

CORE

Title	Inhibition of the unique repolarisation K+ channel current IKur by verapamil in human atrial myocytes
Author(s)	Gao, Z; Lau, CP; Chiu, SW; Li, GR
Citation	The 8th Medical Research Conference, Medical Science Group, The University of Hong Kong, Queen Mary Hospital, Hong Kong, 25-26 January 2003, v. 9 n. 1 Suppl, p. 20
Issued Date	2003
URL	http://hdl.handle.net/10722/54103
Rights	Creative Commons: Attribution 3.0 Hong Kong License

CVS-03 Inhibition of the unique repolarisation $K^{\scriptscriptstyle +}$ channel current $I_{_{Kur}}$ by verapamil in human atrial myocytes

Z Gao,¹ CP Lau,¹ SW Chiu,² GR Li.¹ ¹ICSM/Department of Medicine, ²Cardiothoracic Unit, Faculty of Medicine, The University of Hong Kong

Introduction: Verapamil is widely used as an antiarrhythmic drug in patients with atrial arrhythmias, and its Ca^{2+} antagonistc action is usually believed to be the mechanism. The present study was to determine if anti-atrial arrhythmia was related to the blockade of the unique repolarization K⁺ current (I_{Kur} , ultra-rapid delayed rectifier K⁺ current). **Method:** Whole-cell patch clamp technique was used to determine I_{Kur} and another voltage-gated current, transient outward K⁺ current (I_{toi}) in human atrial myocytes.

Results: It was found that verapamil inhibited I_{Kur} in a dose-dependent manner (EC₅₀ = 3.74 mM). The effect was fully reversed upon washout of the drug. At test potential of +50 mV, Verapamil at 5 mM decreased I_{Kur} by 40.3 ± 5.1% (2.68 ± 0.21 pA/pF in control and 1.84± 0.17 pA/pF after verapamil, n=8, p<0.01). The inhibition of I_{Kur} by verapamil is voltage-independent. In contrast, verapamil (0.1~50 mM) exhibited a slight increase in I_{to1} , but did not show a dose-response fashion. However, verapamil accelerated inactivation of I_{to1} . At 1 mM, the time constant of I_{to1} inactivation was reduced to 51.16± 5.29 from 71.74± 3.3 ms of control (+50 mV, n=8, p<0.01). Other kinetics of I_{to1} were not affected by verapamil.

Conclusion: The present study has demonstrated for the first time that verapamil, a well-known calcium blocker, significantly blocks the unique repolarization K^+ current I_{Kur} , and revealed a novel antiarrhythmic mechanism of verapamil.

CVS-04 Effects of genistein on K⁺ currents in rat ventricular myocytes

Z Gao,¹ CP Lau,¹ TM Wong,² GR Li.^{1,2} ICSM/Department of Medicine, and ²Department of Physiology, Faculty of Medicine, The University of Hong Kong

Introduction: Previous studies showed that genistein modulated ionic channels in a protein tyrosine kinase- (PTK) dependent or independent way upon species and/or channel types. The present study was designed to determine whether transient outward K⁺ current (I_{to}), sustained K⁺ current (I_{sus}), inward rectifier K⁺ current (I_{K1}) were regulated by genistein in rat ventricular myocytes.

Methods: Whole-cell patch technique was applied to record I_{to} , I_{sus} , and I_{K1} in enzymatically dissociated ventricular myocytes from rat hearts. All experiments were conducted at 22~23°C.

Results: Genistein reversibly inhibited I_{to} in a concentration-dependent manner (IC₅₀ = 27.8 µM. The compound (50 mM) shifted midpoint of voltage (V_{0.5}) for inactivation of I_{to} to -42.5 ±1.0 from -37.6±0.6 mV (P<0.01), while the V_{0.5} for I_{to} activation was not significantly altered. In addition, genistein reversibly suppressed I_{sus} with IC₅₀ of 17.1 µM. Moreover, the compound at 50 mM reduced I_{K1} at -100 and -50 mV by 40.6±6.2% and 51.4±0.7%, respectively. However, the effects of genistein on I_{to} , I_{Ksus} , and I_{K1} were not affected by the application of phosphotyrosine phophatase inhibitor (sodium orthovanadate, 1 mM). On the other hand, daidzein (100 mM), an inactive analogue of genistein, did not show significant effect on the three K⁺ currents. Another type of PTK inhibitor, typhostin A23, had no effect on I_{to} , I_{Ksus} , and I_{K1} .

Conclusion: 1) The PTK inhibitor genistein, not tyrphostin A23, reversibly inhibited I_{to} , I_{Ksus} , and I_{K1} in rat ventricular myocytes, and 2) the effects were not affected by the protein tyrosine phosphatase inhibitor orthovanadate. The present study has provided the first information that genistein-induced suppression of I_{to} , I_{Ksus} , and I_{K1} is independent of PTK inhibition.