-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

Title A comparison study on algorithms for incremental update of
frequent sequences

Author(s) Zhang, M; Kao, B; Yip, CL

Proceedings - leee International Conference On Data Mining,

Citation | |-4m. 2002, p. 554-561

Issued Date | 2002

URL http://hdl.handle.net/10722/53601

Rights Creative Commons: Attribution 3.0 Hong Kong License

https://core.ac.uk/display/37890129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Comparison Study on Algorithms for Incremental Update of Frequent
Sequences *

Minghua Zhang

Ben Kao

Chi-Lap Yip

Department of Computer Science and Information Systems,
The University of Hong Kong, Hong Kong.
{mhzhang, kao, clyip} @csis.hku.hk

Abstract

The problem of mining frequent sequences is to extract
Jfrequently occurring subsequences in a sequence database.
Algorithms on this mining problem include GSP, MFS, and
SPADE. The problem of incremental update of frequent se-
quences is to keep track of the set of frequent sequences as
the underlying database changes. Previous studies have ex-
tended the traditional algorithms to efficiently solve the up-
date problem. These incremental algorithms include TSM,
GSP+ and MFS+. Each incremental algorithm has its own
characteristics and they have been studied and evaluated
separately under different scenarios. This paper presents
a comprehensive study on the relative performance of the
incremental algorithms as well as their non-incremental
counterparts. Our goal is to provide guidelines on the
choice of an algorithm for solving the incremental update
problem given the various characteristics of a sequence
database.

keyword: sequence, incremental update, data mining

1. Introduction

One of the many data mining problems is mining fre-
quent sequences from iransactional databases. The goal is
to discover frequent sequences of events. The problem was
first introduced by Agrawal and Srikant [1]. In their model,
a database is a collection of transactions. Each transaction
1s a set of items (or an itemset) and is associated with a cus-
tomer ID and a time ID. If one groups the transactions by
their customer IDs, and then sorts the transactions of each
group by their time IDs in increasing value, the database
is transformed into a number of customer sequences. Each
customer sequence shows the order of transactions a cus-

~This research was supported by Hong Kong Research Grants Council
under grant number HKU 7040/02E.

0-7695-1754-4/02 $17.00 © 2002 IEEE

5564

tomer has conducted. Roughly speaking, the problem of
mining frequent sequences is to discover “subsequences”
(of itemsets) that occur frequently enough among all the
customer sequences.

Sequence mining finds its application in many different
areas. A few efficient algorithms for mining frequent se-
quences have been proposed, notably, Aprioriall {1],
GSP [6], SPADE [7], MFS [9] and PrefixSpan {4].

We note that in a typical data mining process, data is
rarely fully collected in one attempt. In many cases, data
collection is carried out in phases. Consequently, the con-
tent of the underlying database changes over time. To
keep track of the frequent sequences, sequence mining
algorithms have to be executed whenever the underlying
database changes. We refer to this problem the incremental
update of frequent sequences.

A simple approach to the update problem is to mine
the new database from scratch, using a sequence mining
algorithm mentioned previously. This approach, however,
fails to take advantage of the valuable information cobtained
from the mining results of a previous exercise. To utilize
the previous mining results to efficiently mine the updated
database, several incremental versions of the basic sequence
mining algorithms have been proposed, including GSP+ [8],
MFS+ (8] and ISM[3]. The above three incremental algo-
rithms are based on GSP, MFS and SPADE, respectively.

With the different algorithms for (incremental) sequence
mining available, an interesting question is which one to
choose given a particular application with a specific dataset
characteristic and a particular computing environment. We
note that the incremental algorithms we just mentioned,
namely, GSP+, MFS+, and ISM, have different require-
ments and assumptions. They were also studied and evalu-
ated separately under different scenarios.

Our goal in this paper is to conduct a comprehensive
study on the relative performance of the algorithms. We
evaluate the three incremental algorithms {(GSP+, MFS+,
and ISM) as well as their non-incremental counterparts

(GSP, MFS, and SPADE). This comparison study allows us
to:

e identify the various factors (such as database update
model, data characteristics, and memory availability)
that affect the algorithms’ performance;

e understand when and how an incremental algorithm
outperforms its non-increment version; and

e provide guidelines on how to choose the most efficient
algorithm.

