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Flows in channels with streamwise curvature and spanwise rotation are visualized in terms
of end-view near the exit of the test sections through injecting smoke into the flows. Two test
sections are used, i.e. the rectangular channels with the aspect ratio of and 10, respectively.
The work focuses on visualization of Dean and Coriolis vortices under the effects of sec-
ondary instabilities and flows in the region with a relatively high rotation speed. The results
show that the secondary instabilities cause the Dean and Coriolis vortices oscillating in
various forms and the flows at high rotation speeds are controlled by the secondary insta-
bilities rather than the primary instability. In particular, the secondary instabilities lead the
flows to be unsteady and turbulent somewhat like the bursting flow in the turbulent boundary
layers.
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1 INTRODUCTION

Flows in rotating curved channels arise in a variety of

practical processes. Examples are flows in centrifuges
(Hochrainer 1971 ]), cooling channels of rotating ma-
chinery (Ito and Motai [1974], Miyazaki [1971,
1973] and Morris [1981]), particle separation devices

(Lennartz et al. [1987], Papanu et al. [1986], Hoover
et al. [1984], St6ber and Flachsbart [1969] and
Kotrappa and Light [1972]) and rotating heat ex-

changers (Qiu et al. [1990]). Studies on the hydrody-
namics in the rotating curved channels are, therefore,

not only of considerable theoretical interest, but also
of practical importance.
The physical model is illustrated in Fig. (also see

Fig. 3). Under the action of the pressure gradient along
the channel axis, a viscous fluid is allowed to flow

through a channel of rectangular cross section with
width hight of (a b). The channel is uniformly
curved around the axis o’z’ (streamwise curvature). At
same time, the channel is rotating about that axis with
a constant angular velocity D, (spanwise rotation). The
rotation can be positive or negative as shown in Fig.
in terms of angular velocity vector. If positive, the ro-
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tation direction is in the direction of the relative ve-

locity of the fluid inside the channel. When the rota-
tion is negative, however, the rotation direction is in
the direction opposite to the relative velocity of the
fluid. The radial, spanwise and streamwise directions
are (X, Y, {)) respectively.
The streamwise curvature and spanwise rotation of

the channel introduce centrifugal and Coriolis forces
in the momentum equations which describe the rela-
tive motion of fluids with respect to the channel.
Such body forces can stabilize the channel flow in
some flow domain, and destabilize the flow in the
other domains. In particular, the stabilizing or desta-
bilizing effects due to curvature and rotation may ei-
ther enhance or counteract each other depending on

the direction of the rotation. This can be intuitively
understood through a simple analysis of force direc-
tions. In the plane of the cross section, the centrifugal
force always acts outwards in the positive X-direc-

tion. However, the Coriolis force may act in either

positive or negative X-direction depending on the ro-

tation direction. If the rotation is positive, it will act

along the positive X-direction. When the rotation is

negative, however, it will act along the negative X-di-

rection. Therefore, we may expect a change in flow
pattern as the rotation direction and rate change.

FIGURE Flow in a channel with streamwise curvature and
spanwise rotation.

For the case of positive rotation with a low rotation

rate (Ro o(o-); Ro is the rotation number, Eq.(2); o-

a/Re., the curvature ratio of the channel in Fig. 1),
Miyazaki [1971, 1973] numerically analyzed the fully
developed laminar flow in curved, rotating, circular

and rectangular channels by a finite-difference

method. The secondary flow revealed consists of one

pair of counterrotating vortices in a plane perpendicu-
lar to the axis of the channel. The interaction of the

secondary flow with the pressure-driven main flow
shifts the location of the maximum streamwise veloc-

ity away from the center of the channel and in the di-

rection of the secondary velocity in the central region
of the channel. The effects of the rotation direction

were not investigated by Miyazaki [1971, 1973]. Con-
sidering the channel to be a tube of circular cross sec-

tions with either positive or negative rotation, the fully
developed laminar flow was investigated theoretically
by Ito and Motai [1974], and Wang and Cheng
[1996a]. The equations of motion were solved by a

perturbation method for a small curvature and a low
angular rotation rate of the tube. The inward Coriolis
forces due to the negative rotation were found to cause

the direction of the secondary flow to reverse by over-

coming the outward centrifugal forces in the plane of
the cross section. The flow reversal occurs by passing
through a multi-pair vortex flow region where overall,
the effect of the Coriolis force just neutralizes that of
the centrifugal force. Such flow reversal and multi-

pair vortex flow were also found in rectangular chan-
nels by a finite-volume numerical analysis (Wang and
Cheng [1996b], and Wang 1995) and were experimen-
tally confirmed by Wang and Cheng [1995].

