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ABSTRACT

This paper proposes a new algorithm for tracking time-
varying channels in impulsive noise environment using a
robust Kalman filter. It employs a simple dynamical
model of the channel, where the changes in the impulse
response coefficients are due entirely to the innovations of
the Kalman filter. This reduces the arithmetic complexity,
while offering reasonable good performance. The robust
Kalman filter is used to restrain the adverse effect of
impulsive noise and provide estimates of the covariance
matrices of the state and measurement noises. The noisy
channel estimates from the Kalman filter can be used to
estimate the parameters of the channel coefficients when
they are assumed to follow an AR model. Finally, the two
processes can be coupled together to further improve the
performance. Simulation results show that the new
algorithm gives more stable performance than the
conventional methods under impulsive noise environment.

1. INTRODUCTION

Time-varying channels are frequently encountered in
wireless communications and other applications and their
estimation is an important subject of research. One
commonly used approach is to model the impulse
response coefficients of the time-varying channels as an
autoregressive (AR) process. In other words, the
dynamics of the system is described in terms of the AR
model. Given the system outputs as the measurements and
treating the state as the impulse response coefficients, the
Kalman filter can be then employed to estimate the time
varying channel coefficients. Since the AR parameters of
the channel coefficients are in general unavailable,
different methods for their joint estimation have been
proposed. In [1], the AR parameters of the time-varying
channels are estimated by the Kalman filter and a least-
squares (LS) or recursive least-squares (RLS) method is
used to estimate the channel AR parameters. A coupled
method combining the Kalman filter and LS estimation
for the AR parameters was introduced in [2]. The concept

was also proposed for the estimation of MIMO channels
in [3, 4]. Because Kalman filter and LS estimation
algorithm are both sensitive to impulsive noise, their
performance will be degraded in this non-Gaussian
environment. To solve the problem, Fung and Chan [5]
used a recursive least M-estimation (RLM) algorithm,
instead of the RLS algorithm, to suppress the adverse
effect of outliers.

In the algorithms of [1], instantaneous approximation
is used as the expected value in the estimation of the AR
parameters in order to make it mathematically tractable.
An important disadvantage of this approximation is that
considerably number of samples is usually required to
obtain reliable estimates of these quantities. This poses
significant problem in time-varying environment as the
quantities are changing rather rapidly with time. Since the
estimated AR parameters, using the RLS or RLM
algorithm, will be used as the state transition matrix of the
Kalman filter, the channel coefficients estimated by the
Kalman filter will be degraded considerably, especially in
fast time-varying environment. Although the extended
Kalman filter (EKF) can be employed to estimate the
channel coefficients and the state-space method together,
their convergence and performance are usually limited,
because of the problem of estimating a number of model
parameters from limited number of observations.
Moreover, the EKF algorithm also requires high
arithmetic complexity. It should be noted that more recent
generalizations of the Kalman filter, such as the particle
filters [8], can give good results, they are limited to low
dimensions and require very high arithmetic complexity,
which is undesirable for real-time applications.

In this paper, we propose a new algorithm for
estimating time-varying channels under impulsive noise
environment using a new robust Kalman filter. Instead of
assuming that the impulse responses follow a complicated
AR model, we only assume that the channel impulse
responses are closely related to the previous one and
model the changes as the innovation to the dynamical
equation in the Kalman filter. In other words, the state
transition matrix is an identity matrix and the changes of
the channels are all caused by the innovation or state noise
having an appropriate, usually slightly larger, variance. A
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robust Kalman filter, based on M-estimation, is employed
to combat the adverse effect of the impulsive outliers.
Then, the channel coefficients estimated by the robust
Kalman filter are used to estimate the parameters of a low
order AR model. Finally, these two estimations can be
further coupled together as in [2] at each time instant to
estimate the channel and AR parameters iteratively. The
uncoupled version of the proposed algorithm has a low
implementation complexity and reasonably good
performance. The use of the robust Kalman filter
improves the robustness of the algorithm in impulsive
noise environment. It also provides estimates of the
covariance matrices of the state and measure noises.

The paper is organized as follows. Section 2
describes the proposed channel model. Section 3 is
devoted to time-varying channel estimation using our new
Kalman filter. Section 4 discusses the estimation of AR
parameters. Simulation results are presented in Section 5
and conclusions are drawn in Section 6.

