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A numerical study is made on the fully developed bifurcation structure and stability of the mixed convection in rotating curved
ducts of square cross-section with the emphasis on the effect of buoyancy force. The rotation can be positive or negative. The
fluid can be heated or cooled. The study reveals the rich solution and flow structures and complicated stability features. One
symmetric and two symmetric/asymmetric solution branches are found with seventy five limit points and fourteen bifurcation
points. The flows on these branches can be symmetric, asymmetric, 2-cell, and up to 14-cell structures. Dynamic responses of
the multiple solutions to finite random disturbances are examined by the direct transient computation. It is found that possible
physically realizable fully developed flows evolve, as the variation of buoyancy force, from a stable steady multicell state at a
large buoyancy force of cooling to the coexistence of three stable steady multicell states, a temporal periodic oscillation state,
the coexistence of periodic oscillation and chaotic oscillation, a chaotic temporal oscillation, a subharmonic-bifurcation-driven
asymmetric oscillating state, and a stable steady 2-cell state at large buoyancy force of heating.

1. INTRODUCTION

We study the fully developed bifurcation-driven multiplicity
and dynamic responses of multiple solutions to finite ran-
dom disturbances numerically by the finite-volume/Euler-
Newton continuation and the direct transient computa-
tion for the mixed convection in ducts of square cross-
section with the streamwise curvature, the spanwise rotation
in either positive or negative direction, and the wall heat-
ing/cooling (Figure 1 with (R,Z, ¢) as the radial, spanwise,
and streamwise directions, resp.). A positive rotation gives
rises to a Coriolis force in the cross-plane (RZ-plane) di-
rected along positive R-direction and vice versa.

There is a host of areas where such flows and transport
phenomena are of practical importance and where relevant
issues are raised. For instance, sedimentation field-flow frac-
tionation, one of the most powerful subtechniques of the
field-flow fractionation (FFF) method of separation, uses ro-
tating curved ducts to perform both separation and quan-
titation of particles and other colloidal-based substances.

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Aerosol centrifuges apply rotating curved ducts to the prob-
lem of separating airborne particles according to aerody-
namic size. The fundamental economic gains associated with
the increase of inlet fluid temperature and unit capacity lead
to the use of rotating curved ducts as the cooling ducts of ro-
tating power machinery such as gas/steam turbines and elec-
tric generators. The rotating curved ducts are also used in
rotating heat exchangers, centrifugal material processing and
material quality control, medical and chromatographic de-
vices, and so forth. In order to calculate the pumping power
needed for such devices, it is important to know the pressure
drop in rotating curved ducts. Because secondary flows can
enhance heat and mass transfer, knowledge of the magnitude
of this effect in different ranges of operating parameters is
important in designing and operating these devices. To avoid
or reduce the flow-induced vibration and noise, we need to
know when temporal oscillation appears. The present work

can acquire a better understanding of these practical issues.
Early works on the rotating curved duct flows were con-

strained to two simplified limiting cases with strong or weak
rotations. Ludwieg [1] developed a solution based on a mo-
mentum integral method for the isothermal flow in a square
duct with a strong spanwise rotation. Miyazaki [2, 3] exam-
ined the mixed convection in a curved circular/rectangular
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Figure 1: Physical problem and coordinating system.

duct with spanwise rotation and wall heating by a finite-
difference method. Because of the convergence difficulties
with the iterative method used, Miyazaki’s work was con-
strained to the case of weak curvature, rotation, and heat-
ing rate. As well, all the works employ a steady model for the
fully developed laminar flow with a positive rotation of the
duct. Since the solution is only for the asymptotic cases, the
secondary flow revealed by these early works consists of only
one pair of counter-rotating vortices in the cross-plane. The
interaction of the secondary flow with the pressure-driven
streamwise flow shifts the location of the maximum stream-
wise velocity away from the center of the duct and in the di-
rection of the secondary velocity in the middle of the duct.