For the case of moderate rotation in both positive
and negative directions (Ro o(1)), the fully devel-
oped laminar flow was examined by Daskopoulos
and Lenhoff [1990] for circular tubes and by Wang
[1995], Wang and Cheng [1996b], and Selmi et al.
[1994] for rectangular channels. The centrifugal and
Coriolis forces were found to cause the centrifugal
and Coriolis instabilities in the forms of streamwise-

oriented roll cells (Dean and Coriolis vortices). The
interaction between the two instabilities results in a

complex flow structure. In particular, the appearance
of the Dean and Coriolis vortices leads to a high in-
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flectional profile for streamwise velocity. Such a pro-
file may be unstable with respect to streamwise wavy
disturbances in accordance with the Rayleigh’s in-
flection point criterion.

For a channel with an infinite span, Finlay et. al.
[1988] and Finlay [1990] examined the secondary
stabilities of the Dean vortices and the Coriolis vor-
tices with respect to the streamwise wavy distur-

bances. They found that the instability leads to the
development of undulating vortex flow and twisting
vortex flow. As well, the stability of Dean vortices

and Coriolis vortices subjected to two-dimensional

spanwise periodic disturbances (i.e. Eckhaus stabil-

ity) was examined numerically by Guo and Finlay
1991] for infinite span cross section. They found that

the Eckhaus instability causes the vortex pairs to split
apart or merge together. This motivates the first part
of the present study to experimentally confirm these

secondary instabilities and to expose the other possi-
ble secondary instabilities.

It appears that the literature on high rotation rates

(I Ro > 3) is rather limited. For the case of the
positive rotation with a high rotation rate, Ludwieg
1951] and Hocking [1967] employed the boundary

layer approximation to theoretically examine the

fully developed laminar flow in a curved channel
with a square and a rectangular cross-section, respec-
tively. They found that the secondary flow also con-

sists of one pair of counter-rotating vortices in the
cross plane. The streamwise velocity profile assumes

a Taylor-Proudman configuration in the core region
(Greenspan [1968]). While Ludwieg [1951] and

Hocking [1967] appear to be the only works on the
high rotation case, the validity of the boundary layer
approximation has not been established for the flow
with secondary flows. As a matter of fact, all the
numerical simulations (Wang [1995], Wang and
Cheng [1996b], Daskopoulos and Lenhoff [1990],
Nandakumar et al. 1991, and Selmi et al. [1994])
failed to find stable flows if the rotation rate is high.
This motivates the second part of the present work to

experimentally visualize the flows in curved channels
rotating at a higher rotation rate. Note that the rotat-

ing curved channels are usually operated at a high
rotation rate in practical applications, and the results

presented in this paper are believed to be not only of
theoretical interest but also of practical importance.

In the present work, a smoke visualization appara-
tus is designed to visualize the flow in two curved
channels rotating spanwise at a moderate or high ro-

tation rate. The work mainly contains two parts. The
first part is to experimentally visualize flow under the
effect of the secondary instabilities of Dean and Co-
riolis vortices. The second part is to visualize flow at

a high rotation rate. In addition, the primary instabil-

ity analysis by Wang and Cheng [1995] is extended to

the case with a high rotation rate. This leads to a

conclusion that the flows at a high rotation rate are

controlled by the secondary instability rather than the

primary instability.