2. CHANNEL MODEL AND ESTIMATION

Consider the identification of an unknown system with a
time-varying impulse response wk(n), k 1,2,...,L . The
system input x(n) , which is known as the training
symbols in communications, is applied to the unknown
system and the output y(n) is observed to identify Wk (n) .
Mathematically, we have at the n-th time instant:

y(n) = ,k Wk (n)x(n-k + 1) + e(n), (1)
or in matrix form:

y(n) = WT (n)X(n) + £(n), (2)
where e(n) is the additive white Gaussian noise with zero

mean, W(n) = [w1 (n),..., WL (n)]T is the time-varying
channel vector and X(n) =[x(n),..., x(n - L + 1)]T is the
input data vector. For time-invariant channel Wk (n)= Wk,
which is independent of time index n, it can be estimated
by solving a LS problem to combat the effect of the
additive noise using consecutive measurements y(n). If
the channel is time-varying, the problem is more difficult
because the way how Wk (n) change with time is
generally unknown and the number of observations that
Wk (n) remain stationary might be limited. Conceptually,
a better method for determining wk(n) would require
some model or prior information. For example, in most
reported works, Wk (n) is modeled as an AR process. For
instance, if a first order AR model is used, we have

w (n + 1) = PkWk (n) +7b k(n)w ,(a)
and the state dynamic can be written as:

W(n + 1) = F * W(n) + M(n) . (4)

where F = diag(pl,...,p) and l(n) = [171,...,'7L ]T . As
mentioned earlier, the estimation of the AR parameters in
form of F(n) increases the arithmetic complexity and rely
on a more stringent assumption that Wk (n) follow the AR
model. In our proposed model, we assume that

Wk(n+l)=Wk(ln)±+lk(ln), (5)

where E[ii(n)1iT(n)] = R 7. The physical meaning of this
model is that Wk (n) should be close to its previous value
Wk (n -1) and the variations of the channel is modeled as
a Gaussian distributed state noise with covariance R7
The state transition matrix is thus an identity matrix. This
simple model has the advantage of using fewer parameters.
It is expected to yield lower arithmetic complexity and
fast tracking speed but at the same time generating
slightly higher estimation variance in W(n). To reduce
this variance, W(n) will be estimated by another AR
estimation process to be described in Section 4. The two
processes can also be coupled together at each iteration to
progressive refine the estimates.

Equation (2) and (3) constitute the following state-
space equations:

W(n + 1) = I W(n) + ti(n),̂ (6a)
y(n) = XT(n)W(n) + e(n). (6b)

This is in the same form as the Kalman filter
formulation, where W(n) is the state to be estimated and
(6a) is the state dynamic equation, while (6b) is the
measurement equation. Thus, when e(n) and il(n) are
Gaussian distributed with zero means and covariances u.
and R,7 then the optimal mean square error (MSE)
estimator of W(n) is given by the Kalman filter.

Since the state equation of the proposed model is very
simple, it also admits the following simple form:

FW(n-1)1 =
I 1()+-i()7y(n) j XT (n)]W L(n) (

Let 4(n) =[-1T (n), 8(n)]T and denote its covariance by
R=S ST . The optimal LS estimate (which is also the
Kalman filter solution) is

W(n) = arg min S (F W (n) (8)W(n) W(n-n1)y (8)

The equations involve the identity matrix is
equivalent to the diagonal loading in beam-forming and a
regularized LS problem. The physical interpretation is that
the state dynamic automatically imposes a smoothness
constraint into the LS problem, which is very reasonable
because we assume that the change is only due to the state
noise il(n) . Here, only one measurement equation is used,
instead of using all the past measurement equations with
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exponential weighting. If the system is time-invariant,
including more past measurements can help to reduce the
variance and it will lead to the conventional RLS
algorithm. For 'tracking' time-varying channels, this
model with an appropriate selection of the covariance of
the state noise is more attractive because of its good
performance and low complexity. We now extend the
proposed algorithm to the situation where e(n) contains
impulsive outliers, which is frequently encountered in
nature or from other man-made interference sources.

3. CHANNEL ESTIMATION UNDER OUTLIERS

We will use the robust Kalman filter method proposed in
[6, 7] to solve the state-space equations in (6). S in (6)
can be obtained by computing the Cholesky
decomposition of E[L(n)>T (n)]. Multiplying both sides
of (7) by S (n), we get

Y(n) X(n)W(n) + 4(n), (9)

where X(n) S' (n) T] ' 4(n) I(n) and

FW(n -1)
Y(n) = S(n) y . It gives a linear LS problem as

Ly(n)j
in (9) and the solution is given by:

W(n) = (XT (n)X(n)) XT (n)Y(n) , (10)
If the system is working under impulsive noise

environment with e(n) corrupted by impulsive outliers,
then the M-estimation should be employed instead of the
LS criterion in (8)-(1 0) to combat their adverse effect.
More precisely, the M-estimate of W(n) is given by:

W(n)= arg mini) k y (n)- xi(n)W(n)),
W(n) (1 1)

where y (n) is the i-th element of Y(n), x,T (n) is the i-

th row of X(k) and p() is a nonlinear score function
which will restrain the adverse effect of outliers. We can
use the iterative reweighted least-squares (IRLS) method
to compute the solution of (11). The detailed algorithm
can be found in [7] and is omitted here due to page
limitation. It is worth-mentioning that the covariance of
e(n) and ril(n), u. and u. can be estimated as in [7].
Since our Kalman filter model is established under the
assumption that W(n) follows the simple model in (6a),
if W(n) follows a higher order AR model, then u

should be chosen as a value larger than the innovation of
the AR process in order to accommodate or model the
actual change of the channel. Simulations show that an
estimated value of u. is 100 times larger than the actual
covariance of il(n) and the estimation result is not too
sensitive to this estimated values.