More comprehensive studies have been made in recent
years by Wang and Cheng [4], and Daskopoulos and Lenhoff
[9] for a circular tube; Matsson and Alfredsson [10, 11}, and
Guo and Finlay [12] for a high-aspect-ratio rectangular duct;
and Wang and Cheng [5, 13, 14, 15], Wang [6, 7, 8], Selmi et
al. [17], and Selmi and Nandakumar [16] for the square and
rectangular ducts with a low-aspect ratio. All the works are
for the steady fully developed flows. Wang and Cheng [4] de-
veloped an analytical solution for rotating curved flow with
the effect of heating or cooling which allows to analyze the
solution structure. Detailed flow structures and heat trans-
fer characteristics were examined numerically by Wang and
Cheng [5] and Wang [6, 7, 8]. The rotating curved flows
were visualized using smoke injection method by Wang and
Cheng [13, 14, 15]. Daskopoulos and Lenhoff [9] made the
first bifurcation study numerically under the small curvature
and the symmetry condition imposed along the tube’s hori-
zontal central plane. Matsson and Alfredsson [10] presented
the first and comprehensive linear stability analysis. Matsson
and Alfredsson [11] reported an experimental study, by hot-
wire measurements and smoke visualization, of the effect of
rotation on both primary and secondary instabilities. Using
a linear stability theory and spectral method, Guo and Fin-
lay [12] examined the stability of streamwise-oriented vor-
tices to 2D, spanwise-periodic disturbances (Eckhaus stabil-
ity). Detailed bifurcation structure and linear stability of so-
lutions were determined numerically by Selmi et al. [17] and
Selmi and Nandakumar [16] without imposing the symmet-
ric boundary conditions.

It is the relative motion between bodies that determines
the performances such as friction and heat transfer charac-
teristics. The duct rotation introduces both centrifugal and

Coriolis forces in the momentum equation describing the
relative motion of fluids with respect to the duct. For isother-
mal flows of a constant property fluid, the Coriolis force
tends to produce vorticity while the centrifugal force is purely
hydrostatic, analogous to the Earth’s gravitational field [18].
When a temperature-induced variation of fluid density oc-
curs for nonisothermal flows, both Coriolis- and centrifugal-
type buoyancy forces could contribute to the generation of
the vorticity [18]. These two effects of rotation either en-
hance or counteract each other in a nonlinear manner de-
pending on the direction of duct rotation, the direction of
wall heat flux and the flow domain. As well, the buoyancy
force is proportional to the square of the rotation speed while
the Coriolis force increases proportionally with the rotation
speed itself |7]. Therefore, the effect of system rotation 1s
more subtle and complicated and yields new, richer features
of flow and heat transfer in general, the bifurcation and sta-
bility in particular, for nonisothermal flows. While some of
such new features are revealed by our recent analytical and
numerical works [4, 5, 6, 7, 8], there is no known study on
the bifurcation and stability of mixed convection in rotating
curved ducts.

We note that all previous analytical/numerical studies of
stability are limited to linear stability and some special dis-
turbances. While the linear stability analysis is efficient in
terms of the computation efforts required, it suffers three
fundamental defects. First, it is not applicable to a finite dis-
turbance. With a finite disturbance, a so-called stable so-
lution based on linear stability may not be always stable.
Second, it may not be so relevant for comparison with ex-
periments. Because of the difficulty in controlling distur-
bances in experiments, experimental results of stability such
as those by Matsson and Alfredsson [11] and Wang and
Cheng [13, 14, 15] are essentially for finite random distur-
bances. Finally, the linear stability analysis provides no an-
swer to the questions related to the dynamic behavior of the
solutions, including how flows approach a stable solution af-
ter a disturbance, what happens to an unstable solution af-
ter a disturbance, whether all unstable solutions at a given
set of parameters respond to disturbances in the same way,
and whether the disturbances lead an unstable solution to
the stable one at the same parameter value. Clearly, a fully
transient computation is necessary to examine dynamic re-
sponses of the multiple solutions to the finite random dis-
turbances. Such a computation is also capable of capturing
the phenomena related to the transition to turbulence such
as oscillation solution, periodic doubling, intermittency, and
chaotic oscillation.