2 EXPERIMENTAL APPARATUS AND
TECHNIQUE

A schematic diagram of the experimental apparatus is

shown in Fig. 2. It consists of a test section, a rotating
table with the rotating seal, an air supply system and
a smoke generator.
The rotating table is driven by an electric motor

with adjustable speed drive and the range of the ro-

tating speed is n 0 500 rpm. The rotational

speed is measured by using an optical slot switch

running on a disc with equally spaced 60 holes near

its perimeter. The signal from the switch is fed to a

Hewlett Packard HP 5314A Universal counter. With

60 holes in the disc, the frequency in Hz equals the
rotational speed in rpm.
A second disc with a single hole provides the sig-

nal for firing the General Radio 1540 Strobolume by
way of a delay generator/single flash flip-flop which

allows visual observation using a slit light source

with one flash per rotation and also permits a single,
properly timed flash for photographing the whole sec-

ondary flow field.

The building compressed air is used as the fluid.
The air flow rate is measured by a Meriam flow ele-
ment with a calibrated differential pressure trans-

ducer. The smoke generated by burning Chinese in-
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FIGURE 2 Schematic diagram of experimental apparatus.

cense sticks is injected through a dispersing tube be-
fore the test section as shown in Fig. 2. The very tiny
smoke particle (10.2 10-Mm), subjected to ne-

glected gravitational and rotational buoyancy forces
relative to the drag forces, marks fluid particle trajec-
tories. The smoke patterns are photographed instantly
near the exit of the test section (-- 0.8cm from the

exit) revealing the flow pattern. This provides an end-
view of the secondary flow pattern for an observer
looking upstream into the channel cross-section. A
Nikon FM2 single lens reflex camera and Kodak T-
Max black and white film P3200 are used.
Two test sections, denoted by Ts-A and Ts-B, are

shown in Fig. 3. The top view and the exit cross-

section of Ts-A are shown in Fig. 3(a). It consists of
an entrance spiral square channel with axial length
0.85m and a curved square channel (270 bend with
axial length of 1.2m) with a constant radius of curva-

ture R, 25.4cm. The curved square channel has
cross-section 5.08 5.08cm2, and is made from
acrylic sheets. The air flows through a rotating
straight tube (with an inside diameter of 4cm) along
the axis of rotation, and then enters the spiral square
channel before entering the test section. The flow
near the exit of the channel is believed to be fully
developed because of a ratio of the length over the
width of 40.4.

Ts-B, also made from acrylic sheets, consists of an

entrance spiral rectangular channel with axial length
1.25m and a curved rectangular channel (270 bend)
with a constant radius of curvature R 25.4cm. The

top view and the exit cross section for Ts-B are shown
in Fig. 3(b). The air flows through a rotating straight
tube (with an inside diameter of 4cm) along the axis

of rotation and then enters the spiral rectangular
channel before flowing into the curved channel. With

an entrance spiral channel length of 1.25m and a sub-

sequent curved rectangular channel (length 1.2m)
with a constant radius of curvature, the flow near the
exit of the channel is also believed to be fully devel-
oped because the ratio of the length over the width of
the channel is 96.5.

3 RESULTS AND DISCUSSION

The end-view photographs are to be shown for Ts-A
and Ts-B with spanwise direction vertical and radial

direction horizontal. In each photograph, the convex

(inner) wall is on the left and the concave (outer) wall
is on the right. For a given test section, the flow is

characterized by two parameters, namely, Reynolds
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(a) Ts-A

Spiral Length 85 cm

Air In

n 0-500rpm

X

Start of Rc 25.4cm

(a) Top View of Test Section (b) Channel Exit

Air In

(b) Ts-B

Spiral Length= 125 cm

e=3/2

Exit of Channel

Air Out

Start of Rc 25.4cm b=25,4cm

x

(a) Top View of Test Section (b) Channel Exit

FIGURE 3 Two test sections.
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number Re and rotation number Ro which are defined

as

Wma
Re (1)

Ro (2)w
where Wm, v, 1) are the mean streamwise velocity, the
kinematic viscosity of air and the angular rotation

speed of the channel. The channel width a is used as
the characteristic length in Re and Ro. For a given set

of Re and Ro, several photographs, each taken at dif-
ferent instant, are usually presented to show the time
variation of the flow qualitatively. No attempt was
made to specify the exact time intervals.