The rest of this paper is organized as follows. In Sec-
tion 2 we give a formal definition of the problem. We
also states the two models of database update, namely, the
sequence model and the transaction model. In Section 3
we briefly describe the six algorithms: GSP, MFS, SPADE,
GSP+, MFS+, and ISM. Section 4 presents an extensive
performance study. Finally, we conclude the paper in Sec-
on 3.

2. Problem definition and model

In this section, we give a formal definition of the prob-
lem of mining frequent sequences. Also, we describe two
update models of the incremental update problem.

2.1. Mining frequent sequences -
Let I = {i1,42,....im} be a set of literals called items.
Anitemset X of the universe T is a set of items. A sequence

each transaction ¢; (= 1,2,...,n)is an itemset.

The length of a sequence s is defined as the number of
items contained in &. If an item occurs several times in dif-
ferent itemsets of a sequence, the item is counted for each
occurrence. We use |s| 1o represent the length of s.

Given two sequences s; = (a1, az.

suchthat 1 < 41 < fo € ... €< ff € mand b, C
a;. by C aj,,..., 0 C aj,. We represent this relationship
by s2 C s7.

In a sequence set V', a sequence s € V' is maximal if 5 is
not a subsequence of any other sequence in V.

Given a database D of sequences, the support count of
a sequence s, denoted by 6%, is defined as the number of
sequences in IJ that contain s. The fraction of sequences
in D that contain s is called the support of s. If we use the
symbol | D| to denote the number of sequences in D (or the
size of D), then support of s = 4%, /| D)|.

If the support of s is not less than a user specified support
threshold, p,, s is a frequent sequence. The problem of
mining frequent sequences is to find all maximal frequent
sequences in a database D).

555

2.2. Update model

A sequence database can be updated in two ways, de-
pending on whether a sequence or a transaction is the unit
of update. In this subsection, we describe the two update
models.

Sequence Model. In the sequence model, the database
is updated by adding and/or removing whole sequences.

Formally, in the sequence model, we assume that a pre-
vious mining exercise has been executed on a sequence
database D to obtain the support counts of its frequent se-
quences. The database IJ is then updated by deleting a set
of sequences A~ followed by inserting a set of sequences
At. Let us denote the updated database by D', Note that
D' = (D - A~} U A*. We denote the set of unchanged
sequencesby D~ = D — A~ =D’ - A+,

For the incremental update problem, the objective is to
find all maximal frequent sequences in the database D'
given A=, D™, A*, and the mining result of D.

We note that in [8], algorithms GSP+ and MFS + are eval-
uated under the sequence model.

Transaction Model. In the transaction model of the up-
date problem, individual sequences in the database can be
updated by appending new transactions.

Given a sequence database D) and its mining result, and
a set of transactions AT, the incremental update problem
under the transaction model is to determine the set of max-
imal frequent sequences in D with the transactions in AT
appended to the sequences in D. In [3], algorithm ISM is
evaluated under the transaction model.

Before we end this section, we remark that technically
the two update models can model each other. For example,
if transactions are appended to a sequence s to form a new
sequence s’, we can consider this update as a removal of s
from the database followed by an insertion of s’. Also, if a
sequence & s inserted into a database, we can consider this
update as appending all the transactions in s to an initially
empty sequence.’ In fact, the studies on the three incremen-
tal algorithms claim that the algorithms are applicable under
both update models by the above mentioned mapping. One
of the goals of this paper is to determine the effectiveness
of these algorithms under the different update models.

3. Algorithms

In this section, we review three sequence mining algo-
rithms, namely, GSP, MFS, SPADE, and their incremental
versions, namely, GSP+, MFS+, and ISM.

1'The transaction mode} cannot model sequence deletion unless we con-
sider transaction removal as well. We do not consider this modification in
this paper.

3.1.csP

Algorithm GSP was proposed by Srikant and
Agrawal [6]. Similar to the structure of the Apriori
algorithm [5] for mining association rules, GSP starts by
finding alil frequent length-1 sequences from the database.
A set of candidate length-2 sequences is then generated.
The support counts of the candidate sequences are then
counted by scanning the database once. Those frequent
length-2 sequences are then used to generate candidate
sequences of length 3, and so on. In general, GSP uses a
function GGen to generate candidate sequences of length
k + 1 given the set of all frequent length-% sequences. The
algorithm terminates when no more frequent sequences are
discovered during a database scan. For the details of the
candidate generation function GGen, please refer to [6].