In previous numerical studies [9, 16, 17], branch sta-
bility is often determined by the stability of one point on
the branch. This is partly due to the fact that the compu-
tation of the complete eigenvalue spectrum along the so-
lution branches is a computationally expensive process and
partly due to the assumption that the stability of solu-
tions along a solution branch is unchanged without passing
limit/bifurcation points in the literature. However, based on
the bifurcation and stability theory, such a change in stabil-
ity is possible [19]. Therefore, a more detailed and careful
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stability analysis is desirable to observe the gain and loss
of flow stability along solution branches without passing
limit/bifurcation points.

The present work is a relatively comprehensive study on
the bifurcation structure and stability of multiple solutions
for the laminar mixed convection in a rotating curved duct
of square cross-section (Figure 1). The governing differen-
tial equations in primitive variables are solved for detailed
bifurcation structure by a finite-volume/Euler-Newton con-
tinuation method with the help of the bifurcation test func-
tion, the branch switching technique, and the parameteriza-
tion of arc length (s) or local variable. Transient calculation
is made to examine in detail the response of every solution
family to finite random disturbances. The power spectra are
constructed by the Fourier transformation of temporal oscil-
lation solutions to confirm the chaotic flow. We restrict our-
selves to the hydrodynamically and thermally fully developed
region and 2D disturbances. So far, a detailed 3D numeri-
cal computation of flow bifurcation and stability is still too
costly to conduct. A 2D model is still useful for a fundamen-
tal understanding of rotating curved duct flows. However,
our assumption of fully developed flow limits our analysis to
the one preserving the streamwise symmetry. There may be
further bifurcation to flows that breaks this symmetry and
that cannot be found in the present work.

2. GOVERNING PARAMETERS
AND NUMERICAL ALGORITHM

Consideration is given to a hydrodynamically and thermally
fully developed laminar flow of viscous fluid in a square duct
with the streamwise curvature, the spanwise rotation, and the
wall heating or cooling at a constant heat flux (Figure 1). The
geometry is toroidal, and hence finite pitch effect is not con-
sidered. The rotation can be positive or negative at a constant
angular velocity. The duct is streamwisely and peripherally
uniformly heated or cooled with a uniform peripheral tem-
perature. The properties of the fluid, with the exception of
density, are taken to be constant. The usual Boussinesq ap-
proximation is used to deal with the density variation. The
gravitational force is negligible compared with the centrifu-
gal and Coriolis forces.

Consider a noninertial toroidal coordinate system (R, Z,
¢) fixed to the duct rotating with a constant angular veloc-
ity about the O’ Z axis, as shown in Figure 1. We may obtain
the governing differential equations, in the form of primitive
variables, governing fully developed mixed convection based
on conservation laws of mass, momentum, and energy. The
boundary conditions are nonslip and impermeable, stream-
wise uniform wall heat flux and peripherally uniform wall
temperature at any streamwise position. The proper scaling
quantities for nondimensionalization are chosen based on
our previous experience [5]. The formulation of the problem
is on full flow domain without imposing symmetric bound-
ary conditions to perform a thorough numerical simulation.
The readers are referred to Wang and Cheng [5] for the de-
tails of mathematical formulation of the problem.