For Ts-B, an alternative characteristic length is the
hydraulic diameter dh. The values of Re and Ro with

dh as the characteristic length are shown in the paren-
theses.

3.1 Dean and Coriolis Vortices

An important feature relating to stabilization and de-
stabilization is the appearance of the Dean and Cori-
olis vortices. It is of special interest because they may
cause a significant change to flow structure and the
wall heat transfer distribution. In addition, they have
an important effect on transition from laminar to tur-
bulent flow and relaminarization from turbulent to

laminar flow.
The Dean and Coriolis vortices may be present as a

result of centrifugal and Coriolis instabilities imposed
on the flow by curvature and rotation. Experimen-
tally, these vortices are identified by the mushroom-
shaped smoke patterns. Such patterns form because
of spanwise variations of streamwise velocity due to
the different inwash and outwash regions associated
with pairs of counter-rotating vortices. The stems of
individual mushroom shapes mark the region of flow
away from the wall surface between the vortices
which form one pair.

The possible various kinds of secondary instabili-
ties of the Dean and Coriolis vortices may produce
the Dean and Coriolis vortices with different features
for different flow regions. The properties of distur-

bances triggering initial vortex formation (such as

their steadiness, uniformness along the spanwise di-

rection etc.) may also lead to various Dean and Co-
riolis vortices. Consequently, we may observe differ-

ent mushroom-shaped smoke patterns due to single or

combined effect of the two causes (secondary insta-

bilities and initial disturbances). In a fully developed
region which the present work is mainly concerned
with, the Dean and Coriolis vortices become fully
developed and should be less sensitive to the initial

disturbances because once initiated, vortex behaviour
and development are strongly controlled by the cen-

trifugal and Coriolis instabilities from the curvature

and rotation of the channel. The different Dean and
Coriolis vortices observed in our experiments are,
therefore, believed to be caused by their secondary
instabilities.
The Dean and Coriolis vortices observed can be

divided into two groups: symmetric and nonsymmet-
ric vortices with respect to radial-streamwise plane.
The symmetric Dean and Coriolis vortices appear
usually at a dynamic parameter close to the critical

value for their onset. Such vortices are identified by
mushroom stems which form the radial symmetry
lines. The mushroom-shaped smoke patterns are the
mirror images on each side of the line. In other
words, the two vortices in each pair are similar. The
nonsymmetric Dean and Coriolis vortices are often
observed at higher dynamic parameters. When
viewed in cross (radial-spanwise) planes, such vorti-

ces are distorted generally by spanwise and/or radial

unsteadiness in the flow such that no symmetric line

is observed.

3.1.1 Symmetric Coriolis Vortices

Examples of smoke patterns from symmetric Coriolis
vortex flow are shown in Fig. 4. They are obtained

for Ts-B at Re 193.6(352), Ro -1.171(-2.129)
and Re 452(822), Ro 1.718(-3.124). The pat-
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Stem Peal
--. i:-(!i Sidewash & Inwash

Outwash
\

FIGURE 4 Symmetric Coriolis Vortices for Ts-B.

terns are especially interesting because they show

only small unsteadiness. No significant time variation
on shape and size can be observed. The narrow mush-
room stems indicate narrow outwash regions from the
high pressure wall. Also the large mushroom petals
imply large, spread-out sidewash and inwash regions.
The fairly uniform size and shape at different span-

wise positions indicate that the flow is fully devel-

oped since otherwise the difference will result from
the sensitivity of developing vortices to initial distur-

bances.
A comparison of the smoke patterns in Fig. 4(a)

with those in Fig. 4(b) shows that the shape of the

symmetric Coriolis vortices changes with the operat-
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ing parameter. This is consistent with the numerical
simulations (Finlay [1990]) which indicate that vor-

tex shape changes with spanwise wavenumber, Rey-
nolds number and rotation number.