GSP is an efficient algorithm. However, the number of
database scans it requires is determined by the length of the
longest frequent sequences. Consequently, if there are very
long frequent sequences and if the database is huge, the [/O
cost of GSP could be substantial.

3.2.MFS

To improve the I/O efficiency of GSP, the algorithm MFS
was proposed [9]. Similar to GSP, MFS is an iterative algo-
rithm. MFS first requires an initial estimate, S.;, of the
set of frequent sequences of the database be available. The
set Sgs can be obtained by mining a small sample of the
database, and using the frequent sequences of the sample as
Sese. For the incremental update problem, MFS can use the
frequent sequences in the old database as S,;.

In the first iteration of MFS, the database is scanned
to obtain the support counts of all length-1 sequences as
well as those of the sequences in the estimated set, S,;;.
Sequences that are found frequent are collected into a
set MFSS. Essentially, MFSS captures the set of frequent
sequences that MFS has known so far. Typically, the
set MFSS contains frequent sequences of various lengths.
MFS then applies a candidate generation function MGen
on MFSS to obtain a set of candidate sequences. The
database is then scanned to determine which candidate se-
quences are frequent. Those that are frequent are added
to the set MFSS. MFS then again applies the generation
function MGen on the refined MFSS to obtain a new set
of candidate sequences, whose supports are then counted
by scanning the database, and sc on. MFS executes this
candidate-generation-verification-refinement iteration until
the set MFSS cannot be refined further.

The heart of MFS is the candidate generation function
MGen. MGen can be considered as a generalization of GGen
(used in GSP) in that MGen takes as input a set of frequent
sequences of various lengths and generates a set of candi-

556

date sequences of various lengths. For the details of the
MGen function, please refer to [9].

It shows that if the set S is a reasonably good estimate
of the true set of frequent sequences, then MFS will generate
long candidate sequences early (compared with GSP). As a
result, in many cases, MFS requires fewer database scans
and less data processing than GSP does. This reduces both
CPU and I/O costs.

3.3. gsp+ and MFS+

Based on GSP and MFS, two incremental algorithms
GSP+ and MFS+ were proposed in [8]. In the study, the
sequence model of database update is assumed.

The structures of GSP+ and MFS+ follow those of GSP
and MFS. The major difference is that during each itera-
tion, after a set of candidate sequences is generated, the in-
cremental algorithms first deduce whether a candidate se-
quence s can be frequent by considering the mining result
of the old database, and in some cases, s’s support count
w.rt. At and/or A~ (the updated portion of the database).
If the candidate sequence s cannot be frequent, it is pruned
from the candidate set.

Two lemmas are proposed in [8] to help GSP+ and MFS+
make the pruning decision. In the lemmas, the symbol b5
refers to an upper bound of the support count of a sequence
sinadataset X, and is calculated by b5 = min, 5:";;, where
(s Ts)A(ls’|=1Is| - 1).

Lemma 1 If a sequence s is frequent in D', then 85, +
b = 8p +04, — 85 = |D'| x p,.

Lemma 2 [f a sequence s is frequent in D' but not in D,
then bl > b5, —65_ > 85 ~85_ > (|AT|—|A[}xp..

Lemma 1 applies to a candidate sequence ¢ that is fre-
quent w.r.t. the old database D, and Lemma 2 applies to
candidates that are infrequent in D. For a candidate se-
quence s that cannot be pruned, its support count w.r.t. the
new database is then calculated. For further details, please
refer to [8].

GSP+ and MFS+ gain efficiency by avoiding processing
D~ (the unchanged part of the database). If the database
does not change greatly across an update, then D~ is rela-
tively large compared with At and A~. The performance
gain would then be substantial.