The dimensionless governing equations contain five di-
mensionless governing parameters: one geometrical param-
eter o (the duct curvature ratio defined by a/R. , the ratio
of duct width/height a over the radius of the curvature R,
representing the degree of curvature), one thermophysical
parameter Pr (the Prandtl number representing the ratio of
momentum diffusion rate to that of the thermal diffusion),
and three dynamical parameters Dk, L1, and L2 defined by
Wang and Cheng [5]. The pseudo-Dean number Dk is the ra-
tio of the square root of the product of inertial and centrifu-
gal forces to the viscous force and characterizes the effect of
inertial and centrifugal forces. L1 represents the ratio of the
Coriolis force over the centrifugal force, characterizing the
relative strength of Coriolis force over the centrifugal force.
L2 is the ratio of the buoyancy force over the centrifugal force
and represents the relative strength of the buoyancy force. A
positive (negative) value of L1 is for the positive (negative)
rotation. A positive (negative) value of L2 indicates the wall
heating (cooling). In the present work, we set o = 0.02 (typ-
ically used in cooling systems of rotor drums and conduc-
tors of electrical generators) and Pr = 0.7 (a typical value for
air) to study the effects of three dynamical parameters on the
multiplicity and stability. While results regarding the effects
of Dk and L1 are also available, we focus on the effects of L2
at Dk = 300 and L1 = 28 in the present paper due to limited
space.

The governing differential equations are discretized by
the finite-volume method to obtain discretization equations.
The discretization equations are solved for parameter de-
pendence of velocity, pressure, and temperature fields by
the Euler-Newton continuation method with the solution
branches parameterized by L2, the arc length, or the local
variable. The starting points of our continuation algorithms
are the three solutions at Dk = 300, L1 = 28,and L2 = 0
from our study of the effects of Dk and L1. The bifurcation
points are detected by the test function developed by Sey-
del [19]. The branch switching is made by a scheme approx-
imating the difference between branches proposed by Seydel
[19]. The dynamic responses of multiple solutions to the 2D
finite random disturbances are examined by the direct tran-
sient computation. The readers are referred to [20, 21, 22, 23]
for the numerical details and the check of grid dependence
and accuracy. The computations are carried out on the su-
percomputer SP2 of the University of Hong Kong.

3. SOLUTION STRUCTURE

The bifurcation structure is shown in Figure 2 for L2 val-
ues from —20 up to 70 at ¢ = 0.02, Pr = 0.7, Dk = 300,
and L1 = 28. In Figure 2, the radial velocity component u at
r = 0.9 and z = 0.14 (where the flow is sensitively dependent
on L2) is used as the state variable, enabling the most clear
visualization of all solution branches. Here r = R/a,z = Z/a.
Three solution branches, labeled by AS1, AS2, and S3, respec-
tively, are found. Here, S stands for symmetric solutions with
respect to the horizontal central plane z = 0, and AS indi-
cates that the branch has both symmetric and asymmetric
solutions.
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FigURE 3: Flow and temperature fields (o = 0.02, Pr = 0.7, Dk = 300, and L1 = 28; left: secondary flow, middle: streamwise velocity, right:
temperature): (a) L2 = —17 on ASI{|¢|max = 7.14, Wmax = 0.606, Imax = 127.3) and (b) L2 = 65 on AS1{|¢lmax = 14.23, wpax = 0.0137,
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Branch AS1 has sixty nine limit points labeled by AS1!
to AS1%%, eleven bifurcation points connecting its sub-
branches denoted by 41! to 4™ !, two bifurcation
points connecting itself to AS2 labeled by 454%*! and
451521 and one bifurcation point connecting itself to S3
denoted by as5)%°. Branch AS2 has four limit points la-
beled by AS2' to AS2%. Branch $3 is a symmetric solu-
tion branch and has two limit points S3' and S3°. The
location of fourteen bifurcation points and seventy five
limit points is available in [23]. To visualize the details of
branch connectivity and some limit/bifurcation points, the
locally enlarged state diagrams are also shown in Figure 2. As
Figure 2 is only 1D projection of 12400 dimensional solu-
tion branches, all intersecting points except fourteen bifur-
cation points should not be interpreted as connection points
of branches.