3.1.2 Radially Oscillating Coriolis Vortex Flow

Two examples of radially oscillating Coriolis vortices
are presented in Fig. 5. They occur at Re 600, Ro

-1.37 for Ts-A and at Re 193.6(352), Ro

-0.663(-1.205) for Ts-B respectively. At this stage
of flow, very little spanwise oscillation is present and
mushroom patterns seem to move almost exclusively
in the radial direction. When these oscillations occur,

they are mostly symmetric Coriolis vortices, and the
radial unsteadiness decreases in magnitude as the
overall average vortex height increases.

The vortex heights at different spanwise locations

in Fig. 5.(b) show relatively small variations in height
and spacing. This indicates that the Coriolis vortices

(a) R 600, Ro :-,.37(Ts-A)

(b) 93.6(32),o =-0.663(-1.205) (Ts-B)

FIGURE 5 Radial oscillating Coriolis vortices.
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are fully developed along the streamwise direction
and the oscillation is caused by the secondary insta-

bility of the Coriolis vortices.

direction provide evidence of fully developed vorti-
ces. As well, the oscillation is believed to be caused
by the secondary instability.

3.1.3 Spanwise Oscillating Dean and Coriolis
Vortex Flow

The mushroom-shaped smoke patterns at Re 500,
Ro 0 for Ts A and at Re 581(1056), Ro
-1.12(-2.036) for Ts B are shown in Fig. 6. The
time variations in shape show that very little radial
oscillation is present and mushroom patterns seem to

move almost exclusively in the spanwise direction.
When these oscillations occur, they are mostly sym-
metric. The uniform height and spacing in spanwise

3.1.4 Simultaneous Spanwise and Radial

Oscillating Dean Vortex Flow

The Mushroom-shaped smoke patterns, oscillating si-

multaneously in the spanwise and radial directions

may be observed without a twisting motion. One ex-

ample is shown in Fig. 7 for Ts-A at Re 550, Ro
0. The vortices in this vortex flow are also nearly
symmetric, and generally have larger-scale oscillation
and greater unsteadiness than the smoke patterns
identified with radial, span or twisting modes.

(a,) Spa,wise oscil[at;iag Dert vor,ices

.t .t?..e 500, .to 0 for 7"sA

(b) Spanwise oscillating Coriolis vortices at,..Re 581.
(05(), .to :t.:t(-0a) for r.-B

FIGURE 6 Spanwise oscillating Dean and Coriolis vortices.
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FIGURE 7 Simultaneous spanwise and radial oscillating Dean vortices at Re 550, Ro 0 for Ts-A.

3.1.5 Twisting Coriolis Vortex Flow

Finlay et al. [1988] and Finlay [1990] simulated

curved and rotating channel flows using three-dimen-

sional incompressible time-dependent Navier-Stokes

equations. They found evidence that the Dean or Co-
riolis vortices develop two different types of travel-
ling waves in the streamwise direction. The undulat-

ing Dean or Coriolis vortex flow contains long
streamwise wavelengths and very small growth rates

which make them difficult to observe experimentally.
The twisting Dean or Coriolis vortex flow contains

much shorter streamwise wavelength than the undu-

lating Dean and Coriolis vortex flow. This causes

them to be observed more readily.
Streamwise fully developed travelling waves gen-

erate same events at one time but different stream-

wise locations as at one streamwise location but dif-

ferent times. With twisting, the vortex centers oscil-

late only a little in the spanwise direction. The motion

occurs mostly in the radial direction as the vortices in
one pair oscillate in shape and strength.
The smoke patterns for twisting Dean and Coriolis

vortices are mushroom-shaped with a rocking type of
motion. Examples of smoke patterns from twisting
Dean vortices are presented in Fig. 8. They were ob-
tained at Re 600, Ro 0 for Ts-A and at Re
581(1056), Ro 0(0) for Ts-B. It is observed that the

twisting Dean vortices are nonsymmetric. The Rey-
nolds number for the two cases with twisting Dean
vortices (Ro 0) are larger than 1.96RG. with Re. as

the critical Reynolds number for the onset of the
Dean vortices. These are consistent with the numeri-

cal simulations given by Finlay et al. [1988].
For Ts-B, it is found that the rocking motion is

rarely observed alone, rather it is usually observed in

conjunction with at least one other mode of oscilla-

tion. In many cases, the rocking vortex pairs are ad-

jacent to pairs with a different type of motion.

