
Title Priority assignment for sub-transaction in distributed real-time
databases

Author(s) Lee, VCS; Lam, KY; Kao, BCM; Lam, KW; Hung, SL

Citation
Proceedings of the 1st International Workshop on Real-Time
Databases (RTDB 1996), Newport Beach, CA., 7-8 March 1996, 8
pp.

Issued Date 1996

URL http://hdl.handle.net/10722/53612

Rights

©1996 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/37890138?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Priority Assignment for Sub-transaction in
Distributed Real-time Databases

Victor C. S. Lee*, Kam-yiu Lam*, Benjamin C. M. Kao**, Kwok-wa Lam* and Sheung-lun Hung*
*Department of Computer Science, City University of Hong Kong

83 Tat Chee Avenue, Kowloon, Hong Kong
**Department of Computer Science, The University of Hong Kong

Pokfulam Road, Hong Kong

 Abstract
Recent studies on deadline assignment to sub-tasks in

distributed real-time systems have suggested different
heuristics for priority assignment to improve the system
performance [6,10]. These heuristics only consider the
real-time constraints of the tasks and may not be suitable
for distributed real-time database systems (DRTDBS). In
this paper, we examine the performance of these heuristics
for DRTDBS and suggest better alternatives. Our
performance results show that many factors, such as data
conflict resolution, transaction aborts and restarts, that
are unique to a database system in fact have significant
impact on the performance of the heuristics for sub-
transaction priority assignment. One of our proposed
heuristics, which considers both real-time constraints of
the transactions and the impact on data contention, gives
the best performance.

1 Introduction
Transactions in a distributed real-time database system

(DRTDBS) have constraints on their completion times
which are usually expressed as their deadlines [9]. It is
vital to the correctness of the system to complete the
transactions before their deadlines [3]. In DRTDBS, the
processing of a transaction is much more complex than
that in single-site RTDBS. It usually has to create a
number of sub-transactions to access data objects in
different sites [7,13]. The system performance is heavily
dependent on the local scheduling of the sub-transactions
in different sites [6,10].

In order to maintain the database consistency and to
ensure failure atomicity of transactions [2], a real-time
concurrency control protocol and an atomic commitment
protocol have to be adopted in the systems. In recent years,
a number of works are devoted to the study of real-time
concurrency control protocols [1,3,4,5,9,14], and to
reducing the delay for atomic commitment [11]. The
problem of concurrency control in DRTDBS is that the

principles and strategies used in the conventional
concurrency control protocols for data scheduling are not
compatible with those used in the well-known real-time
CPU scheduling algorithms. Unbound blocking and
priority inversion may occur as a result [7,13]. Different
methods for conflict resolution are suggested to resolve this
problem [9,14] and to make the scheduling of these
protocols as consistent as possible with the real-time CPU
scheduling algorithm adopted.

In real-time systems, task deadlines can be ensured by
the use of a priority cognitive CPU scheduling algorithm
[8,12] and by specially designed hardware resources. One
of the more popular CPU scheduling algorithms is earliest
deadline first (EDF) in which the transaction with the
closest deadline is assigned the highest priority [8].
However, in DRTDBS, the complexity of transactional and
system requirements make EDF ineffective. One basic
problem is determining the sub-transactions priorities.
(E.g., should they use the same priority as their parent
transaction?) In recent studies on priority assignment for
sub-tasks in distributed real-time systems, it has been
found that the system performance in terms of meeting task
deadlines can be improved by assigning appropriate
priorities to the sub-tasks of a task [6]. However, a
DRTDBS has the additional complexity due to the
requirements of transactional support protocols such as
locking and commit protocols. These protocols interfere
with CPU scheduling and in many cases render the priority
assignment heuristics ineffective. In this paper, we look at
the sub-transaction deadline assignment problem in a
DRTDBS. Our goal is to answer the following important
questions:
(1) Should we assign the same priority to a sub-

transaction for both CPU scheduling and data conflict
resolution?

(2) One common method to resolve data conflict is to
restart a lower priority transaction in favor of a higher
priority one. Restarting a transaction requires the

release of locks from the lower priority transaction (for
two phase locking). Which priority should be used for
the lock releasing operations?

