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s
DP Huang, MHL Ng, KW Lo, JCK Lee

Cancer, for the most part, is by in a single cell and its progeny. However,
in some individuals, genetic alterations may play a role. Depending on the specific cell
type, the affected cell and its progeny sequential mutations and sustain multiple genetic
alterations over decades. The defective genetic anomalies to critical cellular pathways,
which with DNA replications in between, evolve clonally and expand Into a malignant phenotype.
Additional In some genes confer a further selective growth advantage and the neoplastic process
progresses to invade surrounding to other organs.

H K M J 1997;3: 186-94
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In this paper, the concepts of oncogenesis are discussed
with special emphasis on Knudson's hypothesis,1 the
multistep model, and clonal evolution. Recent ad-
vances in this field are also highlighted, with a view to
giving an. overall picture of the molecular basis of can-
cer. These are illustrated with examples from our lo-
cal experience in nasopharyngeal carcinoma (NPC) and
multiple myeloma (MM).

Knudson's two-hits model of tumourigenesis

Tumours that occur in children obviously do not take
decades to develop. In the tumourigenesis of child-
hood tumours such as those of the eye and kidney, only
two mutations are needed for cancer formation. The
two-hits mechanism proposed by Knudson was first
confirmed in retinoblastoma.1-2 According to Knudson,
this cancer occurs as a result of two genetic events in
the retinal cell, which result in inactivation of both
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copies of a given tumour suppressor, the retinoblas-
toma gene (RB),2

The essential features of Knudson's two-hits model
are that in the familial form of cancer, the affected
person inherits a mutated allele from one parent (thus
having only one copy of the normal gene present in all
ceils) and a somatic mutation in the target tissue inac-
tivates the normal allele inherited from the other parent.
In non-hereditary cancers, both inactivating mutations
have to occur within the same somatic cell.2 Malig-
nancy is therefore likely to be a more frequent
occurence in those individuals who carry a hetero-
zygous mutation in their germline—i.e. those with the
predisposing gene(s) and hence, a predisposition to
cancer. Inheritance of the predisposition follows a
dominant pattern even though if is transmitted by re-
cessive mutations.

The need for two hits—now known to constitute
damage to genes—explains why patients in cancer-
prone families are not riddled with tumours through-
out their bodies. Inheritance of just one genetic defect
predisposes a person to cancer hut does not cause it
directly as a second event is required,2 On the other
hand, there is now unequivocal evidence that shows
that a certain percentage of human cancers are devel-
oped as a consequence of inheriting cancer suscepti-
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bility genes. It is estimated that about 5% to 10% of
breast cancer cases may be due to an inherited predis-
position/'

The

For adult non-haematopoietic solid tumours, the mo-
lecular mechanisms responsible for cancer develop-
ment are much more complex and can be explained
by the multistep concept.

It is now generally accepted that most sporadic solid
tumours result from a series of clonal expansions and
a multistep process of accumulated genetic alterations
in cells. For the initiation and progression of disease,
the model proposed for colorectal cancer has become
a paradigm for other human solid tumours, including
brain, bladder, and head and neck cancers.4""9 Colorectal
cancer provides an excellent example of a human tu-
mour type that can be productively studied. These
tumours are prevalent and progress through easily rec-
ognisable stages ranging from very small benign polyps
(adenomas) to large malignant cancers (carcinomas).
Tumour tissue can be easily obtained, examined bio-
chemically, and genetically compared with appropriate
control cells from normal colorectal epithelium.

Much of the progress in colon cancer genetics is
the result of the selective analysis of kindreds with
inherited colon cancer syndromes. The study of famil-
ial adenomatosis polyposis highlighted an area of
chromosomal loss on chromosome 5q.'° More detailed
linkage studies facilitated the precise localisation of
the adenomatous polyposis coli (APC) tumour suppres-
sor gene,' I J2 Mutations were then identified in affected
family members that typically resulted in a truncated
protein product.13 When sporadic colon cancers were
analysed, similar APC mutations were found to be
prevalent. l4 The appearance of an inherited mutant al-
lele of APC or acquisition of a somatic mutation
represents one of the earliest steps that leads to dys-
plastic lesions of this cancer.4-5 Knudson's initial insight
that the causes of sporadic and familial cases can in-
volve the same gene and the same biochemical
abnormalities (the RB gene in retinoblastoma) has been
confirmed in other cancers, for example, the APC gene
for colorectal cancer.