3.4. spaDE

The algorithms we have reviewed so far, namely, GSP,
MFS, GSP+ and MFS+ assume a horizontal database repre-
sentation. In this representation, each row in the database
table represents a transaction. Each transaction is associ-
ated with a customer 1D, a transaction timestamp, and an

Table 1. Horizontal database

Customer ID | Transaction timestamnp | Ttemset
I 110 A
I 120 BC
3 210 A
2 220 cD

Table 2. Vertical database

Ttem | CustomerID | Transaction timestamp
A 1 110
2 210
B 1 120
C i 120
2 220
D F] 220

itemset. Table 1 shows an example of a database in the hor-
izontal representation.

In {7], it is observed that a vertical representation of the
database may be better suited for sequence mining. In the
vertical representation, every item in the database is asso-
ciated with an id-list. For an item a, its id-list is a list of
(customer ID, transaction timestamp) pairs. Each such pair
identifies a unique transaction that contains a. A vertical
database is composed of the id-lists of all items, Table 2
shows the vertical representation of the database shown in
Table 1.

In [7], the algorithm SPADE is proposed that uses a ver-
tical database to mine frequent sequences. To understand
SPADE, let us first define two terms: generating subse-
quences and sequence id-list,

Generating subsequences. For a sequence s such that
[s] > 2, the two generating subsequences of s are obtained
by removing the first or the second item of s.

Sequence id-list. Similar to the id-list of an item, we can
also associate an id-list with a sequence, The id-list of a
sequence s is a list of (Customer ID, transaction timestamp)
pairs. If the pair (C, t) is in the id-list of a sequence s, then
5 is contained in the sequence of Customer C, and that the
first item of s occurs in the transaction of Customer C at
timestamp t. Table 3 shows the id-list of ({A}, {C}}.

We note that if id-lists are available, counting the sup-
ports of sequences is trivial. In particular, the support count
of a length-1 sequence can be obtained by inspecting the
vertical database. In general, the support count of a se-
quence s is given by the number of distinct customer id’s
in s’s id-list. The problem of support counting is thus re-
duced to the problem of sequence id-list computation.

With the vertical database, only the id-lists of length-1
sequences can be readily obtained. The id-lists of longer
sequences have to be computed. It is shown in {7] that the
id-list of a sequence s can be computed easily by intersect-
ing the id-lists of the two generating subsequences of s.

557

Table 3. ID-list of {{A},{C}
Customer ID | Transaction timestamp
1 110
2 219

Table 4. Horizontal database generated for
computing L,

Customer 1D (item, transaction timestamp) pairs
1 (A 110) (C 120)
2 (A 210) (€ 220)

Here, we summarize the key steps of SPADE.

1. Find frequent length-1 sequences. This is done by
scanning the id-lists of the items from the vertical database.

2. Find frequent length-2 sequences. Suppose there are
M frequent items, then the number of candidate frequent
length-2 sequences is (M ?). If the support counts of these
length-2 sequences are obtained by first computing their id-
lists using the intersection procedure, we have to access id-
lists from the vertical database O(M?2) times.? This could
be very expensive.

Instead, SPADE solves the problem by building a hori-
zonial database on the fly that involves only frequent items.
In the horizontal database, every customer is associated
with a list of (item, transaction timestamp) pairs. For each
frequent item found in Step 1, SPADE reads its id-list from
disk and the horizontal dalabase is updated accordingly. For
example, if the frequent items of our example database (Ta-
ble 2) are A, C, then the constructed horizontal database is
shown in Table 4. After obtaining the horizontal database,
the supports of all candidate length-2 sequences are com-
puted from it.

We remark that maintaining the horizontal database
might require a lot of memory. This is especially true if
the number of frequent items and the vertical database are
large.

3. Find long frequent sequences. In step 3, SPADE
generates the id-lists of long candidate sequences (those of
length > 3) by the intersection procedure. SPADE carefully
controls the order at which candidate sequences (and their
id-lists) are generated to keep the memory requirement at a
minimum. For details, readers are referred to [7].

35. 184

ISM is an incremental update algorithm based on
SPADE. With ISM, the transaction model of database up-

2This is because computing the id-list of a length-2 sequence requires
accessing the 2 id-lists of the 2 items involved.

date is assumed, although it also handles sequence inser-
tion.