For a large L2 value (L2 < —14.5 or L2 = 63.1), the
buoyancy force dominates the mixed convection. There is
unique flow and temperature field for a specified value of
L2 in these two ranges. Figure 3 illustrates the secondary-
flow patterns, the streamwise velocity profiles and temper-
ature profiles at L2 = —17 and L2 = 65, respectively. In
the figure, the stream function y, streamwise velocity w, and
temperature ¢ are normalized by their corresponding maxi-
mum absolute values ¥max, Wmax> and fmax. A vortex with a
positive (negative) value of the secondary-flow stream func-
tion indicates a counter-clockwise (clockwise) circulation.
The readers are referred to [5] for a detailed discussion of
the flow structures shown in Figure 3 in general, their rela-
tions with physical mechanisms and driving forces, and their

Ficure 4: Typical secondary-flow patterns of six solutions among
thirty nine solutions at L2 = —11.7 (¢ = 0.02, Pr = 0.7, Dk = 300,
and L1 = 28).

effects on the flow resistance and heat transfer in particu-
lar.

For any L2 value in —14.5 < L2 < 63.1, however, we can
have multiple solutions. Figure 4 shows typical secondary-
flow patterns of six solutions (thirty-nine solutions in total)
at L2 = —11.7. It is observed that the nonlinear competition
of driven forces leads to not only a rich solution structure but
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also complicated flow structures. Therefore, the mixed con-
vection in rotating curved ducts is much more complicated
than that available in the literature.

4. STABILITY OF MULTIPLE SOLUTIONS

Recognizing that there is no study on dynamic responses of
multiple solutions to finite random disturbances in the lit-
erature, a relatively comprehensive transient computation is
made to examine the dynamic behavior and stability of typi-
cal steady solutions with respect to four sets of finite random
disturbances with d = 4%, 10%, 15%, and 40%, respectively.
The results presented in this paper are those obtained from
the disturbance with d =10% unless otherwise stated.

Seven subranges are identified with each having distinct
dynamic responses to the finite random disturbances. The
first ranges from L2 = —20 to L2 = —14.5, where the finite
random disturbances lead all steady solutions at any fixed
L2 to a steady symmetric multicell state on AS1, with the
same L2. The second covers the range —14.5 < Dk < —13.6,
where there is coexistence of three stable steady symmetric
multicell states. In the third subrange —13.6 < L2 < 12.1, all
steady solutions evolve to a temporal periodic solution. The
fourth subrange is from L2 = —12.1 to L2 = —11.5, where
the solutions response to the finite random disturbances in
the form of either periodic oscillation or chaotic oscillation.
There is the coexistence of periodic and chaotic oscillations.
In the fifth subrange —11.5 < L2 < —10.5, all steady solu-
tions evolve to a temporal chaotic solution. The next sub-
range —10.5 < L2 < —10.2 serves as a transition between
the chaotic oscillation and the stable steady 2-cell flow. The
solutions response to the finite random disturbances in the
form of subharmonic-bifurcation-driven asymmetric oscil-
lation. In the last subrange L2 > —10.2, the finite random
disturbances lead all steady solutions at any fixed L2 to a sta-
ble steady symmetric 2-cell state on AS1; with the same L2.

Stable steady symmetric multicell state: =20 < L2 < —14.5

Figure 5 typifies the responses of solutions on ASI to the fi-
nite random disturbances. In the figure, the deviation of ve-
locity components from their initial steady values is plotted
against the nondimensional time 7 at (0.9,0.14), (0.94,0.1),
and (0.96,0.06) for L2 = —15. We plot both radial (u-)
and spanwise (v-) velocity components for the first point
(0.9,0.14) while only u-velocity component is shown for the
last two points. To facilitate the comparison, we use these
four velocity components (either velocity itself or derivation
velocity from its initial steady value) in all figures illustrating
dynamic responses of the multiple solutions to finite random
disturbances. It is observed that all deviation velocities van-
ish after a short period of time. The flows and temperature
profiles return to their initial steady symmetric multicell state
similar to that shown in Figure 3a.