In colon neoplasia, samples from the successive
stages were collected and compared for their genetic
abnormalities. The molecular profile at each stage has
been elucidated5 (Fig 1}. The APC tumour suppressor
gene mutations occurred in up to 63% of premalig-

Fig 1, A genetic mode! for colorectal tumourigenesis5

MSH2
MLH1
PMS1 (rnutator genes)
PMS2

(5q)

APC*

(chromosome
involved)

(gene)

other alterations

Normal > Hyper-proliferation > Early > intermediate > Late > Carcinoma > Metastasis

epithelium (Adenoma)

The process of colorecta! tumourigenesis is driven by sequential mutations in tumour suppressor genes
(APC, P53, and DCC) and oncogenes (Ki-ras). Inactivation of genes that control the rate of mutations

(MSH2, MLH1, PMS1, and PMS2) accelerates the tumourigenic process.

viruses
*APC adenomatous polyposis coli
*Ki-ras a member of the ras gene family, identified as the oncogene of the Kirsten sarcoma

*DCC deleted in colorectal cancer
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Table. The role of cancer genes in the development of human cancer50

Function of the mutant alielc

Origin of the mutation

Mechanism of action

No. of mutationat events One-
needed to contribute to cancer (dominant)

Gain

Somatic

Tumour so ppressor
genes

Two
(recessive)

Loss

Inherited
or somatic

Part of the signal Negative regulation
transduction pathway of" cell division

Mismatch repair
genes

Two
(recessive)

Inherited
or somatic

Maintain fidelity of
DNA replication
process

nant adenomatous polyps.1'1 As adenomas progress,
they accumulate mutations in the oncogcnc ras.15 Later-
stage carcinomas are characterised by the additional
loss of regions on chromosomes 18q and 17p, where
the tumour suppressor genes DCC (deleted in
coiorectal cancer) and p53 are localised.4 It has been
further observed that so long as a sufficient number of
critical pathways are disabled, tumour growth ensues.
In fact, it is likely that the constellation of genetic al-
terations is more important than, the order in which
they are acquired and that this sequence varies in indi-
vidual patients in the multistage process of cancer de-
velopment.

Clonal evolution

Both kinds of mutations (oncogene activation and tu-
mour suppressor gene loss) are invo lved and
accumulated in one cell and its direct descendants by
a process known as clonal evolution. The inappropri-
ately dividing cells copy their DNA and give identical
sets to their offspring. One of these cells or its descend-
ants undergoes a mutation that further enhances its
ability to escape normal regulation. Repetition of the
process enables one cell to accumulate the mutations
it needs to metastasise and colonise other organs. Each
tumour cell clone follows its own genetic path as it
evolves towards malignancy.4

Cancer-related genes

From the colorectal cancer model, it is evident that
two major categories of genes may be involved in the

pathogenesis of cancer—the proto-oncogenes and the
tumour suppressor genes (Table). Mutations that cause
cancer alter the protein products of the genes that regu-
late entry of the cell into the cel1 division cycle. Acti-
vation of the proto-oncogene (normal) to oncogene
(cancer gene) exerts a positive regulatory control. This
gain of function is seen as dominant-acting in the sense
that the mutated allele is dominant and overrides the
normal, allele.

By contrast, tumour suppressor genes, which arc
believed to be involved in the normal suppression of
cellular proliferation and exert a negative regulation
of the cell cycle, are commonly inactivated in tumours.
The loss of function is either due to mutations, dele-
tions, and/or epigenetic changes (DNA methylation).16

Tumour suppressor gene mutations are recessive to the
normal allele thus necessitating the inactivafion of the
second wild-type allele for tumour formation—follow-
ing the two-hits mechanism proposed by Knudson. The
germline determinants of almost all familial cancers
are found to be mutant alleles of tumour suppressor
genes. Because there are safeguards built into the sys-
tem, more than one mutation must occur before a can-
cer will form.