4. AR PARAMETER ESTIMATION

Suppose that the actual AR parameters of the channel
W(n) is A(p), that is:

W(n) = z;=_A(p)W(n - 1) + u(n), (12)

where P is the order of the actual AR process, u(n) is an
independent and identical distributed (i.i.d.) complex
Gaussian noise with zero mean. From [1], we know the
AR parameter can be estimated by the correlation matrices:

Rj(r) E{W(n)WT (n + r)}, (13)

R'(H)= E A(p)R H (Z-p)_ a2()I, = 1,.p..,P (14)
So, after we have estimated the channel, the

correlation matrix Rw(r) can be estimated using (13).
The AR parameters can then be estimated from the noisy
estimates of the robust Kalman filter by solving (14). The
estimation can be further improved by combining the two
processes together as in [2]. More precisely, once the AR
parameters A(p; n) at time instant n are estimated, the
estimated AR parameters and the model in (4) can be used
to track the channel at time n + 1. Simulation results show
that it gives slightly better performance than using the
uncoupled algorithms. The proposed algorithm (with
coupling) is summarized as follows (without losing
generality, we will assume the order ofAR model is one):
Initialize: At time n = 1 , assuming A(1) = I The

estimated covariance of il(n) is given a
sufficiently large value.

Step 1. At time instant n , use the proposed
robust Kalman filter and AR parameters
A(n) to estimate the channel W(n +1).

Step 2. Estimate the AR parameters using LS.
Calculate the correlation matrices:
Rw(0;n) =E{W(n)WT (n)} and

Rw (1; n) E{W(n)WT (n + 1)}.
Step 3. The updated AR parameter is:

A(n + 1) = RH (1;n)/R H (0;n). Go to (1)
with the updated A(n).

5. SIMULATION RESULTS

In our simulations, a first-order AR model with parameter
A=diag([0.95,0.98]) is used to simulate the channel.
The covariance of the measurement noise and the state
noise are respectively u1 = 0.01 and o7 = 0.01 . The
SNR of the observation y(n) is 20dB. Simulation results
up to 200 time instants are displayed to illustrate the
convergence performance of the various methods to the
actual channel and the system parameters. For the sake of
visualization, the impulsive noises with variance 100 are
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applied at time instants 100 and 150. Simulation results of
the method proposed in [ 1 ] is also included as a
comparison. The channel estimation error and the AR
parameter estimation error are both assessed by the

normnalized MSE:
1 E

W
^ 2 112

M Z A -A JA| ,where MC denotes the number

of Monte-Carlo realizations. The learning curves of MSE
are averaged over 100 Monte-Carlo realizations.

We can see from Fig. 1 and Fig. 2 that the proposed
robust Kalman filter can combat the impulsive noise better
than the proposed Kalman filter based on LS criterion
obviously. We can still see that the algorithm coupled
with channel estimation and AR parameter estimation
only has a little better result than the uncoupled algorithm
(without the AR parameter estimation). The AR parameter
estimation is performed after time 32 so that enough
measurements can be used to avoid divergence of the AR
parameters estimation. Fig. 3 shows our proposed
algorithm has a much better performance than the method
in [1] in the estimation of AR parameters. It can also be
seen from Fig. 3 that the robust Kalman filter can
effectively restrain the adverse effect of impulsive noise.

6. CONCLUSION

A new algorithm for tracking time-varying channels in
impulsive noise environment using a robust Kalman filter
is presented. It employs a simple dynamical model of the
channel to reduce the arithmetic complexity, while
offering reasonable good performance. A robust Kalman
filter is employed to restrain the adverse effect of
impulsive noise. The noisy channel estimates from the
Kalman filter can be used to estimate the parameters of
the channel coefficients when they are governed by an AR
model. Finally, the two processes can be coupled together
to further improve the performance. Simulations show
that the new algorithm gives more stable performance
than the conventional methods under impulsive noise
environment.
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Fig. 1. MSE comparison of channel estimation (uncoupled
algorithm). dotted line: proposed method based on LS
criterion, solid line: proposed method based on M-estimation.

Fig. 1. MSE comparison of channel estimation (coupled
algorithm). dotted line: proposed method based on LS
criterion, solid line: proposed method based on M-estimation.

Fig. 2. MSE comparison of AR parameter estimation.
dashed line: method proposed in [1], dotted line: proposed
method based on LS criterion, solid line: proposed method
based on M-estimation.

236 -