(3) Which priority should be assigned to a committing
transaction? A transaction is committing if it is in its
commitment phase and the atomic commitment
protocol is being done.
In this study, we use a simulation model to compare

the relative performance of the heuristics suggested in [6]
and other heuristics suggested in this paper when applied
to a DRTDBS. We also look at the impact of various
important factors that are unique to a DRTDBS on the
system performance. In the model, High Priority Two
Phase Locking [1] is adopted for concurrency control and
the conventional two phase commitment (2PC) [2] is used
for atomic commitment owing to their popularity and
simplicity. The rest of the paper is organized as follows.
Section 2 reviews the priority assignment heuristics for
sub-transactions and suggest new alternatives. Section 3
introduces the DRTDBS model used in our study. Section 4
gives the performance study of the heuristics for sub-
transaction priority assignment. The conclusions of the
paper and suggestions for future works are in Section 5.

2 Sub-transaction Priority Assignment
Heuristics
We consider seven priority assignment strategies

divided into two groups: One group considers only the
deadlines of transactions. The second group considers also
the effect of data contention.

2.1 Based on Real-time Requirements
In [6], different heuristics have been suggested for

priority assignment for the sub-tasks based on the real-time
requirements of the tasks. These include the ultimate
deadlines of their tasks and their slack times. In these
heuristics, it is assumed that the expected execution times
of the sub-tasks are known and EDF is used for local CPU
scheduling. Here, let us briefly summarize these heuristics.
In the following description, we assume that a distributed
transaction T consists of m sub-transactions, T1, T2, ... , Tm,
to be executed in series. We also denote the deadline of a
(sub-) transaction X by dl(X). The four heuristics suggested
in [6] are:

(1) Ultimate deadline (UD);
(2) Effective deadline (ED);
(3) Equal slack (EQS); and
(4) Equal flexibility (EQF).

The most intuitive way to determine the priorities of the
sub-transactions of a transaction is to follow the priority of
their parent transaction. Thus, under UD, a sub-transaction

Ti is assigned the same priority (deadline) as of its parent
transaction. That is,

dl(Ti) = dl(T)

The problem of UD is that it does not consider the
execution time of a transaction. A transaction with farthest
deadline is given the lowest priority even if it does not have
any slack. Under ED, the deadline of a sub-transaction Ti is
the ultimate deadline minus the total predicted execution
time of the sub-transactions of T following Ti. That is,

dl(Ti) = dl(T) − pex Tj

j i

m

()
= +
∑

1

where pex(Ti) is the predicted execution time of sub-
transaction Ti.

The problem with UD and ED is that they allocate all
the current slack time to the current executing sub-
transaction. The sub-transactions in the later stages of the
transaction may find that they do not have sufficient slack
time for their executions. In EQS and EQF, the total slack
time of a transaction is shared by all the sub-transactions.
Under EQS, the slack is evenly distributed to the
remaining sub-transactions. Thus,

dl T ar T pex T

dl T ar T pex T m i
j i

m

i i i

i j

() () ()

[() () ()] / ()

= + +

− − − +
=
∑ 1

where ar(Ti) is the arrival time of sub-transaction Ti.
Under EQF, the slack is distributed to the remaining

sub-transactions proportional to their remaining predicted
execution time. That is,

dl T ar T pex T

dl T ar T pex T pex T pex T
j i

m

j i

m

i i i

i j i j

() () ()

[(() () ()] () / ()

= + +

− − ×
=
∑

=
∑

2.2 Considering the Impact on Data Contention
The biggest problem of EQF and EQS is that they do

not consider their impact on data contention which can
seriously affect the system performance. For example, in
EQS and EQF, while a transaction T is waiting, its slack
decreases with time. Consequently, the priorities of T’s
sub-transactions will become higher relative to the sub-
transactions of the executing transaction (lets say T’). The
scheduler is thus likely to swing the CPU to a waiting
transaction (T) whenever a sub-transaction (of T’) is done.
This interleaving, although ensures that transactions are
progressing at pace, vastly increases the probability of data
conflict as more unfinished transactions are holding locks
at the same time.