Genes responsible for the maintenance of
genomic Integrity: DNA repair defects and
cancer susceptibility

Other than the aforementioned two major categories
of cancer genes that mutate during tumour progres-
sion or are passed in mutant form through the germline
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and participate in regulating cell proliferation, there is
evidence that individuals who lack specific DNA re-
pair genes are also predisposed to develop cancer,

The hereditary nonpolyposis colorectal cancer
(HNPCC) syndrome is a familial colon cancer syn-
drome that is far more common than famil ial adeno-
matosis polyposis, accounting for 3% to 6% of all
colorectal tumours. The HNPCC tumour-susceptibil-
ity gene has been identified and mapped to chromo-
some 2p and is known to be responsible for repairing
mismatched nucleotides in DNA.

When a strand of DNA is being copied, the protein
of this gene seems to act as a "spell checker" and cor-
rects errors made in the pairing of bases. Analysis of
large cohorts of HNPCC-associated colon cancers shows
that nearly 86% of tumours have "microsatellite insta-
bi l i ty" 1 7 e.g., the presence of altered or unstable
microsatellite repeat numbers in microsatellites scattered
throughout the genome, it is estimated that the total
number of muta t ions at microsatel l i te loci in
replication error positive (RER+) tumour ceils could be
up to 100-fold that in replication error negative (RER-)
cells.18 Microsatellite instability or replication errors in
the defective human DNA mismatch repair genes sug-
gests a mutation affecting DNA replication or repair pre-
disposing to replication errors. This has been shown to
be involved in the pathogenesis of HNPCC.'9 Analysis
of sporadic tumours belonging to the HNPCC spectrum
(colorectal cancer, endometrial cancer, and gastric can-
cer) reveal a significant proportion of cases with multi-
ple replication errors, as in the HNPCC cases.

The DNA mismatch repair gene mutations in
HNPCC revealed the relationship between the defec-
tive DNA mismatch repair mechanism and the devel-
opment of cancer. The onset of many common tumours
is substantially accelerated by inapparent DNA repair
defects that become unmasked only in premalignant
tissue during the course of tumour progression. These
defective repairs involve genes responsible for the
maintenance of genomic integrity, the malfunction of
which may contribute to cancer susceptibility by a rapid
accumulation of mutat ions and speeding up the
neoplastic process. They are members of a class of
cancer-related genes that do not intrinsically control
cell growth, but control the rate of mutation of growth-
regulating genes—the oncogones and tumour suppres-
sors. In the genesis of human cancer, a .multiple-hit
process, it is thought that mutations in DNA repair
genes accelerate the rate of mutations and resulting
carcinogenesis. Hence, HNPCC may be thought of as
a disease of accelerated tumour progression.

Reactivation of telomerase activity In human
cancer

In addition to alterations of the cancer-related genes,
recent studies suggest that reactivation of telomerase
activity may be a necessary event for the sustained
growth of almost all human cancers. The ends of chro-
mosomes are specialised nucleoprotein structures
called telomeres, which are essential for the stability
and maintenance of all chromosomes. When a tel-
omere declines to a threshold level a signal is emit-
ted that prevents the cell from dividing further. The
telomeres shorten progressively with each cell divi-
sion in normal somatic cells. In contrast to normal
cells, tumour cells show no loss of average telornere
length with ceil division and thus have the ability to
expand indefinitely. It is thought that the immortali-
sation of the cancer cells is due to the reactivation of
telomerase activity, which maintains a stable telomere
length. Studies demonstrate that telomerase activity
is expressed in most human tumour tissues but not in
normal tissues, except those of the germline and rare
haematopoietic stem cells. Such findings suggest that
this enzyme may be an. important biological marker
in cancer diagnosis and may serve, as a good target
for anti-cancer drugs.20.21 •-.

What role do viruses have In the molecular'
pathogenesis of cancer?

