The HKU Scholars Hub 'Thc Un:ivcrsityof Hong Kong 7;(t;% A %—i ’%ﬂ: }iﬁ&

Title Along & Across algorithm for routing events and queries in
wireless sensor networks

Author(s) Chim, TW

Proceedings of 2005 International Symposium on Intelligent
Citation Signal Processing and Communication Systems (ISPACS 2005),
Hong Kong, 13-16 December 2005, p. 725-728

Issued Date | 2005

URL http://hdl.handle.net/10722/54042

©2005 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
Rights promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Proceedings of 2005 International Symposium on Intelligent Signal Processing and Communication Systems

ALONG & ACROSS ALGORITHM FOR ROUTING EVENTS AND QUERIES IN WIRELESS
SENSOR NETWORKS

Tat Wing Chim

Department of Electrical and Electronic Engineering
The University of Hong Kong, Pokfulam Road, Hong Kong
Tel: (852) 2857-8410; Fax: (852) 2559-8738; E-mail: twchim@eee.hku.hk

ABSTRACT

In this paper, we investigate efficient strategies for routing
events and queries in a wireless sensor network where en-
ergy is a major concern. Our Along & Across algorithm
makes use of a hop tree structure. Event attributes are routed
along hop levels while queries are routed across hop lev-
els to seek for match. Location information is not assumed.
Simulation results show that our algorithm yields much higher
hitting probability between event attributes and queries than
a previously proposed algorithm, Rumor Routing algorithm
in a moderate-traffic environment. As a result, our algo-
rithm consumes up to 72.6% less transmission overhead. As
such, our Along & Across algorithm is sound and should be
very useful to wireless sensor network developers.

1. INTRODUCTION

A wireless sensor network (WSN) is made up of a large
number of densely-distributed tiny nodes with sensing, lim-
ited computation and communication powers. Since sensor
nodes are of a large number, manual replacement of bat-
teries is not always possible. To elongate the lifetime of
a WSN, energy awareness is a critical design issue in the
WSN research community. Many routing protocols have
been specifically designed for use in different applications
of WSNs. A comprehensive survey of these protocols can
be found in [1]. This paper focuses in the category of Query-
Based Routing.

Many WSN applications require dissemination of sensed
data to interested clients. Three major approaches have been
proposed so far. The push approach requires sensor nodes
to broadcast sensed data throughout the network. This ap-
proach is inefficient when the number of queries is compa-
rably small. The pull approach requires interested clients to
broadcast queries throughout the network and sensor nodes
transmit data according to the demands. Directed Diffusion
protocol [2] is an extension of this approach. The third ap-
proach balances these two extremes and tries to eliminate
broadcasting of either data or queries. Sensor nodes and in-
terested clients propagate sensed data attributes and queries,

0-7803-9266-3/05/$20.00 ©2005 IEEE.

respectively, to seek for a match. Rumor Routing algorithm
[3] is a representative work under this approach. In Rumor
Routing algorithm, a node which witnesses an event proba-
bilistically sends out an agent for advertising the event. The
agent propagates using random walk and synchronizes each
node’s event table on its trail. An interested client also sends
out a query using random walk. Upon meeting of event and
query at any node, the answer is sent back to the interested
client directly. Because of the random nature of random
walk, hitting of event and query is not guaranteed. Rumor
Routing algorithm assumes a flat random topology and un-
availability of node location information. With the relaxed
assumptions of a grid or near-grid topology and availability
of node location information, Combs, Needles, Haystacks
algorithm [4] was proposed. In this algorithm, making use
of the grid or near-grid structure, a query is propagated to
form a comb structure while an event is propagated to form
a needle structure. With proper settings of comb and needle
sizes, the hitting probability between query and event can
be very high.

In lots of common applications of WSNs, such as pro-
viding information about enemies to soldiers on a battle
field, sensor nodes are usually randomly dropped onto the
field from planes or helicopters. It is almost impossible
to obtain a grid or near-grid structure. On the other hand,
it is also difficult to obtain node location information in
these situations. Global Positioning System (GPS) receivers
are too expensive to be installed on sensor nodes. Even
GPS receivers are installed, GPS signals may be blocked
or jammed. Moreover, localization techniques [5] cannot
provide very accurate location information.

In this paper, we follow the assumptions of a flat ran-
dom topology and node location information being unavail-
able as made by Rumor Routing algorithm. We also as-
sume sensor nodes are densely distributed. Then we pro-
pose the Along & Across algorithm and show that it is far
more efficient than Rumor Routing algorithm under iden-
tical moderate-traffic scenarios. In brief, we propose the
use of a hop tree structure in which every sensor node pos-
sesses a hop level. Event attributes are then distributed us-

-725 -

December 13-16, 2005 Hong Kong

ing an 4long strategy - along same hop level nodes. Queries
are propagated using an Across strategy - across hop levels.
Cutting of an event level by a query yields a match.