In order to reduce the degree of data contention, we
consider alternative priority assignment strategies that
avoid intensifying data contention:

(1) Number of Locks held (NL)
(2) Static EQS (SEQS)
(3) Mixed methods (MM)

In NL, the priority of a sub-transaction (Ti) is based on
the number of locks being held by its parent transaction
(T). I.e.,

 priority of Ti = number of locks being held by T

By giving the highest priority to the transaction which
holds the largest number of locks, the transaction can
complete faster and release the locks earlier. This reduces
the probability of lock conflict.

As we have demonstrated, the use of EQS and EQF in
dynamically assign sub-transaction priorities increases the
degree of data contention. This problem can be partially
solved if sub-transaction priorities are computed once and
for all at start time. We call this strategy Static EQS:

dl T ar T pex T
k

i

dl T ar T pex T
i

mj

m

i k

j

() () ()

[() () ()]

= +
=
∑ +

− − ×
=
∑

1

1

Strategy NL focuses on reducing data contention while
UD, ED, EQS and EQF focus on determining the
milestones (sub-deadlines) monitoring the progress of
transactions. We can inject the idea of NL to the other four
heuristics; Sub-transaction priorities can be based on a
function which includes both transactions’ real-time
constraints and the number of locks being held. We call
this approach the Mixed Method (MM).

dl T ar T pex T
k

m

dl T ar T pex T
n

mj

m

i k

j

() () ()

[() () ()] ()

= +
=
∑ +

− − × −
=
∑

1

1
1

where n is the number of locks holding by T. So, higher
priority will be given to the transactions with more locks.

3 Distributed Real-time Database Model
Our distributed real-time database (DRDTBS) model

consists of a number of inter-connected sites. It is assumed
that the sites are fully connected to avoid complicating our
analysis due to the different network configurations. Each
site is a local database system which consists of a
transaction generator, a scheduler, a CPU, a ready queue, a

local database, a communication interface, and a block
queue as shown in Figure 1.

database site

Block Queue

Ready Queue

Scheduler

Transaction
Generator

Local
Data
Base

CPU
Communication
Interface

Figure 1: Topology of the Experimental Network
and the Site Model

The transaction generator is responsible for the
creation of transactions with inter-arrival time following
the exponential distribution and is independent of the
generators at other sites.

Two types of transactions are defined in the model,
global and local. Local transactions only access data
objects in its originating site. They create no sub-
transactions. Global transactions, on the other hand,
consist of a series of sub-transactions. A global sub-
transaction consists of one or more operations. The
objective is to determine the priorities (deadlines) of the
sub-transactions so that the percentage of missed deadlines
is kept as low as possible.

The processing of the operations for both local
transactions and sub-transactions of global transactions are
the same. It involves CPU computations and database
accesses. In order to eliminate the impact of disk
scheduling to the system performance, we assume that the
database is main memory resident [1]. For global
transactions, if a sub-transaction requests a remote object,
the sub-transaction will be transmitted to, and processed by
the remote site through the communication network. To
simplify the model, we assume that each sub-transaction
has one operation and each operation only accesses one
data object.

At each site, the CPU is scheduled using preemptive
EDF [8]. Outstanding operations are maintained in the
ready queue in priority order.

communication trunk

The scheduler is also responsible for scheduling data
objects to the operations. The database is partitioned across
the different sites with the data objects in a site form a
local database. Lock on a data object is residing at the
same site as the data object. Before the access to a data
object is granted, its lock has to be set in an appropriate
mode. High Priority Two Phase Locking (H2PL) is used for
concurrency control. That is, whenever a high priority
transaction requests a lock which is being held by a low
priority transaction, the low priority lock holder will be
forced to release the lock and will be restarted. In order to
ensure the failure atomicity of transactions, if any one of
the sub-transactions has to be restarted or aborted, the
parent transaction and all other sub-transactions of that
parent have to be restarted or aborted as well. The high
priority transaction will be granted the lock once the lock
is released by the low priority transaction. If the lock
requesting transaction has a lower priority, it will be put in
the block queue until the lock is released or is changed to a
non-conflicting mode.