Coexistence of three stable steady symmetric multicell states:
-145< L2 = -13.6

Figure 6 illustrates the typical response of solutions 4, d, and
e at L2 = —14 labeled in Figure 2b to the finite random
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to finite random disturbances: stable steady multicell solutions (o =
0.02, Pr = 0.7, Dk = 300, and L1 = 28).

disturbances. It shows that the finite random disturbances
lead eventually these solutions to the steady solutions a, c,
and e. There is coexistence of three stable steady symmetric
multicell states a, ¢, and e.

Temporal periodic solution: —13.6 < L2 < —12.1

The dynamic response of solution b at L2 = -12.1
(Figure 2b) is shown in Figure 7a. The finite random dis-
turbances here lead the solution to a temporal periodic state
with a period of 0.065. Some typical secondary-flow patters
are detailed in Figure 7b within one period of 7. We clearly
observe the temporal oscillations between symmetric 12-cell
flows and symmetric 14-cell flows. A detailed study on dy-
namic responses of the other solutions at L2 = —12.1 and
the comparison of flow and temperature fields within one
period show that the finite random disturbances lead all the
solutions at the same L2 to the same periodic oscillation.

A similar dynamic evolution pattern exists for all cases
with different values of L2, This signals the similarity of flow
and temperature fields within one period among the peri-
odic states for different values of L2 in the range —13.6 <
Dk < —12.1. Our detailed examination of flow and tempera-
ture fields has confirmed this and shown that the flow struc-
tures in Figure 7b are typical for all L2 in this range.

Coexistence of periodic and chaotic oscillations:
—12.1<L2 = -11.5

The coexistence of periodic and chaotic oscillations is shown
by the dynamic response of four solutions at L2 = —11.7
to the finite random disturbances in Figure 8. While solu-
tions b and ¢ in Figure 4 response to the finite random dis-
turbances in the form of periodic oscillation, solutions d
and e evolve to chaotic oscillations. The typical secondary-
flow patterns for the periodic oscillating solutions are simi-
lar to those in Figure 7b and are characterized by symmetric
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nite random disturbances: coexistence of three stable steady multi-
cell states (o = 0.02, Pr = 0.7, Dk = 300,and L1 = 28). (a) alabeled
in Figure 2b and solution a : u(0.9,0.14) = 8.137; (b) d labeled in
Figure 2b and solution d : u(0.9,0.14) = 2.493; and (c) ¢ labeled in
Figure 2b and solution ¢ : u(0.9,0.14) = —16.52.

patterns of twelve cells at least. Those for the chaotic oscil-
lation are shown in Figure 9 and are featured by symmetric
and asymmetric flows of six cells at most. Furthermore, the
selection of periodic or chaotic oscillation is also dependent
on disturbances.

Chaotic oscillation: —11.5 < L2 < —10.4

Figure 10 shows the dynamic response of the solution ¢ at
12 = —11.4 to the finite random disturbance with d =

They contain the broadband noise, indicating the flow being
chaotic [19]. Their sensitivity to the initial conditions further
confirms this.

Subharmonic-bifurcation-driven asymmetric oscillation:
-104 < L2 < -10.2

The transition from the stable steady flow in L2 > —10.2 to
the chaotic oscillation in —11.5 < L2 < -10.4 is charac-
terized by subharmonic-bifurcation-driven asymmetric os-
cillation and shown by the variation of dynamic responses of
solutions as L2 decreases from —10.2 to —10.35 (Figure 11).
The power spectra of the velocity temporal series in Figure 11
are constructed by the Fourier transformation and shown in
Figure 12.

At L2 = —10.2, the oscillation is periodic and is from the
Hopf bifurcation. The frequency f; in Figure 12a is universal
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Figure 8: Dynamic response of four solutions at L2 = —11.7 to finite random disturbance: coexistence of periodic and chaotic oscillations

(o = 0.02, Pr = 0.7, Dk = 300, and L1 = 28). (a) Solution b shown in Figure 4b, (b) solution ¢ shown in Figure 4c, (¢) solution d shown in