Similar to SPADE, ISM requires the availability of the
vertical database. Besides that, it needs a lattice structure
called increment sequence lattice, or ISL w.r.t. the old
database). A node in ISL represents either a frequent se-
quence, or a sequence in the negative border (In ISM, a se-
quence is called in the negative border if it is infrequent,
and either its length is 1 or both of its two generating sub-
sequences are frequent). The node also contains the support
count of the sequence w.rt. I. Edges in the ISL connect
a sequence with its generating subsequences. ISM assumes
that the ISL of the old database is available before the in-
cremental update.

There are three key steps of ISM.

In the first step, ZSM checks whether there are new se-
quences added to the old database I’ in the update. If
there are, ISM computes the new support count threshold
and adjusts ISL accordingly. In the adjustment, frequent
sequences may remain frequent, be moved to the negative
border, or be deleted from ISL. Also, sequences in the neg-
ative border may stay in the negative border or be removed.

In the second step, ISM updates support counts of the
sequences in ISL. And the third step of ISM is to capture
sequences that were not originally in ISL. Similar to the first
step, both the second step and the third step need to process
ISL. For further details, please refer to [3].

4. Experiment results and analysis

We performed a number of experiments comparing the
performance of the three incremental algorithms GSP+,
MFS+, ISM and their non-incremental counterparts GSP,
MFS and SPADE, The non-incremental algorithms were ex-
ecuted directly on the updated database. For MFS, GSP+,
MFS+, and ISM, we assume that the set of frequent se-
quences w.r.t the old database and their support counts are
available. For MFS and MF &+, this set of frequent sequences
is used as the estimated set S5 (see Section 3). Further-
more, for SPADE and ISM, the database is stored in the
vertical representation. Also, for ISM, we assume that ISL
w.rt. the old database is available. The experiments were
done under the two database update models. In this section
we present some representative results.

The experiments were performed on synthetic databases
generated by the sequence generator of the IBM Quest data
mining project [2]. The generator takes a number of pa-
rameters as input. In our experiment, we let ¥, = 5,000,
N; = 25,000, and use C1072.554711.25 settings. For the
details of the parameters, please refer to [1].

558

N5000 D1000+100(thousand)

5P —o—

650 ~ GEP+ -+ - o
600 S

35505

E

£

TA0 |

E

It
05

1 L 2 L L
0.65 o7 0.75 o8 0.85
Support threshold (%)

1
0.55

Figure 1. Execution time vs. support thresh-
old (sequence mode!)

4.1. Sequence model

In the first set of experiments, the database is updated
under the sequence model. We first generate a database D
of 1,000,000 sequences. After that, another 100,000 se-
quences are generated and are inserted into the database
to form a new database D', In this experiment, the num-
ber of items, IV, is set to 5,000. We execute SPADE on D
to obtain the necessary information for the incremental al-
gorithms, The six algorithms GSP, MFS, SPADE, GSP+,
MFS+ and ISM are then executed to mine D’. The exper-
iments were performed on a 700MHz PIII Xeon machine
with 4GB of main memory running Solaris 8. The exe-
cution times of the six algorithms under different support
thresholds (0.5% < p, < 0.9%) are shown in Figure 1.

From the figure, we see that as the support threshold in-
creases, the running times of all six algorithms decrease.
This is because a larger p, means fewer and shorter fre-
quent sequences. Therefore, fewer iterations and less sup-
port countings are needed. Also, the performance difference
among the algorithms is more substantial when the support
threshold is small.

‘We observe that the two pruning algorithms, GSP+ and
MFS+, perform much better than their non-incremental
counterparts, GSP and MFS. As we have discussed, the sav-
ings mostly come from pruning candidate sequences. With
fewer candidate sequences to consider, less amount of sub-
sequence testing and support counting is done, which leads
to performance gains. In general, MFS+ has a slight edge
over GSP+ (and so does MFS over GSP). Recall that MFS+
(and also MFS) uses the set of frequent sequences w.r.t. the
old database as an initial estimate (S.5). MFS+ is able to
generate and count long sequences early, potentially reduc-
ing the IO cost and the processing time.

Another interesting observation we can make from Fig-
ure | is that the incremental algorithm ISM performs worse
than its non-incremental version, SPADE. This shows that
ISM may not be a good choice under the sequence model

of database update.

Recall that there are three key steps of ISM, all have to
do with maintaining the increment sequence lattice {ISL).
Moreover, before ISM terminates, it has to output ISL for
the next incremental update.