The remaining of this paper is organized as follows: we
explain our Along & Across algorithm in detail in Section
2. Next we present our simulation results and evaluate the
performance of our algorithm in Section 3. We conclude
this paper in Section 4.

2. ALONG & ACROSS ALGORITHM

Our Along & Across algorithm consists of three major parts:
building of hop tree, distribution of event attributes and prop-
agation of queries.

2.1. Building of Hop Tree

The initial step of our Along & Across algorithm is to con-
struct a hop tree which is initiated by a random root node
(say the last node being dropped onto a field). This root

node generates a Tree_Build packet with the format < SenderID,

Hop>, where SenderID and Hop are initialized to the root’s
ID and 0 respectively, and broadcasts it to all its neighbors.
The tree building process continues by updating and flood-
ing Tree_Build packets across the network. When a node re-
ceives the first Tree_Build packet, it simply stores locally the
value of Hop, increments it, replaces SenderID by its ID and
rebroadcasts the packet to all its neighbors. When a node
receives the second onwards Tree_Build packet, it compares
the value of Hop with the locally stored one. If the stored
value is greater than the received one, the node updates its
stored value, increments the received one and rebroadcasts
as before. Otherwise, the node does not update its stored
value and ignores the packet. As a result, every node in the
network is configured with different hop levels. By means
of the broadcast nature of wireless channels, all neighbors
can overhear the Tree_Build packet transmitted by a node.
Thus during the tree building process, each node builds up
a list of its direct neighbors together with their hop levels.
An example of a constructed hop tree is shown in Figure 1
where the number in each node represents the hop level of
that node. In this example, all sensor nodes are assumed
to have identical transmission range and the transmission
range of the root is indicated by dotted line.

2.2. Distrubution of Event Attributes

We first describe how event attributes are distributed to fa-
cilitate the query process. Each node keeps an Event Table
with forwarding directions to all events it knows. When
an event source witnesses an event, it includes it into its
Event Table and forms an Event_Dist packet with the format
<EventAttributes, EventSrcLevel> in which EventSrcLevel
represents the hop level of event source. It then checks its

neighbor list to see if there are neighbors having the level
EventSrcLevel. 1f yes, it forwards the packet to them. If not,
it forwards the packet to neighbors having levels EventSr-
cLevel - 1 or EventSrcLevel + 1 equally likely. Any node
receiving an Event_Dist packet first checks its Event Table
to see if it has received information about the same event
before. If yes, it ignores the packet. Otherwise, it records
EventAttributes into its Event Table, sets the forwarding di-
rection of this event to the sender of the packet and forwards
the packet using the same set of rules as the event source.
Again, by means of the broadcast nature of wireless chan-
nels, all neighbors can overhear the Event_Dist packet trans-
mitted by a node. These nodes handle the overheard packet
as if it is destined at them except that they will not help
to forward it. Figure 1 shows how an event is distributed
among nodes with hop level 4 in the tree structure.

2.3. Basic Propagation of Queries

When a node receives a query, it first checks its Event Ta-
ble to see if there is a match. If not, it forms a Query_Prop
packet with the format < QueriedEventAttributes, HopList>
where HopList is used to record hops traversed by the packet.
The query source then flips a coin to determine whether
it should forward the packet upwards (to upper levels) or
downwards (to lower levels) first and sends out the packet.
A node receiving a Query_Prop packet first updates HopList
and then checks its Event Table to see if there is a match. If
yes, it directs the packet to the neighbor leading to the event
according to its Event Table. If not, it forwards the packet
to a neighbor in the opposite direction as the sender. For
example, it forwards a packet received from an upper level
neighbor to a lower level neighbor. If there is no such neigh-
bor (for example, the node already has the lowest or highest
level), it means the query cannot be answered in the selected
direction. In this case, the node holding the packet forms a
Query_Failed packet which is identical to the Query_Prop
packet and forwards it back to the query source using the
reverse path shown in HopList. When the query source re-
ceives the Query_Failed packet, it forms a new Query_Prop
packet and forwards it to a direction opposite to the one
selected before. The above process repeats. If the query
source receives Query_Failed packets from both upper and
lower directions, it means the query cannot be answered. In
this case, the query is flooded across the whole sensor net-
work to seek for an answer. Figure 1 shows how a query
initiated from a level 2 node is propagated to seek for an
answer.

2.4. Advanced Propagation of Queries

When a Query_Prop packet is going upwards, an interme-
diate node may not be able to find an upper level neighbor.