Figure 4d, and (d) solution e shown in Figure 4e.
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Figure 9: Typical secondary-flow patterns of chaotic oscillation for
the case in Figure 8¢ (o0 = 0.02, Pr = 0.7, Dk = 300, L1 = 28,
and L2 = —11.7); (a) T = 0.786, (b) 7 = 0.795, (¢) T = 0.806, (d)

7 = 0.815, (e) T = 0.824, and (f) T = 0.833.
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Figure 10: Dynamic response of solution ¢ at L2 = -—11.4

(Figure 2¢) to finite random disturbance: chaotic oscillations (o =
0.02, Pr = 0.7, Dk = 300, and L1 = 28).

for all velocity components, pressure, and temperature at all
points in the flow domain. At L2 = —10.25, a second fre-
quency f; appears (Figures 11b, 12b). f; is a half of f;, indi-
cating the subharmonic bifurcation. A second subharmonic
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Figure 11: Dynamic responses of the solution to finite random disturbances: subharmonic-bifurcation-driven oscillation (o = 0.02, Pr =
0.7, Dk = 300, and L1 = 28); (a) L2 = —10.20 on AS1,, (b) L2 = —10.25 on AS1,, (¢) L2 = —10.30 on AS1, and (d) L2 = —10.35 on AS1,.

bifurcation doubles the period of the temporal oscillation at
L2 = —10.3, generating another frequency f; thatis a quarter
of fi (Figures 11¢ and 12¢). At L2 = —10.35, the oscillation
is aperiodic-like (Figure 11d); the spectrum has many closely
spaced peaks (Figure 12d), forecasting the onset of chaos.

Stable steady symmetric 2-cell state: —10.2 < L2 < 70

Figure 13 typifies the responses of solution a at L2 = 50
(Figure 2a) to the finite random disturbances. The distur-
bances lead the solution a to the solution ¢ whose secondary-
flow pattern is shown in Figure 13. An extensive transient
computation concludes that the solution on ASI; is the
unique stable state in —10.2 < L2 <70,

5. CONCLUDING REMARKS

The governing differential equations from the conserva-
tion laws for the mixed convection in rotating curved ducts
are discretized by the finite-volume method to obtain dis-
cretization equations, a set of nonlinear algebraic equa-
tions. The discretization equations are solved for parameter

dependence of flow and temperature fields by the Euler-
Newton continuation with the solution branches parameter-
ized by L2, the arc length, or the local variable. The bifur-
cation points are detected by the test function. The branch
switching is made by a scheme approximating the differ-
ence between branches. One symmetric and two symmet-
ric/asymmetric solution branches are found with fourteen
bifurcation and seventy five limit points. Both solution and
flow structures are much more richer than those available in
the literature.

The dynamic responses of multiple solutions to the 2D
finite random disturbances are examined by the direct tran-
sient computation. The finite random disturbances are found
to lead the steady solutions to a stable steady multicell state
in —20 < Dk < —14.5, the coexistence of three stable steady
multicell states in —14.5 < L2 < —13.6, a temporal periodic
oscillation in —=13.6 < Dk = —12.1, the coexistence of peri-
odic and chaotic oscillating states in —12.1 < L2 < —11.5, a
chaotic oscillation in —11.5 < L2 < -10.5, a subharmonic-
bifurcation-driven asymmetric oscillation in —10.5 < L2 <
—10.2, and a stable steady 2-cell state in —10.2 < L2 < 70.
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FiGure 12: Power spectra of temporal series shown in Figure 11 (¢ = 0.02, Pr = 0.7, Dk = 300, and L1 = 28); (a) L2 = —10.20 on AS1,, (b)
12 = —10.250n ASl,, (¢) L2 = —10.30 on AS1,, and (d) L2 = —=10.35 on AS1,.

02 03 04
T
— u(0.9,0.14) —— u(0.96,0.06)
4 (0.94, 0.10) v(0.9,0.14)

Figure 13: Evolution of solution a to solution ¢ at L2 = 50 labeled
in Figure 2a (o = 0.02, Pr = 0.7, Dk = 300, and L1 = 28).
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