We note that under the sequence model of database up-
date, ISM needs to work harder in maintaining ISL com-
pared with the case under the transaction model. First, un-
der the transaction model of update, a sequence that is fre-
quent w.r.t the old database must also be frequent w.r.t. the
updated one; while it is not true under the sequence model.
Also, the first step of ISM can be omitted under the transac-
tion model, while this step of ISL adjustment is needed un-
der the sequence model, since by inserting new sequences,
the support count requirement is changed. So the changes
made to ISL could thus be more drastic under the sequence
model than it is under the transaction model. This explains
why in our experiment, ISM performs worse than the other
algorithms that do not handle ISL.

Finally, we see that SPADE is the most efficient algo-
rithm. This shows that the vertical database representation
allows very efficient support counting using the idea of id-
lists. A potential disadvantage of SPADE is that it requires
much memory in the construction of a horizontal database
(see Step 2 of the description of SPADE, Section 3.4). Since
the machine on which we ran the experiment has 4GB of
memory, the large memory requirement of SPADE is not a
factor. We wili study the impact of memory availability on
SPADE later in this section.

The above discussion suggests that the performance of
ISMis affected greatly by the size of ISL, which is in turn,
dependent on a number of factors. One of these factors is
the support threshold p,. A larger p, gives fewer frequent
sequences, and a smaller negative border. Hence, ISL is
smaller.

Another factor is the number of items, N, in the
database. A large value of IV is both a blessing and a
curse. First, note that all length-1 sequences are in ISL
Since each item derives one length-1 sequence, a large NV
gives a very fat (and large) ISL. On the other hand, if there
are many items, transactions will have more variety. Given
the same database parameters, there will be fewer frequent
sequences. This factor makes ISL smaller. Figure 2 shows
the performance of the algorithms under different values of
N. Since GSP and MFS are outperformed by their incre-
menta! versions (i.e., GSP+ and MFS+), their curves are
omitted to make the graph more readable. In this experi-
ment, the support threshold is set to 0.7%. The number of
items NV is varied from 1,000 to 10,000.

From Figure 2, we see that, in general, when the num-
ber of items increases, the execution times of G&P+, MFS+
and SPADE decrease. This is because using the same values
for the other parameters of the database generator, a larger

559

D1000+100(thousand) p, = 0.7%

550 T T T

—

200 : L 1 1 1 1 L
1 2 3 4 3 6 7 a 9

No. of items {thousand]

Figure 2. Execution time vs.
model)

N (sequence

number of items means each item has a smaller probability
of appearing in a (transaction. This leads to smaller sup-
port counts and thus fewer frequent sequences to discover.
As a result, the three algorithms take less time to complete.
For ISM, we see the opposing effects we mentioned earlier.
When NN is small, increasing N causes a dramatic increase
in ISL’s size, which outweights the effect of a reduction in
the number of frequent sequences. The result is an increase
in ISM’s execution time. When N is large (say, > 4, 000},
the weightings of the two factors shift. This results in a
decrease in execution time.

From the figure, we notice that even under the sequence
model, ISM can be the best algorithm. This happens when
the number of items is very smali. In this case, ISM main-
tains a small ISL, leading to a very efficient algorithm.

From Figures 1 and 2, we see that with a memory-
abundant system (4GB in our experiment), SPADE is a very
efficient algorithm. To study the effect of memory avail-
ability on the algorithms, we re-ran the experiment on an
866MHz PC with 512MB memory running Solaris 8. In the
experiment, g, is set to 0.7% and N is set to 5,000. We
vary the size of D from 200,000 sequences to 2,000,000 se-
quences. For each case, the updated database I is 10%
larger than D. Figure 3 shows the result.

Figure 3 shows that while GSP+ and MF3+ scale linearly
with the database size, SPADE and ISM perform poorly
when the database is relatively large. The reason for the
performance degradation is that SPADE requires a iot of
memory to transform the vertical database to the horizontal
one in order to find frequent length-2 sequences. When the
database size is large compared with the amount of physical
memory available, expensive memory paging occurs. Since
ISM is based on SPADE, it suffers a similar performance
degradatton.