- 726 -

6)(=) (5 5 2
5) 6
= 1'4 4 N A6
5) g :
¥ G D <
= ») s
F s
< 3] 5“ Event Source
. 2) 1 2 3 L] Locus of Event
B/ \! < Distribution
X 5t .) 1)12)@G N Nodes overhearing
. =\ '3 = Evenl
5) 13~ ! % 3
) 2 T e b o B
) m S 5 . 5 %c,}lm\ Source
G 3 -) 5 N Locus of Query
= el DGR 2% ¥ 5 Propagation
5 =) 5 2 Matching of
[6)3 = 5 6

“ Query & Event

Fig. 1. Sample Hop Tree with Event and Query

Thus in this subsection, we propose an advanced propaga-
tion model to improve this situation. This model makes use
of a Query Routing Table (QRT) to be maintained by all
nodes. After the hop tree is built, a node without upper
level neighbors forms a QRT_Build packet with the form
< HighestHop> where HighestHop is initialized to the hop
level of that node. The node then forwards the packet to
a lower level neighbor at random. When a node receives a
ORT_Build packet, it stores the value of HighestHop and the
corresponding incoming direction into its QR7 and removes
all entries with lower HighestHop values. It then continues
to forward the packet downwards by randomly picking up a
lower level neighbor. As a result, some nodes including the
root build up a QRT with information about how to reach
the top of the tree. When a node receives a query, it first
checks its Event Tuble to see if there is a match. If not, it
forms a Query_Prop packet as before but instead of flipping
a coin, it always forwards the packet downwards first. When
the packet reaches the root, the root forwards the packet up-
wards by randomly picking up a neighbor which can lead to
the top of the hop tree according to its QRT. This advanced
query propagation model ensures a Query_Prop packet go
through all hop levels in the tree. The only drawback here
is that the root as well as nodes nearby may need to han-
dle more traffic. Without loss of generosity, since there are
more high level nodes than low level ones, the probabil-
ity that a query is originated by a high level node is much
greater than that by a low level node. That is given any
query, it is more likely that its originating level is higher
than the corresponding event level. Thus a match should
occur in the mid-way and the query does not need to be
routed to the root.

2.5. Optimization of Return Path

When the event source receives a Query_Prop packet, it
forms a Query_Answer packet and forwards it back to the
query source using the reverse path shown in HopList. How-
ever, this reverse path may be longer than necessary. As
such, we propose an optimization method to shorten the re-
verse path. Instead of sending the Query_Answer packet to

the immediate next hop on the reverse path, a node receiv-
ing this packet sends it to the furthest ahead neighbor. For
example, if the reverse pathis 5 —4 -3 -2 -1 —0and
node 5 finds that both node 3 and node 2 are its neighbors.
Then node 5 will direct the packet to node 2 (the furthest
ahead neighbor). As a result, the packet travels through 3
hops instead of 6 hops.

3. SIMULATION RESULTS

3.1. Simulation Models

To measure how effective our Along & Across algorithm is,
we implemented Rumor Routing algorithm and our algo-
rithms using a simulator written in C++ language. We com-
pared their performance over 10 trials for a dense network
setting [5] (500 nodes were uniformly distributed across an
area of 50m x 50m). Similarto [3], a simple radial propaga-
tion model was used. That is, each node could reliably send
packets to any other nodes within its 5m transmission range.
Simulations were conducted with minimum node degree of
6 since network partitioning tends to occur for minimum
node degree less than 6 [5]. The resulting average node de-
gree and average maximum node degree over the 10 trials
are 16.5 and 27 respectively.

Following the rough proportion of event and query num-
bers to sensor node number given by [3], we assume there
are 15 events and 150 queries. Each event is generated by a
random node and all events are assumed to be distinct. Each
query is also generated by a random node and is querying
one of the 15 events. Two queries can be querying the same
event.

Rumor Routing algorithm requires setting query (or agent)
and event TTLs. We set these two values to 60 and 40 re-
spectively. We found that with these two values, the number
of transmissions used for event distribution (M) and query
propagation without flooding the network (M) in both Ru-
mor Routing and Along & Across algorithms are compara-
ble (as shown in Table 1).

3.2. Simulation Results

Since our Along & Across algorithm is based on a hop tree
structure, we make a brief analysis of the hop tree structure
here. For each of the 10 random topologies, we built a hop
tree rooted at a randomly selected node. On average, 99%
of nodes have at least two same hop level neighbors while
82.24% of nodes have at least one upper hop level neighbor.
For each event, let’s define the percentage of nodes hav-
ing the same level as the event source and have information
about that event be the event spreading factor. Among the
10 topologies and among all the 15 events for each topology,
the average event spreading factor is 98.81%. That means
whenever an event source sends out an Event_Dist packet,

-727 -

almost all nodes on the same hop level can receive it. As
such, our Along strategy for event distribution is very effi-
cient.