3.1.6 Small Vortex Pairs

Using a linear stability theory and spectral method,
Guo & Finlay [1991] examined the Eckhaus stability
of the Dean and Coriolis vortices. They found that the

Eckhaus stability boundary is a small closed loop.
Outside the boundary, the Eckhaus instability causes

the vortex pair to split apart by the formation of a

new vortex pair or merge together, and no vortex

flow is stable to spanwise disturbances when Re >
1.7RG:. When Re is not too high (Re < 4RG.), the
wavenumber of vortices is selected by the Eckhaus

instability. Similar phenomena have also been re-

ported by Finlay et al. [1988], Finlay [1990] and
Bland and Finlay [1991] in their numerical simula-

tions of channel flows with curvature or rotation.

The vortex splitting/merging and readjustment of
the spanwise wavenumber are clearly evidenced in

the radial-span cross section by the presence of small

vortex pairs at some instants. Examples are shown in

Fig. 9 for Ts-B at Re 452(822), Ro 0(0); Re
452(822), Ro -0.091 (-0.165); Re 323.3(588),
Ro -0.819(- 1.489) and Re 581 (1056), Ro
1.12(2.036) as pointed by an arrow.

3.1.7 Complex Oscillating Models

In some cases, usually with high dynamical parame-
ters, the oscillation of the Dean and Coriolis vortices

appear to be so chaotic such that the mushroom-

shaped patterns are barely recognizable or can not be

identified clearly. Photographs of such patterns are
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(a) Twisting Dean vortices at Re 600, Ro 0 for Ts-A

(b) Twisting Dean vortices at Re 600(1056),Ro 0(0) for Ts-B

FIGURE 8 Twisting Dean vortices.
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FIGURE 9 Small vortex pairs for Ts-B.

shown in Fig. l0 for Ts-B at Re 193.6(352), Ro
0(0).

3.2 Flows in Curved Channels with a High
Rotation Rate

A generalized Rayleigh stability criterion was derived

by Wang and Cheng [1995] to analyze stable and
unstable regions of flows with respect to the primary
instability in a rotating curved channel of an infinite

span. The result is

II-2
crw + Ro

+r(x- 1/2)

dw
xx +

+ o-(x- l/2)
+ 2Ro (3)

where (see Fig. 1)

X R W d a
x w Ro o- (4)w w R.

The flow is stable in the flow domain with II > O,
and unstable in the domain with II < O. This criterion

was used to analyze the stable and unstable regions
for the case with a small gap (o- << 1) and a low
rotation rate (Ro o()). Here we extend the analy-
sis to the case of a small gap with a high rotation rate.

For the small gap (or << 1) and high rotation rate

(Ro o(1)), the generalized Rayleigh’s criterion 1I
can be approximated as

II(x)- 2Ro (xW + 2Ro) (5)
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which vanishes at a radial position xo satisfying

dw + 2Ro 0 (6)

For the flow in a curved channel with rotation around
the axis of curvature, the base flow can be written as

(Chandrasekhar 1961 ])
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(7)

This, with Eq.(6), yields

Xo- + VIRoI3 (8)

The sign of H in different regions is summarized in

Table I. The stable and unstable regions are shown in

Fig. (Although Table and Fig. 11 show the re-

sults for the whole range of Ro, we should use the
results in Wang and Cheng [1995] for the case with a

low rotation rate). This shows that the unstable re-

gions reduces as Ro increases, and the high rota-

tion with Ro > 3 always stabilizes the flow in the
whole cross-section.

Examples of smoke patterns from flows in a region
with Ro > 3 are illustrated in Fig. 12(a) for T
A and in Fig. 12(b) for Ts B. They are obtained at

Re- 200, Ro- 21.42; Re- 200, Ro- -10.05; Re
600, Ro 9.78 and Re 1000, Ro -3.43 for

Ts A and at Re 110(200), Ro 8.11 (- 14.75);
Re 110(200), Ro 10.60(19.27); Re 452(822),
Ro -3.59(-6.53) and Re 452(822), Ro
3.45(6.27) for Ts-B. The patterns are seen to be some-

what similar to the bursting flow in the turbulent

boundary layer (Kline et al. 1119671), and are far from
the one pair of counterrotating vortices predicted by
Ludwieg [1951] and Hocking [1967]. Therefore, the

boundary layer approximation may not be valid for
flow in the curved channels with a high rotation rate.