The transactions are assumed to be firm real-time
transactions [5]. Before they use the CPU or are restarted
(due to data conflict), their deadlines are checked. If they
have missed their deadlines, they will be aborted
immediately, and the locks held by them are released at
once.

After the completion of its last sub-transaction, a
global transaction enters its commitment phase in which
the two phase commit protocol is performed. If all sub-
transactions are ready to commit, the parent transaction
will decide to commit. After all the sub-transactions and
the parent transaction have committed, the transaction is
completed.

In order to focus our analysis on the impact of data
contention on the sub-transaction deadline assignment
strategies, and to prevent the variability of network delay to
obscure our results, we model the network as a fully-
connected point-to-point network. Each channel is
modeled by a delay center. Therefore all kind of messages
experience the same transmission delay.

4 Performance Experiments
4.1 Performance Parameters and Measures

The ultimate deadlines of the transactions (both global
and local) are defined based on their expected execution
times. The ultimate deadline of a global transaction is
defined as:

Deadline = Tgen + (Tlock + Tprocess) × Noper × (1 + SF)
 + Tcomm × Ntransit

The ultimate deadline of a local transaction is defined as:

Deadline = Tgen + (Tlock + Tprocess) × Noper × (1 + SF)
where

Tgen : current time of transaction generated;
Tlock : time required to lock a data object;
Tprocess : time to process a data object;
Tcomm : a constant time estimated for a transaction

going from one site to another;
Noper : number of operations in a transaction;
Ntransit : number of transition across the network

required to access all data objects in different
sites;

SF : slack factor (uniformly distributed).

We also define frac_local to be the fraction of load
contributed by local transactions. That is,

frac local

k

m k

local

local

global

subtransaction

local

local

_ =
×

× + ×

λ
μ

λ
μ

λ
μ

where,
k : the mean length of the local transactions defined in

number of operations;
μlocal : the service rate of the local transactions;
μsubtransaction : the service rate of the sub-transactions;
λlocal : the arrival rate of the local transactions and
λglobal : the arrival rate of the global transactions;

In this study, the execution times of both local transaction
and global sub-transaction are the same. Therefore, a
frac_local of 1/2 means that there are the same number of
local transactions and global sub-transactions. However,
since a global transaction consists of m sub-transactions,
local transaction arrival rate is m times that of global
transactions when k = 1.

The most important performance measure used is the
miss ratio MR which is defined as follows.

MR = Nmd / (Ncom + Nmd)
where

Nmd : number of transactions missed the deadline;
Ncom : number of transactions committed.

The other measure used is rollback frequency which is
defined as:

Rollback Frequency = Nrb / Ngen

where
Nrb: number of rollbacks occurred;
Ngen: number of transactions generated.

Rollback Frequency indicates the cost to commit a
transaction and the degree of data contention in the
systems.

In our simulation model, a small database is used to
create a high data contention environment so that the
impact of data conflict on the system performance is more
significant. Table 1 summarizes the model parameters and
their baseline values.

CPU Scheduling
Algorithm

Earliest Deadline First

Concurrency Control H2PL
Database size / site 200 data objects
Tlock 2 msec
Tprocess 34 msec
Tcomm 100 msec
Noper 1 operation for local

transaction
4 operations for a
global transaction

SF 0.5 to 2.75 (uniformly
distributed)
for distributed real-
time system
2.5 to 13.75 (uniformly
distributed)
for DRTDBS

Table 1: Model Parameters

4.2 Performance Results
In this section we report the results and findings of our

simulation experiments. Before comparing the heuristics’
performance, lets us discuss how data conflict is resolved,
and what priority should be given to lock releasing
operations. It has been found that if we use the priorities of
the sub-transactions for data conflict resolution (the H2PL
protocol), the performance of the system is very poor. It is
because cyclic transaction restart and deadlock may occur
as the relative priorities of the sub-transactions of different
transactions can be very different. So, in the following
experiments, we use the ultimate deadlines for data conflict
resolution.

When a transaction is aborted, the locks it holds
should be released. In our experiment, we assign the
highest priority to rollback operations to reduce transaction
blocking time due to data conflict.