Oncogcnic viruses provide their host cells with addi-
tional growth st imuli . Viral oncoproteins interact with
cellular regulatory genes; they override growth sup-
pressor signals and deregulate cell-cycle control.22

Some viral oncoproteins interfere with specific cellu-
lar signal transduction pathways. Others modulate cel-
lular transcription factors, and result in increased cell
proliferation or affect normal cellular differentia-
tion, 22,23 Different oncogenic viruses target different
subsets of the cell-cycle regulatory pathways and/or
trans-activate different cellular genes.22

Cervical cancer, for example, represents one type of
human tumour that has a consistent and close associa-
tion with a specific human virus—the human papilloma
virus (HPV). Approximately 85% to 90% of cervical,
cancers contain HPV DNA sequences. Oncogenes in
the genomes of HPV type- 3 6 and type-18 produce pro-
teins called E6 and E7, which have been shown to bind
to and inactivate the tumour suppressor gene functions
of RB and p53.22-24 The binding of E7 to RB is function-
ally equivalent to the phosphorylation of pRB by cyclin-
dependent kinase 4 complex (cyclinD-cdk4), and so'the
need for the usual cellular signal is bypassed. Similarly,
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the E6 protein combines with the cellular p53 protein
and promotes its degradation. The normal function of
p53, both as a cell cycle negative regulator and as guard-
ian of the genome is abolished. The inactivation of the
tumour suppressors by viral oncoproteins is thought to
increase the chances of a precursor lesion turning into
cervical cancer.

The genetic
myeloma

In multiple myeloma (MM), a plasma cell tumour de-
rived from B-lineage clonogenic cells and both
oncogenes and tumour suppressor genes are involved.
The proto-oncogenes c-myc and bcl-2, which enhance
cell proliferation and survival are consistently over-ex-
pressed in the absence of structural rearrangements.25"28

Mutations of ras and p53 have been observed at low
frequencies.29 Tumourigenesis of MM also follows a
multistep process with evidence of clonal evolution.30-31

This is supported by the fact that in some MM cases,
p53 mutations have been observed with disease pro-
gression but not at presentation. Recent findings using
fluorescence-in-situ-hybridisation reveal a high inci-
dence of hemizygous deletions of the RB gene, which
functions to suppress cell growth, and the production of
IL-6, an important myeloma growth factor.32-33 Never-
theless, inactivation of the RB gene has not been
observed.34 This may suggest that an alternative target
gene localised on 13q may be involved in MM
tumourigenesis.

However, we recently demonstrated that the cell
cycle control through the RB gene could be
dysregulated in MM, as a result of abnormalities of
the up-stream regulators, p]6 and p15.35 As cyclin-
dependent kinase (CDK4/6) inhibitors, p16 and p15
inhibit the CDK interaction with cyclin Dl, thus pre-
venting the phosphorylation of the RB protein (pRb).
A consequence of this is that the cell is arrested at the
Gl phase.36 Inactivation of pl6lp15 leads to cellular
proliferation by promoting entry into the S-phase of
the cell cycle. The regulator p15 is up-regulated by
transforming growth factor-(3 (TGF-B), which plays
an important role in growth suppression of the hae-
matopoietic progenitors in the bone marrow (Fig 2).

Both pl6 and p15 are commonly inactivated by
homozygous deletions. These have been observed in
many human neoplasias and also lymphoid malignan-
cies, particularly paediatric acute lymphoblastic
leukaemias of B-precursor phenotypes.37-39 Despite
sharing the B-lineage origin, no deletions have been
observed in MM.39 In recent analysis, we demonstrated

that alterations of p16 and p15 are involved at high
incidences of MM, not by homozygous deletions or
mutations, but solely by hypermethylation, which can
lead to transcriptional silencing. In the study, twelve
MM. patients were analysed by Southern blot hybridi-
zation and polymerase chain reaction single strand
conformation polymorphism analysis (PCR-SSCP); no
deletions or mutations were observed. However, 75%
and 67% of MMs showed hypermethylation of p16
andp15, respectively. Hypermethylation of these genes
was associated with blastic disease. Concomitant
hypermelhylation of both genes, uncommon thus far
in the literature but observed in 67% of our MM cases,
might be pathogenetically related to plasmacytoma
development. This concomitant inactivation of both
genes may be critical in eliciting the major up-stream
inhibitory control of the RB gene in the bone marrow
environment where TGF-B activity is increased. Fur-
thermore, hypermelhylation of pl6lp15 was found in
both early and late stage patients and in both pre- and
post-treated cases. This may suggest that they are early
events in MM and their roles in tumour initiation, rather
than progression, can be speculated.35

Inactivation of the p16/p15 genes, over-expression
of c-myc and bcl-2, and an increase of IL-6 may be a
very strong driving force for the development and pro-
gression of MM.