Also the high unsteadiness of flow implies that the
flow is controlled by the secondary instability rather
than the primary instability. In particular, the second-

ary instability can produce the low Reynolds number
turbulent flows.

4 CONCLUDING REMARKS
FIGURE 10 Complex oscillating Dean vortices at Re
193.6(352), Ro 0(0) for Ts-B.

An experimental apparatus was designed and con-

structed especially to visualize the fully developed
flows in two kinds of channels with streamwise cur-

vature and spanwise rotation in terms of the end-view

secondary flow near the exit of the test sections. The

work focuses on the Dean and Coriolis vortices under
the effects of the secondary instability, and the flows
in the region with Ro > 3.
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TABLE Sign of II for the case of small gap and high rotation rate

229

Ro Region with Positive II Region with Negative II

Ro -3 0<x <
-3< Ro<-O x <x <
0 Ro <3 0 < x < x

Ro>-- 3 O <--x

0 % x < x

x < x <

Pairs of counter-rotating Dean and Coriolis vorti-

ces are observed as the mushroom-shaped smoke pat-
terns. The narrow mushroom stems indicate the nar-

row outwash flow regions while large mushroom pet-
als imply the large, spread-out sidewash and inwash

regions. The fairly steady, symmetric Dean and Cori-

olis vortices are observed in some parameter regions.
Their size and shape change with the operating pa-
rameters.

Secondary instabilities of the Dean and Coriolis
vortices lead to oscillation in various forms even in
the streamwise fully developed flow regions. The ob-
served oscillating modes include: (1) one with mostly
radial motion, (2) one with mostly spanwise motion,
(3) one with significant simultaneous radial and span-
wise motion, and (4) one with rocking motion. In
addition, the oscillating modes are also present with

the motion so complex that it is rather difficult to

describe the flow visualization result. The experimen-
tal results are to be confirmed both theoretically and
numerically in the future.

In the cross planes, the twisting Dean and Coriolis
vortices are evidenced by nonsymmetric mushroom-

shaped smoke patterns with rocking motion. The re-

gion where the twisting Dean and Coriolis vortices

are observed is in agreement with that predicted by
Finlay et al. [1988] and Finlay [1990]. This kind of
vortex flow differs from that with simultaneous radial

and spanwise motion mainly in three aspects: (1) the

twisting vortices are nonsymmetric but the simulta-

neous radial and spanwise oscillating vortices are

symmetric, (2) with twisting, the spanwise locations

of vortex centers oscillate only a little. With simulta-

neous radial and spanwise oscillating, the spanwise

Y Y

/\

0 Xo

Y

,Xo
X

Y

Ro < -3 -3 < Ro < 0 0 < Ro < 3 Ro > 3

FIGURE 11 Stable and unstable regions for the case of a small gap with a high rotation rate.
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FIGURE 12 Flows in a region with Ro > 3

locations of vortex centers can oscillate significantly,
and (3) the simultaneous radial and spanwise oscillat-

ing Dean and Coriolis vortices usually have larger-
scale oscillation and greater unsteadiness than the
twisting Dean and Coriolis vortices.

The vortex pairs sometime seem to appear and dis-

appear as indicated by small vortex pairs observed

temporarily in the cross planes for some experimental
conditions. This is believed to be caused by the Eck-
haus instability discussed by Guo and Finlay [1991].
The flow at large Ro is found to be controlled by

the secondary instability rather than the primary in-

stability. In particular, the secondary instability leads

the flow with large ]Ro to be unsteady and turbulent
somewhat like the bursting flow in the turbulent
boundary layer. This appears to produce the low Rey-
nolds number turbulent flow and one may conclude
that the boundary layer approximation is not valid for
this type of flow.
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