In the remaining part of this section, we will discuss
the performance of the heuristics mentioned in section 2 in
more detail. Figure 2 shows the performance of the four
heuristics: UD, ED, EQS, and EQF applied to a distributed
real-time system in which the problem of data conflict are
not handled. Transactions are granted a requested lock
even if it is in a conflicting mode against another
transaction. We modeled our experiment as closely as that
reported in [6]. This experiment can therefore be used to
validate the simulator and to confirm the results found in
[6]. In our figures, solid lines and dashed lines represent

the missed ratio of local transactions and global
transactions respectively. The dotted lines represent the
rollback frequency of global transactions. From Figure 2,
we can see that the performance of the heuristics on global
transactions follows the same order as that in [6]. That is,
EQF and EQS perform similarly, they are better than ED
which in turn, is better than UD. For local transactions,
only a small increase in the miss ratio is found across the
heuristics. The difference in the absolute values of the
results (as compared with that in [6]) may be attributable to
the database operations (such as 2PL) that are absent in a
distributed system. As a whole, the performance result is
consistent with that in [6].

Figure 3 shows the performance of the heuristics when
applied to a DRTDBS when data conflict is resolved by
H2PL. We see that the performance is similar to that
shown in Figure 2. This can be explained by considering
the rollback frequency (Figure 4). From Figure 4, we see
that the rollback frequencies stay at a relatively low level
(< 8%) for all heuristics. This is because in the baseline
experiment, a global transaction only consists of four sub-
transactions (Noper = 4). Data conflicts are thus infrequent.
Without data contention, the behavior of a DRTDBS
resembles a distributed system with resource contention
only.

To investigate the performance of the heuristics when
applied to a DRTDBS with high data contention, long
global transactions (Noper = 12) are introduced. Figure 5
shows the results obtained. Since the size of the global
transactions is increased, the mean global transaction
arrival rate has to be reduced to maintain a similar loading.
Now, the rollback frequencies are increased to large values
as shown in figure 6. The results show that the four
heuristics mentioned in [6] become very ineffective. To
further illustrate the impact of data contention on the
heuristics’ performance, we reduce the fraction of local
transactions (frac_local) from 0.75 to 0.25. In [6], it is
reported that reducing frac_local reduces the performance
differences among the four heuristics, but their relative
order stays the same (I.e., EQF and EQS are better than
UD and ED). In our experiment (Figures 7 and 8),
surprisingly, EQS and EQF perform worse than UD and
ED. The performance degradation of EQS and EQF is due
to the increased number of long global transactions, which
intensifies data conflict.

As a result, we can see that the differences between a
DRTDBS and a distributed real-time system have major
impacts on the effectively of the four heuristics. The point
is that in a DRTDBS, an aggressive transaction which can
get much of the resource does not mean that it can meet the
deadline. However, the aggressiveness of this transaction
may already harmfully block other transactions in due
course and lead to an increase in MR.

Taking data contention into consideration, the other
three heuristics mentioned: NL, SEQS, and MM have the
potential of better performance. In Figure 9, using UD as a
base case for comparison, we find that NL reduces the
missed rate of global transactions pretty effectively.
However, the side effect is a much higher local transaction
missed rate. The reason for a smaller global transaction
missed rate is that once a global transaction get more than
one lock, its priority will be higher than all local
transactions (which only request one lock).

For SEQS, the performance is even worse than that of
UD. The problem is that it does not reduce data contention
(comparing Figures 8 and 10) from EQS, and it does not
consider enough real-time constraints of the transactions.
The best performance can be found with MM in which
both real-time constraints of the transactions and the
impact on data contention are considered. The Rollback
Frequency of the heuristics is shown in Figure 10.
Consistent with our expectation, the amount of data
contention is highest with SEQS and lowest with MM.