N5000 p, = 0.7%

6000 T T T T T T
GSP+ =
MF§+ +
000 SPADE —B— dl
ISM -« x
g -
Foom |
s
£ 2000
1000 - T
2 : 6 ; 10 12 14 1 18 20
Database size (100,000)
Figure 3. Effect of database size (sequence
model)
N5000 D1,000,000
600 T T T L T

L 2 L L L
0.85 07 0.76
Suppart threshald {%)

150 ‘ .

055 e

Figure 4. Execution time vs. support thresh-
old (transaction model)

4.2, Transaction model

In the second set of experiments, we study the al-
gorithms’ performance under the transaction model of
database update. In the experiments, we first generate a
database of 1,000,000 sequences. We regard this database
as the updated one, D', We then randomly select 1% of the
sequences from the database and delete the last two transac-
tions from the selected sequences. We regard the resulting
database as the old database, D. Hence, the update is equiv-
alent to adding two iransactions to 1% of the sequences in
D. For GSP+ and MFS+, this update is modeled by se-
quence deletion followed by sequence insertion. We note
that, in this case, |A~| = |[A™T].

After the data generation, we run SPADE on the old
database to obtain the necessary information for incremen-
tal algorithms. Figure 4 shows the performance of the six
algorithms executed on a 700MHz Xeon machine with 4GB
memory. In this experiment, the number of items, N, is set
to 5,000, and the support thresheld, p,, is varied from 0.5%
to 0.9%.

Similar to the sequence model, from Figure 4, we see
that as p, increases, in general, the execution times of the al-
gorithms decrease. Again, this is because a larger p, means

560

fewer sequences to discover.

Unlike the sequence model case, under the transaction
model, ISM performs better than the other algorithms (un-
less p, is very small). This is because, under the transac-
tion model of database update, there is much less change
to ISL. For example, the first step of ISM is not needed.
Moreover, ISM outperforms the other algorithms by a large
margin when p, is large. This is because ISL is small un-
der a large p,, hence its maintenance cost is small. On the
other hand, when p, is small, the set of frequent sequences
as well as the negative border are large. In this case, ISMis
not as efficient as SPADE, since it has to maintain a fairly
large ISL.

From Figure 4, we also observe that under the transac-
tion model, the two pruning algorithms (GSP+ and MFS+)
are not very effective. They achieve very little performance
gain over their non-incremental versions. Recall that the
main idea of the pruning algorithms is to deduce which
candidate sequences cannot be frequent without resorting
to support counting. To make that deduction, the pruning
algorithms consider two cases:

Case 1: a candidate sequence s is frequent w.r.t D, Un-
der the transaction model, we note that a sequence that is
frequent w.r.t IJ must also be frequent w.r.t D', Hence, no
sequences in this case can be pruned.

Case 2: a candidate sequence s is not frequent w.r.t.
D. In this case, we check if the inequality 8%, — 0%5_ >
(IAT] — |A™]) x p, is true (see Lemma 2, Section 3.3). If
not, s can be pruned. However, under the transaction model,
|AT| = |[A~|. Hence the right hand side of the inequality is
always 0. The inequality is false only if &3 , exactly equals

‘A_, which is unlikely. Therefore, very few candidate se-
quences can be pruned.

With ineffective pruning, not much advantage is ob-
tained from the pruning algorithms.

Finally, we remark that, with plenty of memory (4GB),
SPADE performs consistently well over the range of p,.

In another experiment, we study how the extent
of database update affects the algorithms’ performance.
Again, we generate a database D' of 1,000,000 sequences.
We then randomly select #% (1 < z < 10) of the sequences
in D' from each of which the last two transactions are re-
moved. The resulting database is used as D. Figure 5 shows
the experiment result. For readability, we omit the curves
for GSP and MFS, since their performance is very similar to
that of GSP+ and MFS+.