The genetic alterations found in
nasopharyngeal carcinoma

Nasopharyngeal carcinoma (NPC) has a high incidence
in southern China and southeast Asia but is rare in other
countries. Unlike all other head and neck squamous
cell carcinomas, a unique feature of this cancer is its
consistent association with the Epstein-Barr virus
(EBV) and the persistent detection of the EBV genome
in all the nasopharyngeal carcinoma cells, regardless
of their geographic, ethnic, endemic, or sporadic ori-

gin-

Epidemiology studies in the past two decades have
correlated the disease with EBV infection, early age
exposure to some chemical carcinogens, particularly
Cantonese salted fish, and a genetically-determined
susceptibility in some individuals.40 These causal fac-
tors, in one way or another, are thought to cause mul-
tiple gene alterations, notably those involving tumour
suppressor genes and proto-oncogenes. The resulting
genetic damage may disturb the regulation of normal
cell growth, differentiation, and apoptosis, and pro-
duce a growth advantage for a clonal population of
malignant precursor cells.
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Fig 2, The cell cycle is normally controlled by the RB
I
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and the up-stream regulators p1 6 and p15
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(phosphorylated)

p16
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The normal function of the tumour suppressor, pRB,
is to constrain cell growth at the G1 phase, Phos-
phorylation of pRB by the cyciin D/CDK complex
inactivates pRB and hence relieves the cell from
its growth suppression. Inhibition of the CDK4/6
interaction with cyciin D by p16/p15 may render
them unable to phosphoryiate and hence, unabte
to inactivate pRB.

resting phase
first growth phase
second growth phase
mi to tic phase
synthetic phase

pRB protein of retinoblastoma gene
Cyciin D/CDK 4 cyciin D/cyclin-dependent kinase 4 complex
p 16 cydin-dependent kinase inhibitor A
p 15 cyclin-dependent kinase inhibitor B
TGF-p transforming growth factor-beta

In support of the above, early cytogenetic studies
pointed to consistent chromosomal abnormalities in
xenografted NPCs as well as in fresh NPC biopsies
involving chromosomes 1, 3, 11, 12, and 17. These
showed that multiple sites with genetic alteration may-
be involved in the development of NPC.41

Through molecular genetic investigations, some
specific novel genetic changes have been demonstrated
in NPC. Firstly, non-random and consistent loss of
genetic material has been found on the short arm of
chromosome 3 (67%) and chromosome 9 (61%) and
the long arm of chromosome 11 (54%) at specific sites
by loss of heterozygosity (LOH) analysis.42"46

The absence of molecular genetic material can. be
detected at a specific chromosomal locus in the tu-
mour. Consistent LOH in a tumour can be used as an
indication of the presence of a tumour suppressor gene
and help to identify the region of the chromosome
that may contain the gene. Moreover, frequent loss
of heterozygosity or homozygous deletion within a
specific chromosome locus in a particular tumour may
suggest a tumour suppressor gene(s) in that region
important: for the genesis of that tumour. The pres-
ence of multiple deletion regions in several chromo-
somes in NPC strongly suggests the involvement of
multiple tumour suppressor genes in the genesis of
this cancer.
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Secondly, the RB gene is one of the best-studied
tumour suppressors, controlling cel l cycle progres-
sion.47 No remarkable gene alteration of RB has been
detected in NPC.48 The potential importance of RB al-
terations in NPC can thus be ruled out. On the other
hand, one of the key molecular genetic alterations ob-
served in NPC tissues is the homozygous deletion as
well as hypermethylation of the p16 /mul t ip le tumour
suppressor-1 (MTS1) gene, mapped to chromosome
9p21. This is present in the majority of NPC primary
tumours (57%) examined.49,50 This agrees with a pre-
vious report of the frequent allclc loss at chromosome
9p21 in primary NPC (61%).45