5 Conclusions and Future works
In this study, the application of various sub-transaction

deadline assignment heuristics on a DRTDBS [6] is
examined. When data contention is low, the performance
of these heuristics is consistent with that obtained from a
distributed real-time system. However, these heuristics
become ineffective when data contention is non-trivial.
This occurs when the fraction of global transactions
increases or when the size of global transactions becomes
large. A prima facie reason is the non-rewarding impact of
dynamically changing or increasing the priority of a sub-
transaction in the course of execution. This increases the
degree of data contention and thus affects the system
performance. To reduce data contention, new heuristics are
suggested. Our performance results indicate that heuristic
MM, which considers both transaction real-time
constraints and the impact on the degree of data contention
gives the best overall performance.

References
[1] Abbott, R., and Garcia-Molina, H., "Scheduling Real-

time Transactions:A Performance Evaluation", ACM
Transactions on Database Systems, vol. 17, no. 3, pp.
513-60, 1992.

[2] Bernstein, P.A., Hadzilacos, V. and Goddman, N.,
Concurrency Control and Recovery in Database
Systems, Addison-Wesley, Reading, Mass., U.S.A.,
1987.

[3] Bestavros, A. “Advances in Real-Time Database
Systems Research”, ACM Sigmod Record, vol. 24, no.
1, 1995.

[4] Haritsa, J. R., Carey, M. J., and Livny, M., "Data
Access Scheduling in Firm Real-Time Database
Systems," Journal of Real-Time Systems, vol. 4, no. 3,
pp. 203-42, 1992.

[5] Huang, J., Stankovic, J., Ramamritham, K. and
Towsley, D., “Priority Inheritance in Soft Real-time
Databases” Journal of Real-Time Systems, vol. 4, no.
3, pp. 243-268, 1992.

[6] Kao, B., and Garcia-Molina, H., "Deadline Assignment
in a Distributed Soft Real-Time System," Proc. 13th
International Conference on Distributed Computing
Systems, pp. 428-37, 1993.

[7] Lam, Kam-yiu, “Cocnurrency Control in Distributed
Real-time Database Systems” Ph.D. Thesis,
Department of Computer Science, City University of
Hong Kong, Hong Kong, 1994.

[8] Liu, C.L. and Layland, J.L., “Scheduling Algorithms
for Multiprogramming in a Hard-Real-Time
Environment”, Journal of ACM, vol. 20, no. 1, pp. 46-
61, 1973.

[9] Ozsoyoglu, G. and Snodgrass, R.T., “Temporal and
Real-Time Databases: A Survey”, IEEE Transactions
on Knowledge and Data Engineering, vol. 7, no. 4, pp.
513-532, 1995.

[10] Purimetla, B., Sivasankaran, R. M., Stankovic, J. A.,
Ramamritham, K., Towsley, D., "Priority Assignment
in Real-Time Active Databases," Proceedings of 3rd
International Conference on Parallel & Distributed
Information Systems, pp.176-84, 1994.

[11] Son, S. H., and Kouloumbis. "A Token-Based
Sychronization Scheme Using Epsilon-Serializability
and its Performance for Real-Time Distributed
Database Systems," Proceedings of 3rd International
Symposium on Advanced Applications, 1993.

[12] Stankovic, J., Spuri, M and Natale, M.D.,
“Implications of Classical Scheduling Results for Real-
Time Systems”, IEEE Computer, vol. 28, no.6., pp.
16-25, 1995.

[13] Ulusoy, O. “Processing of Real-time Transactions in a
Replicated Database Systems”, Journal of Distributed
and Parallel Databases, vol. 2, no. 4, pp. 405-436
1994.

[14] Yu, P. S., Wu, K. L., Lin, K. J., and Son, S. H., "On
Real-Time Databases: Concurrency Control and
Scheduling," Proceedings of IEEE, vol. 82, no. 1, pp.
140-57, 1994.

Figure 2: Distributed Real-time System

Figure 3: DRTDBS (Miss Ratio)

Figure 4: DRTDBS (Rollback Frequency)

Figure 5: DRTDBS with Tx Size=12 (Miss Ratio)

Figure 6: DRTDBS with Tx Size=12 (RB Freq.)

Figure 7: DRTDBS with frac_local=0.25
(Miss Ratio)

Figure 8: DRTDBS with frac_local=0.25
(Rollback Frequency)

Figure 9: New Heuristics (Miss Ratio)

Figure 10: New Heuristics (Rollback Frequency)