Table 1 summaries the performance comparisons be-
tween Rumor Routing (RR) algorithm and our Along &
Across (AA) algorithm (with both basic and advanced query
propagation stragegy). The items being compared include
transmission overhead for event distribution (M.), trans-
mission overhead for query propagation without flooding
(M,), percentage of answered queries without flooding (4,),
average hop delays experienced by queries (from sending
out Query_Prop packet to receiving Query_Answer packet)
(D), total transmission overhead (T") and transmission over-
head per node (7,,). Note that transmission overhead in-
cludes those for tree building and QRT construction where
appropriate.

The results show that the random nature of random walk
in Rumor Routing algorithm makes the hitting probability
low. In particular, when the number of events is not large
enough, there is not much agents to help to spread event
information out. As a result, only 62.8% of queries can be
answered before flooding is applied. On the contrary, our
algorithm with both basic and advanced query propagation
strategy gives higher hitting probability (80.7% and 99.4%
respectively) without flooding the network.

Concerning the average hop delay experienced by queries,
both Rumor Routing algorithm and our advanced approach
yield comparable performance. With basic query propaga-
tion strategy, the queries experience about 16% higher delay
on average because of the fact that a query source may pick
up a wrong direction initially and some time is wasted in
searching the wrong direction. In the future, we will con-
sider some smarter ways such as history information and
hop level of query source in making the initial decision of
propagation direction.

In the simulations, we assume flooding is used once a
query cannot be answered. Therefore, the lower the hitting
probability between queries and events, the higher the prob-
ability that flooding is used and the higher the total trans-
mission overhead is. This explains the performance of total
transmission overhead and transmission overhead per node
among the algorithms in the last two rows of the table.

To summarize, with the same number of queries being
answered, our Along & Across algorithm with basic query
propagation strategy requires 30.7% less transmission over-
head than Rumor Routing algorithm. With our advanced
query propagation strategy, the saving can be up to 72.6%.
Therefore our Along & Across algorithm is sound.

The density and failure rate of sensor nodes may slightly
affect the performance of our Along & Across algorithm.
However, due to limited space here, we leave the related
analysis to our future work.

Algorithms RR AA Ba- | AA Ad-
sic vanced
M. 900 1017.3 1017.3
My, 7173.4 7971.2 7199.2
Ay 62.8% 80.7% 99.4%
D 47.8 55.6 479
T 35609.8 | 24683.6 | 9765.1
T, 71.2 494 19.5

Table 1. Performance Comparisons between Algorithms

4. CONCLUSION

In this paper, we proposed Along & Across algorithm for
efficient routing of events and queries in a WSN where en-
ergy is a major concern. Our Along & Across algorithm
makes use of a hop tree structure. Event attributes are routed
along hop levels while queries are routed across hop lev-
els to seek for match. Just like a previously proposed al-
gorithm, Rumor Routing algorithm, location information
is not assumed. Simulation results showed that our algo-
rithm yielded much higher hitting probability between event
attributes and queries than Rumor Routing algorithm in a
moderate-traffic environment. As a result, our algorithm
consumed up to 72.6% less transmission overhead than Ru-
mor Routing algorithm. As such, our Along & Across algo-
rithm is sound and should be very useful to wireless sensor
network developers.

5. REFERENCES

[1] J.N. Al-Karaki and A. E. Kamal, “Routing techniques
in wireless sensor networks: a survey,” IEEE Wireless
Communications, pp. 6 — 28, Dec. 2004.

[2] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heide-
mann, and F. Silva, “Directed Diffusion for Wireless
Sensor Networking,” IEEE/ACM Transactions on Net-
working, pp. 2 — 16, Feb. 2003.

[3] D. Braginsky and D. Estrin, “Rumor Routing Algo-
rithm For Sensor Networks,” in Proceedings of the
WSNA °02, Sept. 2002, pp. 22 — 31.

[4] X. Liu, Q. Huang, and Y. Zhang, “Combs, Needles,
Haystacks: Balancing Push and Pull for Discovery in
Large-Scale Sensor Networks,” in Proceedings of the
Sensys 04, Nov. 2004, pp. 122 — 133.

[51 S. Y. Wong, J. G. Lim, S. V. Rao, and W. K. G.
Seah, “Density-Aware Hop-Count Localization (DHL)
in Wireless Sensor Networks with Variable Density,” in
IEEE Proceedings of the WCNC 05, Mar. 2005.

- 728 -

