 

(weeks) 

αa Sensitivity Timeliness 

(weeks) 

         

Time 

series 

W=0.100 

(least 

smooth) 

 0.11 1.00 1.56 0.11 1.00 0.75 

Time 

series 

W=0.075  0.12 1.00 1.40 0.13 1.00 0.88 

Time 

series 

W=0.050  0.12 1.00 1.40 0.13 1.00 0.83 

Time 

series 

W=0.025 

(most 

smooth) 

 0.12 1.00 1.52 0.14 1.00 0.96 

         

Regression 3-day 

running mean 

 0.07 0.57 2.60 0.05 0.52 2.06 

Regression 5-day 

running mean 

 0.10 1.00 1.72 0.03 0.57 2.11 

Regression 7-day  0.09 0.95 1.82 0.02 0.65 1.83 
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running mean 

Regression 9-day 

running mean 

 0.09 0.97 1.65 0.02 0.90 1.45 

         

CUSUM k=1, 2-week 

CUSUM 

 0.02 0.86 2.00 0.01 0.89 1.16 

CUSUM k=2, 2-week 

CUSUM 

 0.28 0.86 1.91 0.02 0.88 1.25 

CUSUM k=1, 3-week 

CUSUM 

 0.01 0.74 2.59 0.01 0.86 1.53 

CUSUM k=2, 3-week 

CUSUM 

 0.19 0.85 2.00 0.01 0.82 1.51 

 

a α represents the threshold required for each method to give specificity of 0.95.
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 Figure 1. Seven annual cycles (unbroken line) of sentinel surveillance data from Hong Kong, 

1998-2005. The monthly proportions of laboratory samples testing positive for influenza isolates 

are overlaid as gray bars and the beginning of each peak season (inferred from the laboratory 

data) is marked with a vertical dotted line. The primary circulating subtype of influenza A is 

indicated above each peak. 
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Figure 2. Eight annual cycles (unbroken line) of sentinel surveillance data from the US, 1997-

2005, including simulated data (dashed lines) between June and September for all cycles except 

2003-4, based on the empirical data for June to September 2003. The weekly proportions of 

laboratory samples testing positive for influenza isolates are overlaid as gray bars and the 

beginning of each peak season (inferred from the laboratory data) is marked with a vertical 

dotted line. The primary circulating subtype of influenza A is indicated above each peak. 

Week ending

Se
nt

in
el

 IL
I r

at
e

1 Jan '98 1 Jan '99 1 Jan '00 1 Jan '01 1 Jan '02 1 Jan '03 1 Jan '04 1 Jan '05
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.00

0.25

0.50

0.75

1.00

In
flu

en
za

 is
ol

at
io

n 
ra

teH3N2 H3N2 H3N2 H1N1 H3N2 H1N1
H1N2 H3N2 H3N2

 

 

 26



Figure 3. Sensitivity analysis. Each plot shows the estimated volume under the ROC surface for 

alternative definitions of the influenza peak season at 20% of seasonal peak levels or 40% of 

seasonal peak levels for the time series (black squares), regression (open circles) and CUSUM 

(black triangle) methods. (a) 2-week VUTROCS, Hong Kong data; (b) 4-week VUTROCS, 

Hong Kong data; (c) 2-week VUTROCS, US data; (d) 4-week VUTROCS, US data. 
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