From the figure, we see that GSP+ and MFS+ are rela-
tively unaftected by the percentage change. The curve for
SPADE stays flat since it is applied directly on the the up-
dated database, and in the experiment DY stays the same.
For ISV, its execution time increases linearly with the per-
centage change. This is because more update made to the
database leads to more changes to ISL. ISM, therefore, has

N5000 D1,000,000 p, = 0.7%

600 T T T T T T T T

G5B —— -
F MF5+ + =04
550 SPADE —-8— " -
500 TSM e m e L |
et
R x -
.g.m“‘ x e
o
é“" > e PSP
L
300 -) F= o — o a- F=t 4
250" T
200 . i . L L . L L

1 2 3 4] L] T Ll 9
Percentage of mquences updated (%)

Figure 5. Execution time vs. percentage of se-
quences being updated (transaction model)

N5000 p,

0.7%

Tine (sevonde)

L s : : L
[8 0 12 L)
Database size {100,000}

a0t -
o

)
-

Figure 6. Execution time vs. database size
(transaction model)

to spend more effort in updating the lattice. We see that for
small database update (say, 1%), ISM gives the best per-
formance. On the other hand, if the database is changed
substantially, SPADE is the best choice.

Our last experiment studies the performance of the al-
gorithms under the transaction moedel when memory is lim-
ited. We performed the experiment on an 866MHz PC with
512MB of memory. We varied the size of D’ from 200,000
sequences to 2,000,000 sequences. In each run, 5% of the
sequences in D' were selected to have their last two transac-
tions removed to form . Figure 6 shows the result. Again,
we omit the curves of GSP and MFS for readability.

From the figure, we see that when the database is large,
SPADE and I5M perform poorly. This is again because of
their relatively large memory requirements.

5. Conclusions

In this paper we studied the problem of incrementai up-
date of frequent sequences. We compared the performance
of three incremental algorithms, namely, GSP+, MFS+,
‘ISM, and their non-incrementai counterparts GSP, MFS and
SPADE. We studied two database update models, namely,

561

the sequence model and the transaction model. We dis-
cussed the various characteristics of the algorithms and
showed their performance under various situations. Based
on the experiment results, we derive the following guide-
lines on choosing the most efficient algorithm:
Under the sequence model of database update

o If the amount of main memory is relatively large com-
pared with the database size and the number of items
is small, ISM is the most efficient.

o If the amount of main memory is relatively large com-
pared with the database size and the number of items
is large, SPADE is the best choice.

e If memory is limited, GSP+ or MFS+ should be con-
sidered.

Under the transaction model of database update

¢ If memory is abundant and only a small portion of the
database is updated, ISM is the best choice.

e If memory is abundant and a significant portion of the
database is changed, SPADE is the most efficient.

¢ If the database is large compared with the amount of
memory available, pick anyone of GSP, MFS, GSP+,
or MFS+.

References

[11 R. Agrawal and R. Srikant. Mining sequential patterns.
In Proc. of the 11ih Int’l Conference on Daia Engineering,
Taipei, Taiwan, March 1995.
http://www.almaden.ibm.com/cs/quest/.

S. Parthasarathy, M. I. Zaki, M. Ogihara, and S. Dwarkadas.
Incremental and interactive sequence mining. In Proceedings
of the 1999 ACM 8th International Conference on Informa-
tion and Knowledge Management (CIKM' 99}, Kansas City,
MO USA, November 1999,

1. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu. Prefixspan: Mining sequential patterns by
prefix-projected growth. 1n Proc. 17th IEEE International
Conference on Data Engineering (ICDE), Heidelberg, Ger-
many, April 2001.

T. I. R. Agrawal and A. Swami. Mining association rules
between sets of items in large databases. In Proc. ACM
SIGMOD International Conference on Management of Data,
page 207, Washington, D.C., May 1993,

R. Srikant and R. Agrawal. Mining sequential patterns: Gen-
eralizations and performance improvements. In Proc. of the
Sth Conference on Extending Database Technology (EDBT),
Avignion, France, March 1996.

M.). Zaki. Efficient enumeration of frequent sequences. In
Proceedings of the 1998 ACM 7th International Conference
on Information and Knowledge Management{CIKM 98),
Washington, United States, November 1998.

M. Zhang, B. Kao, D. Cheung, and C.-L. Yip. Efficient algo-
rithras for incremental update of frequent sequences. In Proc.
of the sixth Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD), Taiwan, May 2002.

M. Zhang, B. Kao, C. Yip, and D. Cheung. A GSP-based
efficient algorithm for mining frequent sequences. In Proc. of
IC-AI'2001, Las Vegas, Nevada, USA, June 2001.

(2]
(3]

f4

[has}

[5]

(61

91