The p16 gene is a cell cycle negative regulator (Fig
2). It functions as a specific inhibitor of the catalytic ac-
tivity of the CDK4/cyclin D complex51 and controls the
traverse of a cell from the G S to S phase of the cell cycle.
Loss of p 16 gene function coupled with phosphorylation
of the RB protein releases the E2F-DP1 transcription fac-
tors, signals entry into the S phase, and initiates uncon-
trolled cell proliferation. In the absence of RB alterations
previously reported for NPC,48 the inaetivation of the p16
gene in NPC, either through homozygous deletion or
hypermethylation, are important genetic changes that af-
fect critical cellular pathways and may thus play a cru-
cial role in the pathogcnesis and development of NPC.

The hypermethylated p16 gene in NPC can be de-
rnethylated, using 5-aza-2'-deoxycytidine with the
resulting re-expression of its mRNA in a newly estab-
lished NPC cell line.50 This indicates that an appropriate
pharmaceutical drug can be used to target the methylated
p16 gene and restore its function, thus signifying a po-
tential area for future experimental therapy.

Thirdly, the mutational inaetivation of p53 is the
most frequently found molecular alteration in human
cancers,52 but is a rare event in primary NPC (11 of
164 samples [6.7%] from southeastern China, includ-
ing the provinces of Guangdong, Guangxi, Hunan, and
Hong Kong, Taiwan, and Saudi Arabia).53"55 Over-ex-
pression of p53 in a majority (70%-90%) of primary
NPC tissues, on the other hand, has been reported.56,57

The p53 over-expression does not correlate with the
point mutations of the gene. However, the possibility
that mutations occur in the region of the gene outside
the scope of examination cannot be excluded. More-
over, the over-expression of P53 in the majority of
NPCs may also be due either to inaetivation of an
enzymatic pathway responsible for p53 degradation
or to stabilisation by binding with some unknown cel-
lular or-viral gene products. In any case, the role of
p53 in the development of NPC is still not clear.

In addition, the over-expression of the bcl-2
oncogene in NPC cells has been reported.58 This over-
expression probably results from induction by the EBV
latent membrane protein (LMP-1)59; its gene product
may confer an in vivo growth advantage due to pro-
longed surv iva l . It has been suggested that LMP-1
helps EBV to change cell growth.23 The enhanced cell
survival induced by bcl-2 provides an opportunity for
other genetic alterations to occur, leading to tumour
progression.

Lastly, the presence of tclomcrase activity has been
examined in NPC at different clinical stages (SWTsao,
personal communication). Telomerase activation was
shown to be a common event in this cancer and occurs
at an early stage of tumour development. Significantly
lower frequency was observed in primary NPCs with
negative lymph node involvement than in those with
positive lymph nodes (66.7% vs 100%, P<0.05).

Conclusion

Activation of proto-oncogenes, inaetivation of tumour
suppressor genes, and defective DNA mismatch repair
genes are believed to play essential roles in the genesis
of human cancer. They act either in a specific order or
as cumulative events during tumour progression, each
producing a growth advantage for a clonal expanded
population of cells leading to a malignant phenotype.

Areas of frequent chromosomal ioss have been
identified in NPCs. The genetic changes frequently
found in primary NPC include specific alterations of
proto-oncogenes and tumour suppressor genes, the p/6
gene in particular, as well as chromosomal losses that
are thought to involve inaetivation of other critical tu-
mour suppressor genes. It has been suggested that the
EBV-infected cells may be more prone to these ge-
netic changes and result in the initiation of carcino-
matous growth. However, from our recent experience,
it has been observed that some of the genetic changes
are already present in the atypical cells of the precan-
cerous lesions prior to EBV infection. It is thus rea-
sonable to propose that the development of latent EBV
infection in the nasopharyngeal epithelial cells may
require the presence of pre-existing specific genetic
changes and that these infected cells subsequently gain
a growth advantage and initiate clonal expansion to-
wards malignancy.
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